gwascat: structuring and querying the NHGRI GWAS catalog

VJ Carey^{*}.

October 17, 2016

Contents

1	Introduction	2
	1.1 Installation \ldots	2
	1.2 Attachment and access to documentation	2
	1.3 Illustrations: computing	2
2	Some visualizations	3
	2.1 Basic Manhattan plot	3
	2.2 Annotated Manhattan plot	4
	2.3 Integrative view of potential genetic determinants	5
3	SNP sets and trait sets	6
	3.1 SNPs by name	6
	3.2 Traits by genomic location	7
4	Counting alleles associated with traits	10
5	Imputation to unobserved loci	11
6	Formal management of trait vocabularies	13
	6.1 Diseases: Disease Ontology	13
	6.2 Other phenotypic traits: Human Phenotype Ontology	15
7	CADD scores	16
8	Appendix: Adequacy of location annotation	17
		Ŧ

^{*}Generous support of Robert Gentleman and the Computational Biology Group of Genentech, Inc. is gratefully acknowledged

1 Introduction

NHGRI maintains and routinely updates a database of selected genome-wide association studies. This document describes R/Bioconductor facilities for working with contents of this database.

1.1 Installation

The package can be installed using Bioconductor's *BiocInstaller* package, with the sequence

```
library(BiocInstaller)
biocLite("gwascat")
```

1.2 Attachment and access to documentation

Once the package has been installed, use library(gwascat) to obtain interactive access to all the facilities. After executing this command, use help(package="gwascat") to obtain an overview. The current version of this vignette can always be accessed at www.bioconductor.org, or by suitably navigating the web pages generated with help.start().

1.3 Illustrations: computing

Available functions are:

```
> library(gwascat)
```

```
> objects("package:gwascat")
```

[1]	"adj"	"bindcadd_snv"	"chklocs"
[4]	"getRsids"	"getTraits"	"gwcex2gviz"
[7]	"impute.snps"	"ldtagr"	"locs4trait"
[10]	"makeCurrentGwascat"	"metadata"	"node2uri"
[13]	"nodeData"	"nodes"	"obo2graphNEL"
[16]	"riskyAlleleCount"	"show"	"subGraph"
[19]	"subsetByChromosome"	"subsetByTraits"	"topTraits"
[22]	"traitsManh"	"ugraph"	"uri2node"

The extended GRanges instance with all SNP-disease associations is obtained as follows, using the hg19 genome build (GRCh38/hg38-based ranges are also available as ebicat38).

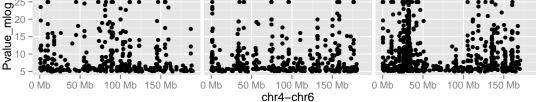
> data(ebicat37)

To determine the most frequently occurring traits:

```
> topTraits(ebicat37)
```

```
Obesity-related traits
                                          Height
                                                        IgG glycosylation
                    957
                                             822
                                                                       699
       Type 2 diabetes
                           Rheumatoid arthritis
                                                          Crohn's disease
                                             294
                                                                       249
                    340
                                                          HDL cholesterol
         Schizophrenia Blood metabolite levels
                                                                       220
                    248
                                             245
         Breast cancer
                    199
```

For a given trait, obtain a GRanges with all recorded associations; here only three associations are shown:


```
> subsetByTraits(ebicat37, tr="LDL cholesterol")[1:3]
```

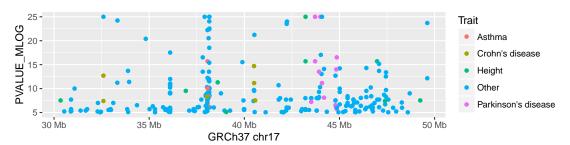
```
gwasloc instance with 3 records and 36 attributes per record.
Extracted:
Genome:
         GRCh37
Excerpt:
GRanges object with 3 ranges and 3 metadata columns:
                                                                         SNPS
      seqnames
                                ranges strand |
                                                   DISEASE/TRAIT
         <Rle>
                             <IRanges>
                                        <Rle> |
                                                     <character> <character>
  [1]
          chr2 [ 44072576,
                             44072576]
                                             * | LDL cholesterol
                                                                    rs4299376
          chr1 [150958836, 150958836]
  [2]
                                             * | LDL cholesterol
                                                                     rs267733
  [3]
          chr2 [ 21263900,
                             21263900]
                                             * | LDL cholesterol
                                                                    rs1367117
        P-VALUE
      <numeric>
  [1]
          4e-72
  [2]
          5e-09
  [3]
         1e-182
  seqinfo: 23 sequences from GRCh37 genome
```

2 Some visualizations

2.1 Basic Manhattan plot

A basic Manhattan plot is easily constructed with the ggbio package facilities. Here we confine attention to chromosomes 4:6. First, we create a version of the catalog with $-log_{10}p$ truncated at a maximum value of 25.

2.2 Annotated Manhattan plot


A simple call permits visualization of GWAS results for a small number of traits. Note the defaults in this call.

```
> args(traitsManh)
```

```
function (gwr, selr = GRanges(seqnames = "chr17", IRanges(3e+07,
5e+07)), traits = c("Asthma", "Parkinson's disease", "Height",
"Crohn's disease"), truncmlp = 25, ...)
```

NULL

> traitsManh(gwtrunc)

2.3 Integrative view of potential genetic determinants

The following chunk uses GFF3 data on eQTL and related phenomena distributed at the GBrowse instance at eqtl.uchicago.edu. A request for all information at 43-45 Mb was made on 2 June 2012, yielding the GFF3 referenced below. Of interest are locations and scores of genetic associations with DNaseI hypersensitivity (scores identifying dsQTL, see Degner et al 2012).

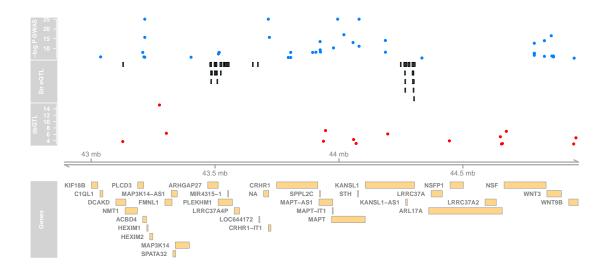
```
> gffpath = system.file("gff3/chr17_43000000_45000000.gff3", package="gwascat")
> library(rtracklayer)
> c17tg = import(gffpath)
```

er, og import (gripaon)

We make a Gviz DataTrack of the dsQTL scores.

```
> c17td = c17tg[ which(mcols(c17tg)$type == "Degner_dsQTL") ]
> library(Gviz)
> dsqs = DataTrack( c17td, chrom="chr17", genome="hg19", data="score",
+ name="dsQTL")
```

We start the construction of the graph here.


```
> g2 = GRanges(seqnames="chr17", IRanges(start=4.3e7, width=2e6))
> seqlevelsStyle(ebicat37) = "UCSC"
> basic = gwcex2gviz(basegr = ebicat37, contextGR=g2, plot.it=FALSE)
```

We also collect locations of eQTL in the Stranger 2007 multipopulation eQTL study.

```
> c17ts = c17tg[ which(mcols(c17tg)$type == "Stranger_eqtl") ]
> eqloc = AnnotationTrack(c17ts, chrom="chr17", genome="hg19", name="Str eQTL")
> displayPars(eqloc)$col = "black"
> displayPars(dsqs)$col = "red"
> integ = list(basic[[1]], eqloc, dsqs, basic[[2]], basic[[3]])
```

Now use Gviz.

> plotTracks(integ)

3 SNP sets and trait sets

3.1 SNPs by name

We can regard the content of a SNP chip as a set of SNP, referenced by name. The pd.genomewidesnp.6 package describes the Affymetrix SNP 6.0 chip. We can determine which traits are associated with loci interrogated by the chip as follows. We work with a subset of the 1 million loci for illustration.

The locon6 data frame has information on 10000 probes, acquired through the following code (not executed here to reduce dependence on the pd.genomewidesnp.6 package, which is very large.

```
> library(pd.genomewidesnp.6)
> con = pd.genomewidesnp.6@getdb()
> locon6 = dbGetQuery(con,
+     "select dbsnp_rs_id, chrom, physical_pos from featureSet limit 10000")
```

Instead use the serialized information:

```
> data(locon6)
> rson6 = as.character(locon6[[1]])
> rson6[1:5]
[1] "rs2887286" "rs1496555" "rs41477744" "rs3890745" "rs10492936"
```

We subset the GWAS ranges structure with rsids that are common to both the chip and the GWAS catalog. We then tabulate the diseases associated with the common loci.

```
> intr = ebicat37[ intersect(getRsids(ebicat37), rson6) ]
> sort(table(getTraits(intr)), decreasing=TRUE)[1:10]
```

```
Height
                                                       6
                               Select biomarker traits
                                                       3
                                       Bipolar disorder
                                                       2
                                          Dental caries
                                                       2
                                   Homocysteine levels
                                                       2
                                      IgG glycosylation
                                                       2
      Immune reponse to smallpox (secreted IFN-alpha)
                                                       2
                                       Metabolic traits
                                                       2
                              Mitochondrial DNA levels
                                                       2
Response to cytadine analogues (cytosine arabinoside)
                                                       2
```

3.2 Traits by genomic location

We will assemble genomic coordinates for SNP on the Affymetrix 6.0 chip and show the effects of identifying the trait-associated loci with regions of width 1000bp instead of 1bp.

The following code retrieves coordinates for SNP interrogated on 10000 probes (to save time) on the 6.0 chip, and stores the results in a GRanges instance.

```
> gr6.0 = GRanges(seqnames=ifelse(is.na(locon6$chrom),0,locon6$chrom),
+ IRanges(ifelse(is.na(locon6$phys),1,locon6$phys), width=1))
> mcols(gr6.0)$rsid = as.character(locon6$dbsnp_rs_id)
> seqlevels(gr6.0) = paste("chr", seqlevels(gr6.0), sep="")
```

Here we compute overlaps with both the raw disease-associated locus addresses, and with the locus address \pm 500bp.

```
> ag = function(x) as(x, "GRanges")
> ovraw = suppressWarnings(subsetByOverlaps(ag(ebicat37), gr6.0))
> length(ovraw)
[1] 128
```

```
> ovaug = suppressWarnings(subsetByOverlaps(ag(ebicat37+500), gr6.0))
> length(ovaug)
```

[1] 207

To acquire the subset of the catalog to which 6.0 probes are within 500bp, use:

```
> rawrs = mcols(ovraw)$SNPS
> augrs = mcols(ovaug)$SNPS
> ebicat37[augrs]
gwasloc instance with 207 records and 36 attributes per record.
Extracted:
Genome: GRCh37
Excerpt:
GRanges object with 5 ranges and 3 metadata columns:
      segnames
                               ranges strand |
         <Rle>
                            <IRanges>
                                      <Rle> |
  [1]
         chr11 [ 4605195,
                            4605195]
                                            * |
  [2]
        chr11 [ 46761055, 46761055]
                                            * |
          chr1 [169519049, 169519049]
  [3]
                                            * |
  [4]
         chr11 [ 61640379, 61640379]
                                            * |
  [5]
          chr1 [ 8495945, 8495945]
                                            * |
                                                                DISEASE/TRAIT
                                                                  <character>
  [1] Response to serotonin reuptake inhibitors in major depressive disorder
  [2]
                                                       Venous thromboembolism
  [3]
                                                       Venous thromboembolism
  [4]
                                                      Trans fatty acid levels
  [5]
                                                               Optic cup area
             SNPS
                    P-VALUE
      <character> <numeric>
  [1]
        rs2566255
                      2e-06
  [2]
       rs1799963
                      2e-09
  [3]
           rs6025
                      1e-96
  [4]
         rs174449
                      8e-07
  [5]
         rs301801
                      3e-08
  seqinfo: 23 sequences from GRCh37 genome
```

Relaxing the intersection criterion in this limited case leads to a larger set of traits.

```
> setdiff( getTraits(ebicat37[augrs]), getTraits(ebicat37[rawrs]) )
```

[1] "Response to serotonin reuptake inhibitors in major depressive disorder"[2] "Venous thromboembolism"

```
[3] "Hippocampal volume"
 [4] "Red blood cell fatty acid levels"
 [5] "Febrile seizures (MMR vaccine-related)"
 [6] "Eosinophilic esophagitis"
 [7] "QT interval"
[8] "Smoking cessation"
[9] "Systolic blood pressure (alcohol consumption interaction)"
[10] "QRS duration in Tripanosoma cruzi seropositivity"
[11] "Functional impairment in major depressive disorder, bipolar disorder and schizoph
[12] "Periodontitis (CDC/AAP)"
[13] "Odorant perception (β-damascenone)"
[14] "Bronchopulmonary dysplasia"
[15] "Self-reported allergy"
[16] "Migraine"
[17] "Reading and spelling"
[18] "Adverse response to chemotherapy (neutropenia/leucopenia) (carboplatin)"
[19] "Obesity"
[20] "Autism spectrum disorder, attention deficit-hyperactivity disorder, bipolar disor
[21] "Response to taxane treatment (docetaxel)"
[22] "Response to amphetamines"
[23] "Neuroblastoma"
[24] "Lentiform nucleus volume"
[25] "Capecitabine sensitivity"
[26] "Fasting glucose-related traits (interaction with BMI)"
[27] "Response to angiotensin II receptor blocker therapy"
[28] "Response to hepatitis C treatment"
[29] "Response to anti-depressant treatment in major depressive disorder"
[30] "Phospholipid levels (plasma)"
[31] "Endometrial cancer"
[32] "MRI atrophy measures"
[33] "Self-rated health"
[34] "Neonatal lupus"
[35] "Crohn's disease"
[36] "Response to statin therapy"
[37] "Tanning"
[38] "Osteonecrosis of the jaw"
[39] "Hip geometry"
```

[40] "Parkinson's disease"

4 Counting alleles associated with traits

We can use **riskyAlleleCount** to count risky alleles enumerated in the GWAS catalog. This particular function assumes that we have genotyped at the catalogued loci. Below we will discuss how to impute from non-catalogued loci to those enumerated in the catalog.

```
> data(gg17N) # translated from GGdata chr 17 calls using ABmat2nuc
> gg17N[1:5,1:5]
```

	rs6565733	rs1106175	rs17054921	rs8064924	rs8070440
NA06985	"G/G"	"A/G"	"C/C"	"G/G"	"G/G"
NA06991	"G/G"	"A/A"	"C/C"	"G/G"	"G/G"
NA06993	"G/G"	"A/A"	"C/C"	"G/G"	"G/G"
NA06994	"A/G"	"A/G"	"C/C"	"A/G"	"G/G"
NA07000	"G/G"	"A/A"	"C/C"	"G/G"	"G/G"

This function can use genotype information in the A/B format, assuming that B denotes the alphabetically later nucleotide. Because we have direct nucleotide coding in our matrix, we set the matIsAB parameter to false in this call.

747000

747007

```
> h17 = riskyAlleleCount(gg17N, matIsAB=FALSE, chr="ch17",
+ gwwl = ebicat37)
> h17[1:5,1:5]
```

~~~~~

|                                        | rs/21/319 | rs684232 | rs623323 | rs/4/685 | rs/4/68/ |  |  |
|----------------------------------------|-----------|----------|----------|----------|----------|--|--|
| NA06985                                | 0         | 0        | 2        | 1        | 1        |  |  |
| NA06991                                | 0         | 0        | 2        | 2        | 2        |  |  |
| NA06993                                | 0         | 0        | 2        | 1        | 1        |  |  |
| NA06994                                | 0         | 0        | 2        | 2        | 2        |  |  |
| NA07000                                | 0         | 0        | 2        | 2        | 2        |  |  |
| <pre>&gt; table(as.numeric(h17))</pre> |           |          |          |          |          |  |  |

co 1000

0 1 2 23876 9954 7570

7047040

It is of interest to bind the counts back to the catalog data.

```
> gwr = ebicat37
> gwr = gwr[colnames(h17),]
> mcols(gwr) = cbind(mcols(gwr), DataFrame(t(h17)))
> sn = rownames(h17)
> gwr[,c("DISEASE.TRAIT", sn[1:4])]
```

gwasloc instance with 460 records and 5 attributes per record. Extracted: Genome: GRCh37 Excerpt: GRanges object with 5 ranges and 5 metadata columns: DISEASE.TRAIT NA06985 NA06991 seqnames ranges strand | <Rle> <IRanges> <Rle> <character> <integer> <integer> [1] chr17 [ 38924, 38924] \* | AIDS progression 0 0 0 [2] chr17 [618965, 618965] 0 \* | Prostate cancer Type 2 diabetes 2 2 [3] chr17 [700020, 700020] \* | 2 [4] chr17 [775051, 775051] Blood pressure 1 \* [5] 2 chr17 [775334, 775334] \* | Blood pressure 1 NA06993 NA06994 <integer> <integer> [1] 0 0 [2] 0 0 [3] 2 2 [4] 1 2 [5] 1 2 seqinfo: 23 sequences from GRCh37 genome

Now by programming on the metadata columns, we can identify individuals with particular risk profiles.

## 5 Imputation to unobserved loci

If we lack information on a specific locus s, but have reasonably dense genotyping on a subject, population genetics may allow a reasonable guess at the genotype at s for this subject. Many algorithms for genotype imputation have been proposed. Here we use a very simple approach due to David Clayton in the *snpStats* package.

We use the "low coverage" 1000 genomes genotypes for the CEU (central European) HapMap cohort as a base for constructing imputation rules. We focus on chromosome 17 for illustration.

The base data are

```
> data(low17)
> low17
A SnpMatrix with 60 rows and 196327 columns
Row names: NA06985 ... NA12874
Col names: chr17:1869 ... chr17:78654554
```

A somewhat sparser set of genotypes (HapMap phase II, genomewide 4 million loci) on chromosome 17 is archived as g17SM. This has a compact SnpMatrix encoding of genotypes.

```
> data(g17SM)
> g17SM
A SnpMatrix with 90 rows and 89701 columns
Row names: NA06985 ... NA12892
Col names: rs6565733 ... rs4986109
```

For a realistic demonstration, we use the subset of these loci that are present on the Affy 6.0 SNP array.

```
> data(gw6.rs_17)
> g17SM = g17SM[, intersect(colnames(g17SM), gw6.rs_17)]
> dim(g17SM)
```

[1] 90 20359

The base data were used to create a set of rules allowing imputation from genotypes in the sparse set to the richer set. Some rules involve only a single locus, some as many as 4. The construction of rules involves tuning of modeling parameters. See snp.imputation in snpStats for details.

```
> if (!exists("rules_6.0_1kg_17")) data(rules_6.0_1kg_17)
> rules_6.0_1kg_17[1:5,]
```

| chr17:1869 | ~ | rs9915268+rs11247571+rs9895105+rs6598837  | (MAF = 0.066666667, R-squared =   |
|------------|---|-------------------------------------------|-----------------------------------|
| chr17:2220 | ~ | rs4790867+rs10454094+rs2586238+rs7207284  | (MAF = 0.125, R-squared = 0.706)  |
| chr17:6689 | ~ | rs4424950+rs4790867+rs7225087+rs11658347  | (MAF = 0.125, R-squared = 0.592)  |
| rs34663111 | ~ | rs11658079+rs1609550+rs4985594+rs9788983  | (MAF = 0.1166667, R-squared = 0)  |
| rs62054999 | ~ | rs17609440+rs2740351+rs2589492+rs16956017 | 7 (MAF = 0.125, R-squared = 0.26) |

The summary of rules shows the degree of association between the predictors and predictands in terms of  $R^2$ . Many potential targets are not imputed.

> summary(rules\_6.0\_1kg\_17)

|           | SNPs use | d      |        |        |           |
|-----------|----------|--------|--------|--------|-----------|
| R-squared | 1 tags   | 2 tags | 3 tags | 4 tags | <na></na> |
| [0,0.1)   | 655      | 785    | 276    | 56     | 0         |
| [0.1,0.2) | 7        | 664    | 926    | 868    | 0         |
| [0.2,0.3) | 0        | 158    | 916    | 3054   | 0         |
| [0.3,0.4) | 0        | 28     | 411    | 5104   | 0         |

| [0.4,0.5)   | 0     | 20   | 203  | 6365  | 0     |
|-------------|-------|------|------|-------|-------|
| [0.5,0.6)   | 0     | 21   | 121  | 6052  | 0     |
| [0.6,0.7)   | 0     | 29   | 104  | 5623  | 0     |
| [0.7,0.8)   | 0     | 54   | 108  | 6330  | 0     |
| [0.8,0.9)   | 0     | 141  | 225  | 9506  | 0     |
| [0.9,0.95)  | 652   | 700  | 572  | 8056  | 0     |
| [0.95,0.99) | 7274  | 1689 | 1388 | 6158  | 0     |
| [0.99,1]    | 33660 | 1353 | 2326 | 10152 | 0     |
| <na></na>   | 0     | 0    | 0    | 0     | 53601 |

The overlap between the 6.0-resident g17SM loci and the catalog is

```
> length(intersect(colnames(g17SM), mcols(ebicat37)$SNPS))
```

[1] 184

The new expected B allele counts are

```
> exg17 = impute.snps(rules_6.0_1kg_17, g17SM)
```

The number of new loci that coincide with risk loci in the catalog is:

```
> length(intersect(colnames(exg17), mcols(ebicat37)$SNPS))
```

[1] 295

## 6 Formal management of trait vocabularies

#### 6.1 Diseases: Disease Ontology

The Disease Ontology project Osborne et al. (2009) formalizes a vocabulary for human diseases. Bioconductor's DO.db package is a curated representation.

```
> library(DO.db)
> DO()
Quality control information for DO:
```

This package has the following mappings:

```
DOANCESTOR has 6569 mapped keys (of 6570 keys)
DOCHILDREN has 1811 mapped keys (of 6570 keys)
DOOBSOLETE has 2374 mapped keys (of 2374 keys)
```

```
DOOFFSPRING has 1811 mapped keys (of 6570 keys)
DOPARENTS has 6569 mapped keys (of 6570 keys)
DOTERM has 6570 mapped keys (of 6570 keys)
Additional Information about this package:
DB schema: DO_DB
DB schema version: 1.0
   All tokens of the ontology are acquired via:
> alltob = unlist(mget(mappedkeys(DOTERM), DOTERM))
> allt = sapply(alltob, Term)
> allt[1:5]
                     DOID:0001816
                                                         DOID:0002116
                    "angiosarcoma"
                                                          "pterygium"
                     DOID:0014667
                                                         DOID:0050004
          "disease of metabolism" "seminal vesicle acute gonorrhea"
                     DOID:0050012
                     "chikungunya"
```

Direct mapping from disease trait tokens in the catalog to this vocabulary succeeds for a modest proportion of records.

```
> cattra = mcols(ebicat37)$Disease.Trait
> mat = match(tolower(cattra), tolower(allt))
> catD0 = names(allt)[mat]
> na.omit(catD0)[1:50]
```

```
> mean(is.na(catD0))
```

```
[1] NaN
```

Approximate matching of unmatched tokens can proceed by various routes. Some traits are not diseases, and will not be mappable using Disease Ontology. However, consider

```
> unique(cattra[is.na(catD0)])[1:20]
```

NULL

```
> nomatch = cattra[is.na(catD0)]
> unique(nomatch)[1:5]
```

NULL

Manual searching shows that a number of these have very close matches.

#### 6.2 Other phenotypic traits: Human Phenotype Ontology

Bioconductor does not possess an annotation package for phenotype ontology, but the standardized OBO format can be parsed and modeled into a graph.

```
> hpobo = gzfile(dir(system.file("obo", package="gwascat"), pattern="hpo", full=TRUE)
```

```
> HPOgraph = obo2graphNEL(hpobo)
```

```
> close(hpobo)
```

The phenotypic terms are obtained via:

```
> hpoterms = unlist(nodeData(HPOgraph, nodes(HPOgraph), "name"))
```

```
> hpoterms[1:10]
```

```
HP:000001
                                     "All"
                                HP:000002
              "Abnormality of body height"
                                HP:000003
            "Multicystic kidney dysplasia"
                                HP:000004
               "Onset and clinical course"
                                HP:000005
                     "Mode of inheritance"
                                HP:000006
          "Autosomal dominant inheritance"
                                HP:000007
         "Autosomal recessive inheritance"
                                HP:000008
"Abnormality of female internal genitalia"
                                HP:000009
  "Functional abnormality of the bladder"
                                HP:000010
      "Recurrent urinary tract infections"
```

Exact hits to unmatched GWAS catalog traits exist:

```
> intersect(tolower(nomatch), tolower(hpoterms))
```

```
character(0)
```

More work on formalization of trait terms is underway.

## 7 CADD scores

Kircher et al. (Kircher et al., 2014) define combined annotation-dependent depletion scores measuring variant pathogenicity in an integrative way. Small requests to bind scores for SNV to GRanges can be resolved through HTTP; large requests can be carried out on a local tabix-indexed selection from their archive.

```
> g3 = as(ebicat37, "GRanges")
> bg3 = bindcadd_snv( g3[which(seqnames(g3)=="chr3")][1:20] )
> inds = ncol(mcols(bg3))
> bg3[, (inds-3):inds]
```

This requires cooperation of network interface and server, so we don't evaluate in vignette build but on 1 Apr 2014 the response was:

| GRanges | s with 20           | ranges and 4                   | l metadata          | columns:    | :     |                         |                         |
|---------|---------------------|--------------------------------|---------------------|-------------|-------|-------------------------|-------------------------|
|         | seqnames            |                                | ranges              | strand      | I     | Ref                     | Alt                     |
|         | <rle></rle>         |                                | <iranges></iranges> | <rle></rle> | I     | <character></character> | <character></character> |
| [1]     | 3                   | [109789570,                    | 109789570]          | *           | I     | А                       | G                       |
| [2]     | 3                   | [ 25922285,                    | 25922285]           | *           | I     | G                       | А                       |
| [3]     | 3                   | [109529550,                    | 109529550]          | *           |       | Т                       | C                       |
| [4]     | 3                   | [175055759,                    | 175055759]          | *           | I     | Т                       | G                       |
| [5]     | 3                   | [191912870,                    | 191912870]          | *           | I     | C                       | Т                       |
|         |                     |                                |                     |             | • • • |                         |                         |
| [16]    | 3                   | [187716886,                    | 187716886]          | *           |       | А                       | G                       |
| [17]    | 3                   | [160820524,                    | 160820524]          | *           |       | G                       | C                       |
| [18]    | 3                   | [169518455,                    | 169518455]          | *           |       | Т                       | C                       |
| [19]    | 3                   | [179172979,                    | 179172979]          | *           |       | G                       | Т                       |
| [20]    | 3                   | [171785168,                    | 171785168]          | *           |       | G                       | C                       |
|         | CScore              | PHRED                          |                     |             |       |                         |                         |
|         | <numeric></numeric> | <pre><numeric></numeric></pre> |                     |             |       |                         |                         |
| [1]     | -0.182763           | 3.110                          |                     |             |       |                         |                         |
| [2]     | -0.289708           | 2.616                          |                     |             |       |                         |                         |
| [3]     | 0.225373            | 5.216                          |                     |             |       |                         |                         |
| [4]     | -0.205689           | 3.003                          |                     |             |       |                         |                         |
| [5]     | -0.172189           | 3.161                          |                     |             |       |                         |                         |
|         |                     |                                |                     |             |       |                         |                         |
|         | -0.019710           |                                |                     |             |       |                         |                         |
|         | -0.375183           |                                |                     |             |       |                         |                         |
|         | -0.695270           |                                |                     |             |       |                         |                         |
|         | -0.441673           |                                |                     |             |       |                         |                         |
| [20]    | 0.231972            | 5.252                          |                     |             |       |                         |                         |
|         |                     |                                |                     |             |       |                         |                         |

seqlengths: 1 2 3 4 ... 21 22 X 249250621 243199373 198022430 191154276 ... 48129895 51304566 155270560

## 8 Appendix: Adequacy of location annotation

A basic question concerning the use of archived SNP identifiers is durability of the association between asserted location and SNP identifier. The chklocs function uses a current Bioconductor SNPlocs package to check this.

For example, to verify that locations asserted on chromosome 20 agree between the Bioconductor dbSNP image and the gwas catalog,

```
> if ("SNPlocs.Hsapiens.dbSNP144.GRCh37" %in% installed.packages()[,1]) {
+ library(SNPlocs.Hsapiens.dbSNP144.GRCh37)
+ suppressWarnings(chklocs("20", ebicat37))
+ }
```

[1] TRUE

This is not a fast procedure but has succeeded for all chromosomes 1-22 when checked off line.

# References

- Martin Kircher, Daniela M Witten, Preti Jain, Brian J O'Roak, Gregory M Cooper, and Jay Shendure. A general framework for estimating the relative pathogenicity of human genetic variants. *Nat Genet*, Feb 2014. doi: 10.1038/ng.2892.
- John D Osborne, Jared Flatow, Michelle Holko, Simon M Lin, Warren A Kibbe, Lihua Julie Zhu, Maria I Danila, Gang Feng, and Rex L Chisholm. Annotating the human genome with disease ontology. *BMC Genomics*, 10 Suppl 1:S6, Jan 2009. doi: 10.1186/1471-2164-10-S1-S6. URL http://www.biomedcentral.com/ 1471-2164/10/S1/S6.