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Application of high-throughput sequencing of T and B lymphocyte antigen receptors has great potential for improving the
monitoring of lymphoid malignancies, assessing immune reconstitution after hematopoietic stem cell transplantation, and
characterizing the composition of lymphocyte repertoires.1 LymhoSeq is an R package designed to import, analyze, and
visualize antigen receptor sequencing from Adaptive Biotechnologies’ ImmunoSEQ assay.2 The package is also adaptable to
the analysis of T and B cell receptor sequencing processed using other platforms such as MiXCR3 or IMGT/HighV-QUEST.4
This vignette has been written to highlight some of the features of LymphoSeq and guide the user through a typical workflow.

Importing data

The LymphoSeq function readImmunoSeq imports tab-separated value (.tsv) files exported by Adaptive Biotechnologies
ImmunoSEQ analyzer where each row represents a unique sequence and each column is a variable with information about
that sequence such as read count, frequency, or variable gene name. Only files with the extension .tsv are imported while all
other are disregarded. It is possible to import files processed using other platforms as long as the files are tab-delimited with
the extension .tsv and have identical column names as the ImmunoSEQs files (see readImmunoSeq manual for a list of column
names).5

In the example below, system.file("extdata", "TCRB_sequencing", package = "LymphoSeq") refers to a path to a
directory embedded within the LymphoSeq package containing an example data set of T cell receptor beta (TCRB) sequencing
from the peripheral blood of a patient who underwent a bone marrow transplant. The files are named according to the day
posttransplant and the immunophenotype of the T cells if sorted prior to sequencing. The function readImmunoSeq is used to
import the files in as a list object where each file becomes a data frame. You can import all columns from each file by setting
the columns parameter to "all" or list just those columns you are interested in as shown below. Be aware that Adaptive
Biotechnologies has changed the column names of their files over time and if the headings of your files are not all the same,
you will need to specify "all" or provide all variations of the column header as done for “count” and “frequencyCount” in the
example below. If the directory you are pointing to contains subdirectories with additional sequencing files, you can choose to
import those by setting the parameter recursive to TRUE, otherwise only the files in the top directory will be imported.

library(LymphoSeq)

## Loading required package: LymphoSeqDB

file.path <- system.file("extdata", "TCRB_sequencing", package = "LymphoSeq")

file.list <- readImmunoSeq(path = file.path,
columns = c("aminoAcid", "nucleotide", "count", "count (templates)",

"count (reads)", "frequencyCount", "frequencyCount (%)",
"estimatedNumberGenomes", "vFamilyName", "dFamilyName",
"jFamilyName"),

recursive = FALSE)

Notice that each data frame listed in the file.list object is named according the ImmunoSEQ file name files. If different
names are desired, you may rename the original .tsv files or assign names(file.list) to a new character vector of desitred
names within R.

1Warren, E. H. et al. Blood 2013;122:19–22.
2http://www.adaptivebiotech.com/immunoseq
3http://mixcr.milaboratory.com
4http://www.imgt.org/HighV-QUEST
5Some functionality may be lost. Extensive testing with other platforms has not been performed.
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names(file.list)

[1] "TCRB_Day0_Unsorted" "TCRB_Day1320_CD8_CMV"
[3] "TCRB_Day1320_Unsorted" "TCRB_Day32_Unsorted"
[5] "TCRB_Day369_CD8_CMV" "TCRB_Day369_Unsorted"
[7] "TCRB_Day83_CD8_CMV" "TCRB_Day83_Unsorted"
[9] "TCRB_Day949_CD4" "TCRB_Day949_CD8"

[11] "TCRB_Day949_Unsorted"

Having the data in the form of a list makes it easy to apply a function over that list using the base functions sapply (outputs
a matrix) or lapply (outputs a list). For example, you may use the function dim to report the dimensions of each data frame
as shown below. Notice that in the example data set, each data frame has less than 1000 rows (e.g. sequences) since it has
been truncated from its original size for demonstration purposes. There are 8 columns to each data frame as specified by the
readImmunoSeq function. In place of dim, you may also use colnames, nrow, ncol, or other more complex functions that
perform operations on subsetted columns.

sapply(file.list, dim)

TCRB_Day0_Unsorted TCRB_Day1320_CD8_CMV TCRB_Day1320_Unsorted
[1,] 999 40 999
[2,] 8 8 8

TCRB_Day32_Unsorted TCRB_Day369_CD8_CMV TCRB_Day369_Unsorted
[1,] 920 414 999
[2,] 8 8 8

TCRB_Day83_CD8_CMV TCRB_Day83_Unsorted TCRB_Day949_CD4
[1,] 201 999 999
[2,] 8 8 8

TCRB_Day949_CD8 TCRB_Day949_Unsorted
[1,] 999 999
[2,] 8 8

Subsetting data

If you imported all of the files from your project but just want to perform an analysis on a subset, use standard R methods to
subset the list. Remember that a single bracket [ returns a list and a double bracket [[ returns a single data frame.

CMV <- file.list[grep("CMV", names(file.list))]
names(CMV)

[1] "TCRB_Day1320_CD8_CMV" "TCRB_Day369_CD8_CMV" "TCRB_Day83_CD8_CMV"

TCRB_Day0_Unsorted <- file.list[["TCRB_Day0_Unsorted"]]
head(TCRB_Day0_Unsorted)

nucleotide
1 TCAATTCCCTGGAGCTTGGTGACTCTGCTGTGTATTTCTGTGCCAGCAGCCATCGGGACAGAGAACACTGAAGCTTTCTTTGGACAA
2 CTGATTCTGGAGTCCGCCAGCACCAACCAGACATCTATGTACCTCTGTGCCAGCAGCCCCGTGAGCAATGAGCAGTTCTTCGGGCCA
3 ATCAATTCCCTGGAGCTTGGTGACTCTGCTGTGTATTTCTGTGCCAGCAGCCAAGAAGTTCCGCCTTACCAAGCTTTCTTTGGACAA
4 TGCCATCCCCAACCAGACAGCTCTTTACTTCTGTGCCACCAGTGTCCACAAACAGGGGGCAGGACCGGGGAGCTGTTTTTTGGAGAA
5 CACACCCTGCAGCCAGAAGACTCGGCCCTGTATCTCTGCGCCAGCAGCCAAGAGGCTAGCGGGAGACAGACCCAGTACTTCGGGCCA
6 GCCAGCACCAACCAGACATCTATGTACCTCTGTGCCAGCAGTTTGGAGCACACGGGTGCAACTAATGAAAAACTGTTTTTTGGCAGT

aminoAcid count frequencyCount vFamilyName dFamilyName
1 89285 6.606637 TCRBV03 TCRBD01
2 CASSPVSNEQFF 50511 3.737558 TCRBV28 TCRBD02
3 CASSQEVPPYQAFF 49129 3.635297 TCRBV03
4 43293 3.203462 TCRBV24 TCRBD01
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5 CASSQEASGRQTQYF 43264 3.201317 TCRBV04 TCRBD02
6 CASSLEHTGATNEKLFF 40119 2.968602 TCRBV28 TCRBD02

jFamilyName estimatedNumberGenomes
1 TCRBJ01 1450
2 TCRBJ02 822
3 TCRBJ01 797
4 TCRBJ02 702
5 TCRBJ02 704
6 TCRBJ01 653

For more complex subsetting, you can use a metadata file where one column contains the file names and the other columns
have additional information about the sample files (e.g pretreatment and posttreatment). You can then subset the metadata
file using criteria from the other columns to give you just a character vector of file names that you can use to subset file.list.

metadata <- read.csv(system.file("extdata", "metadata.csv", package = "LymphoSeq"))
metadata

samples day timePoint phenotype
1 TCRB_Day0_Unsorted 0 Pretransplant Unsorted
2 TCRB_Day32_Unsorted 32 1 Month Unsorted
3 TCRB_Day83_Unsorted 83 3 Months Unsorted
4 TCRB_Day83_CD8_CMV 83 3 Months CD8+CMV+
5 TCRB_Day369_Unsorted 369 1 Year Unsorted
6 TCRB_Day369_CD8_CMV 369 1 Year CD8+CMV+
7 TCRB_Day949_Unsorted 949 2 Years Unsorted
8 TCRB_Day949_CD4 949 2 Years CD4+
9 TCRB_Day949_CD8 949 2 Years CD8+
10 TCRB_Day1320_Unsorted 1320 3 Years Unsorted
11 TCRB_Day1320_CD8_CMV 1320 3 Years CD8+CMV+

selected <- as.character(metadata[metadata$phenotype == "Unsorted" &
metadata$day > 300, "samples"])

file.list.selected <- file.list[selected]
names(file.list.selected)

[1] "TCRB_Day369_Unsorted" "TCRB_Day949_Unsorted" "TCRB_Day1320_Unsorted"

Extracting productive sequences

A productive sequence is defined as a sequences that is in frame and does not have an early stop codon. If you sequenced
genomic DNA as opposed to complimentary DNA made from RNA, then you will have unproductive and productive sequences
in your data files. Use the function productiveSeq to remove unproductive sequences and recompute the frequencyCount for
each of your samples.

If you are interested in just the complementarity determining region 3 (CDR3) amino acid sequences, then set aggregate to
"aminoAcid" and the count and estimated number of genomes for duplicate amino acid sequences will be summed. Note
that the resulting list of data frames will have columns corresponding to “aminoAcid”, “count”, “frequencyCount”, and
“estimatedNumberGenomes” (if this column is available) only. All other columns, such as those corresponding to the V, D, and
J gene names, will be removed if they were included in your original file list. The reason for this is to avoid confusion since a
single amino acid CDR3 sequence may be encoded by multiple different nucleotide sequences with differing V, D, and J genes.

productive.aa <- productiveSeq(file.list = file.list, aggregate = "aminoAcid",
prevalence = FALSE)

Alternatively, you may set aggregate to "nucleotide" and the resulting list of data frames will all have the same columns as
your original file list. Take note that some LymphoSeq functions require a productive sequence list aggregated by amino acid
or nucleotide.
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productive.nt <- productiveSeq(file.list = file.list, aggregate = "nucleotide",
prevalence = FALSE)

If the parameter prevalence is set to TRUE, then a new column is added to each of the data frames giving the prevalence (%)
of each CDR3 amino acid sequence in 55 healthy donor peripheral blood samples. Values range from 0 to 100% where 100%
means the sequence appeared in the blood of all 55 individuals. The data for this operation resides in a separate package that
is automatically loaded called LymphoSeqDB. Please refer to that package manual for more details.

Notice in the example below that there are no amino acid sequences given in the first and fourth row of the file.list data
frame for sample “TCRB_Day949_Unsorted”. This is because the nucleotide sequence is out of frame and does not produce a
productively transcribed amino acid sequence. If an asterisk (*) appears in the amino acid sequences, this would indicate an
early stop codon.

head(file.list[["TCRB_Day0_Unsorted"]])

nucleotide
1 TCAATTCCCTGGAGCTTGGTGACTCTGCTGTGTATTTCTGTGCCAGCAGCCATCGGGACAGAGAACACTGAAGCTTTCTTTGGACAA
2 CTGATTCTGGAGTCCGCCAGCACCAACCAGACATCTATGTACCTCTGTGCCAGCAGCCCCGTGAGCAATGAGCAGTTCTTCGGGCCA
3 ATCAATTCCCTGGAGCTTGGTGACTCTGCTGTGTATTTCTGTGCCAGCAGCCAAGAAGTTCCGCCTTACCAAGCTTTCTTTGGACAA
4 TGCCATCCCCAACCAGACAGCTCTTTACTTCTGTGCCACCAGTGTCCACAAACAGGGGGCAGGACCGGGGAGCTGTTTTTTGGAGAA
5 CACACCCTGCAGCCAGAAGACTCGGCCCTGTATCTCTGCGCCAGCAGCCAAGAGGCTAGCGGGAGACAGACCCAGTACTTCGGGCCA
6 GCCAGCACCAACCAGACATCTATGTACCTCTGTGCCAGCAGTTTGGAGCACACGGGTGCAACTAATGAAAAACTGTTTTTTGGCAGT

aminoAcid count frequencyCount vFamilyName dFamilyName
1 89285 6.606637 TCRBV03 TCRBD01
2 CASSPVSNEQFF 50511 3.737558 TCRBV28 TCRBD02
3 CASSQEVPPYQAFF 49129 3.635297 TCRBV03
4 43293 3.203462 TCRBV24 TCRBD01
5 CASSQEASGRQTQYF 43264 3.201317 TCRBV04 TCRBD02
6 CASSLEHTGATNEKLFF 40119 2.968602 TCRBV28 TCRBD02

jFamilyName estimatedNumberGenomes
1 TCRBJ01 1450
2 TCRBJ02 822
3 TCRBJ01 797
4 TCRBJ02 702
5 TCRBJ02 704
6 TCRBJ01 653

After productiveSeq is run, the unproductive sequences are removed and the frequencyCount is recalculated for each sequence.
If there were two identical amino acid sequences that differed in their nucleotide sequence, they would be combined and their
counts added together.

head(productive.aa[["TCRB_Day0_Unsorted"]])

aminoAcid count frequencyCount estimatedNumberGenomes
1 CASSPVSNEQFF 50511 5.543769 822
2 CASSQEVPPYQAFF 49129 5.392090 797
3 CASSQEASGRQTQYF 43264 4.748384 704
4 CASSLEHTGATNEKLFF 40119 4.403209 653
5 CASSPGDEQYF 38100 4.181616 619
6 CSARSPSTGTLAEAFF 26377 2.894973 429

Finally, notice that the productive.nt data frame for sample “TCRB_Day949_Unsorted” below has additional columns not
present in productive.aa but are in file.list. This is because the data frame was aggregated by nucleotide sequence and all of
the original columns from file.list were carried over.

head(productive.nt[["TCRB_Day0_Unsorted"]])
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nucleotide
1 CTGATTCTGGAGTCCGCCAGCACCAACCAGACATCTATGTACCTCTGTGCCAGCAGCCCCGTGAGCAATGAGCAGTTCTTCGGGCCA
2 ATCAATTCCCTGGAGCTTGGTGACTCTGCTGTGTATTTCTGTGCCAGCAGCCAAGAAGTTCCGCCTTACCAAGCTTTCTTTGGACAA
3 CACACCCTGCAGCCAGAAGACTCGGCCCTGTATCTCTGCGCCAGCAGCCAAGAGGCTAGCGGGAGACAGACCCAGTACTTCGGGCCA
4 GCCAGCACCAACCAGACATCTATGTACCTCTGTGCCAGCAGTTTGGAGCACACGGGTGCAACTAATGAAAAACTGTTTTTTGGCAGT
5 CCCCTGACCCTGGAGTCTGCCAGGCCCTCACATACCTCTCAGTACCTCTGTGCCAGCAGTCCGGGGGACGAGCAGTACTTCGGGCCG
6 AGTGCCCATCCTGAAGACAGCAGCTTCTACATCTGCAGTGCTAGATCACCCAGTACAGGGACCCTCGCTGAAGCTTTCTTTGGACAA

aminoAcid count frequencyCount vFamilyName dFamilyName
1 CASSPVSNEQFF 50511 5.543769 TCRBV28 TCRBD02
2 CASSQEVPPYQAFF 49129 5.392090 TCRBV03
3 CASSQEASGRQTQYF 43264 4.748384 TCRBV04 TCRBD02
4 CASSLEHTGATNEKLFF 40119 4.403209 TCRBV28 TCRBD02
5 CASSPGDEQYF 38100 4.181616 TCRBV25 TCRBD02
6 CSARSPSTGTLAEAFF 26377 2.894973 TCRBV20 TCRBD01

jFamilyName estimatedNumberGenomes
1 TCRBJ02 822
2 TCRBJ01 797
3 TCRBJ02 704
4 TCRBJ01 653
5 TCRBJ02 619
6 TCRBJ01 429

Create a table of summary statistics

To create a table summarizing the total number of sequences, number of unique productive sequences, number of genomes,
entropy, clonality, Gini coefficient, and the frequency (%) of the top productive sequence in each imported file, use the function
clonality.

clonality(file.list = file.list)

samples totalSequences uniqueProductiveSequences
1 TCRB_Day949_CD4 999 845
2 TCRB_Day949_CD8 999 796
3 TCRB_Day0_Unsorted 999 837
4 TCRB_Day83_CD8_CMV 201 122
5 TCRB_Day32_Unsorted 920 767
6 TCRB_Day369_CD8_CMV 414 281
7 TCRB_Day83_Unsorted 999 830
8 TCRB_Day1320_CD8_CMV 40 25
9 TCRB_Day369_Unsorted 999 828
10 TCRB_Day949_Unsorted 999 831
11 TCRB_Day1320_Unsorted 999 833

totalGenomes totalCount entropy clonality giniCoefficient
1 25767 1795561 5.597259 0.42431656 0.8486265
2 26236 2161314 5.535828 0.42554289 0.9018374
3 18215 1158510 7.144318 0.26416150 0.7956718
4 254 4553 5.891883 0.14989093 0.6133629
5 NA 31078 8.296630 0.13424209 0.6007820
6 1794 52480 5.011083 0.38396606 0.8677666
7 NA 427427 7.285945 0.24863671 0.7100983
8 53 53 4.486348 0.03391748 0.2313514
9 NA 725668 6.037979 0.37710971 0.8043414
10 6547 1486480 6.774799 0.30147383 0.7739322
11 180079 180079 5.708193 0.41165830 0.8845652

topProductiveSequence
1 29.232143
2 19.131268
3 5.543769
4 8.917656
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5 4.865016
6 17.718550
7 13.821673
8 10.810811
9 17.568430
10 13.510800
11 14.422142

The clonality score is derived from the Shannon entropy, which is calculated from the frequencies of all productive sequences
divided by the logarithm of the total number of unique productive sequences. This normalized entropy value is then inverted
(1 - normalized entropy) to produce the clonality metric.

The Gini coefficient6 is an alternative metric used to calculate repertoire diversity and is derived from the Lorenz curve. The
Lorenz curve is drawn such that x-axis represents the cumulative percentage of unique sequences and the y-axis represents the
cumulative percentage of reads.7 A line passing through the origin with a slope of 1 reflects equal frequencies of all clones.
The Gini coefficient is the ratio of the area between the line of equality and the observed Lorenz curve over the total area
under the line of equality.

Both Gini coefficient and clonality are reported on a scale from 0 to 1 where 0 indicates all sequences have the same frequency
and 1 indicates the repertoire is dominated by a single sequence.

Searching for sequences

To search for one or more amino acid or nucleotide CDR3 sequences in a list of data frames, use the function searchSeq. You
may specify to search in either a list of productive or unproductive data frames.

searchSeq(list = productive.aa, sequence = "CASSPVSNEQFF", type = "aminoAcid",
match = "global", editDistance = 0)

sample aminoAcid count frequencyCount
1 TCRB_Day0_Unsorted CASSPVSNEQFF 50511 5.54376923
260 TCRB_Day369_Unsorted CASSPVSNEQFF 211 0.03315421
64 TCRB_Day83_CD8_CMV CASSPVSNEQFF 10 0.35958288
334 TCRB_Day949_CD8 CASSPVSNEQFF 214 0.01159812

estimatedNumberGenomes
1 822
260 0
64 1
334 2

If you have only a partial sequence, set the parameter match to "partial". If you are looking for related sequences that
differ by one or more nucleotides or amino acids, then increase the editDistance value. Edit distance is a way of quantifying
how dissimilar two sequences are to one another by counting the minimum number of operations required to transform one
sequence into the other. For example, an edit distance of 0 means the sequences are identical and an edit distance of 1
indicates that the sequences differ by a single amino acid or nucleotide.

Searching for published T cell sequences with known antigen specificity

To search your entire list of data frames for a published amino acid CDR3 TCRB sequence with known antigen specificity, use
the function searchPublished.

published <- searchPublished(list = productive.aa)
head(published)

6https://en.wikipedia.org/wiki/Gini_coefficient
7https://en.wikipedia.org/wiki/Lorenz_curve
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sample aminoAcid count frequencyCount
1 TCRB_Day32_Unsorted CASASSGTDTQYF 33 0.131594688
2 TCRB_Day949_Unsorted CASSFSTDTQYF 279 0.023538126
3 TCRB_Day1320_Unsorted CASSIRSAYEQYF 15 0.010202902
4 TCRB_Day949_CD8 CASSIRSAYEQYF 593 0.032138727
5 TCRB_Day32_Unsorted CASSLAPSYEQYF 17 0.067791203
6 TCRB_Day1320_Unsorted CASSLGEQPQHF 10 0.006801934

estimatedNumberGenomes PMID HLA antigen epitope
1 0 20647322 HLA-A*24:02 Leukemia <NA>
2 2 23267020 HLA-A*02 EBV BMFL1-GLCTLVAML
3 15 21048112 HLA-A*02 EBV BMLF1-GLCTLVAML
4 7 21048112 HLA-A*02 EBV BMLF1-GLCTLVAML
5 0 23267020 HLA-B*08 EBV BZLF1-RAKFKQLL
6 10 23521884 HLA-B*27:05 HIV KK10-KRWIILGLNK

prevalence
1 7.3
2 85.5
3 18.2
4 18.2
5 69.1
6 29.1

For each found sequence, a table is provides listing the antigen, epitope, HLA type, PubMed ID (PMID), and prevalence (%)
of the sequence among 55 healthy donor blood samples. The data for this function resides in the separate LymphoSeqDB
package that is automatically loaded when the function is called. Please refer to that package manual for more details.

Visualizing repertoire diversity

Antigen receptor repertoire diversity can be characterized by a number such as clonality or Gini coefficient calculated by the
clonality function. Alternatively, you can visualize the repertoire diversity by plotting the Lorenz curve for each sample as
defined above. In this plot, the more diverse samples will appear near the dotted diagonal line (the line of equality) whereas
the more clonal samples will appear to have a more bowed shape.

lorenzCurve(samples = names(productive.aa), list = productive.aa)
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Alternatively, you can get a feel for the repertoire diversity by plotting the cumulative frequency of a selected number of
the top most frequent clones using the function topSeqsPlot. In this case, each of the top sequences are represented by a
different color and all less frequent clones will be assigned a single color (violet).

topSeqsPlot(list = productive.aa, top = 10)
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Both of these functions are built using the ggplot2 package8. You can reformat the plot using ggplot2 functions. Please refer
to the lorenzCurve and topSeqsPlot manual for specific examples.

Comparing samples

To compare the T or B cell repertoires of all samples in a pairwise fashion, use the bhattacharyyaMatrix or similarityMatrix
functions. Both the Bhattacharyya coefficient and similarity score are measures of the amount of overlap between two samples.
The value for each ranges from 0 to 1 where 1 indicates the sequence frequencies are identical in the two samples and 0
indicates no shared frequencies. The Bhattacharyya coefficient differs from the similarity score in that it involves weighting
each shared sequence in the two distributions by the arithmetic mean of the frequency of each sequence, while calculating the
similarity scores involves weighting each shared sequence in the two distributions by the geometric mean of the frequency of
each sequence in the two distributions.

bhattacharyya.matrix <- bhattacharyyaMatrix(productive.seqs = productive.aa)
bhattacharyya.matrix[,1:2]

TCRB_Day1320_Unsorted TCRB_Day949_Unsorted
TCRB_Day1320_Unsorted 1.00000000 0.88013589
TCRB_Day949_Unsorted 0.88013589 1.00000000
TCRB_Day369_Unsorted 0.84210238 0.77225070
TCRB_Day1320_CD8_CMV 0.46204244 0.39421126
TCRB_Day83_Unsorted 0.62582845 0.58334619
TCRB_Day369_CD8_CMV 0.79605192 0.72972153
TCRB_Day32_Unsorted 0.32118959 0.27850843
TCRB_Day83_CD8_CMV 0.42168018 0.40854427
TCRB_Day0_Unsorted 0.01700697 0.01416233
TCRB_Day949_CD8 0.81836252 0.81470456
TCRB_Day949_CD4 0.44279429 0.42687836

8http://www.cookbook-r.com/Graphs/
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similarity.matrix <- similarityMatrix(productive.seqs = productive.aa)
similarity.matrix[,1:2]

TCRB_Day1320_Unsorted TCRB_Day949_Unsorted
TCRB_Day1320_Unsorted 1.00000000 0.85741424
TCRB_Day949_Unsorted 0.85741424 1.00000000
TCRB_Day369_Unsorted 0.84852643 0.78458455
TCRB_Day1320_CD8_CMV 0.48448189 0.37158455
TCRB_Day83_Unsorted 0.62977574 0.58472269
TCRB_Day369_CD8_CMV 0.75230736 0.59370996
TCRB_Day32_Unsorted 0.40554581 0.37243182
TCRB_Day83_CD8_CMV 0.43445840 0.39263374
TCRB_Day0_Unsorted 0.01231397 0.02166242
TCRB_Day949_CD8 0.91435304 0.85504038
TCRB_Day949_CD4 0.80667431 0.54676809

The results of either function can be visualized by the pairwisePlot function.

pairwisePlot(matrix = bhattacharyya.matrix)
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To view sequences shared between two or more samples, use the function commonSeqs. This function requires that a productive
amino acid list be specified.

common <- commonSeqs(samples = c("TCRB_Day0_Unsorted", "TCRB_Day32_Unsorted"),
productive.aa = productive.aa)

head(common)

aminoAcid TCRB_Day0_Unsorted TCRB_Day32_Unsorted
1 CASSQDRTGQYGYTF 0.47380673 0.80551900
2 CAWTGGTTEAFF 0.10887567 0.15153328
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3 CAISEGNYGYTF 0.03566995 0.18742274
4 CASSFGIQETQYF 0.01393872 0.09570523

To visualize the number of overlapping sequences between two or three samples in the form of a Venn diagram, use the
function commonSeqVenn.

commonSeqsVenn(samples = c("TCRB_Day32_Unsorted", "TCRB_Day83_Unsorted"),
productive.seqs = productive.aa)
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To compare the frequency of sequences between two samples as a scatter plot, use the function commonSeqsPlot.

commonSeqsPlot("TCRB_Day32_Unsorted", "TCRB_Day83_Unsorted",
productive.aa = productive.aa)
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Revealing sequences that appear in multiple samples

To create a data frame of unique, productive amino acid sequences as rows and sample names as headers use the seqMatrix
function. Each value in the data frame represents the frequency that each sequence appears in the sample. You can specify
your own list of sequences or all unique sequences in the list using the output of the function uniqueSeqs. The uniqueSeqs
function creates a data frame of all unique, productive sequences and reports the total count in all samples.

unique.seqs <- uniqueSeqs(productive.aa = productive.aa)
head(unique.seqs)

aminoAcid count
2465 CASSPAGAYYNEQFF 666188
1070 CASSESAGSTGELFF 430262
2699 CASSPPTGERDTQYF 358432
2998 CASSQDLMTVDSLFAGANVLTF 357006
2154 CASSLQGREKLFF 320305
3103 CASSQDWERLGEQFF 307744

sequence.matrix <- seqMatrix(productive.aa = productive.aa, sequences = unique.seqs$aminoAcid)
head(sequence.matrix)[1:6]

aminoAcid numberSamples TCRB_Day0_Unsorted
1 CASSPAGAYYNEQFF 9 0.0000000
2 CASSPPTGERDTQYF 9 0.0000000
3 CASSQDLMTVDSLFAGANVLTF 9 0.0000000
4 CASSQDRTGQYGYTF 9 0.4738067
5 CASSLQGREKLFF 8 0.0000000
6 CASSQDSSDTEAFF 8 0.0000000

TCRB_Day1320_CD8_CMV TCRB_Day1320_Unsorted TCRB_Day32_Unsorted
1 8.108108 14.4459484 0.03987718
2 5.405405 12.8039614 0.40674722
3 2.702703 3.0853575 1.55122224
4 0.000000 0.4278417 0.80551900
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5 0.000000 7.2937143 4.86501575
6 0.000000 0.1285566 0.66594888

If just the top clones with a frequency greater than a specified amount are of interest to you, then use the topFreq function.
This creates a data frame of the top productive amino acid sequences having a minimum specified frequency and reports the
minimum, maximum, and mean frequency that the sequence appears in a list of samples. For TCRB sequences, the prevalence
(%) and the published antigen specificity of that sequence are also provided.

top.freq <- topFreq(productive.aa = productive.aa, percent = 0.1)
head(top.freq)

aminoAcid minFrequency maxFrequency meanFrequency
373 CASSPPTGERDTQYF 0.4067472 17.798977 8.0931668
412 CASSQDLMTVDSLFAGANVLTF 1.5512222 10.542803 5.6504197
418 CASSQDRTGQYGYTF 0.4278417 1.088690 0.6955508
342 CASSPAGAYYNEQFF 0.3955412 19.139614 11.6126951
296 CASSLQGREKLFF 4.0790673 13.821673 7.3429132
556 CASSWPGLASFNEQFF 0.2489508 5.405405 1.0181321

numberSamples prevalence antigen
373 9 1.8
412 9 1.8
418 9 3.6
342 8 5.5
296 8 30.9
556 8 1.8

One very useful thing to do is merge the output of seqMatrix and topFreq.

top.freq <- topFreq(productive.aa = productive.aa, percent = 0)
top.freq.matrix <- merge(top.freq, sequence.matrix)
head(top.freq.matrix)[1:12]

aminoAcid numberSamples minFrequency maxFrequency meanFrequency
1 CAAGDTTLYEQYF 1 0.01799961 0.01799961 0.01799961
2 CAAGRDLNIQYF 1 0.03950662 0.03950662 0.03950662
3 CAAGTSGDTQYF 1 0.01830743 0.01830743 0.01830743
4 CAARGGGESYEQYF 1 0.03654798 0.03654798 0.03654798
5 CAATRRQGDVMNTEAFF 1 0.03771095 0.03771095 0.03771095
6 CACSRDRGSDTQYF 1 0.01957292 0.01957292 0.01957292

prevalence antigen TCRB_Day0_Unsorted TCRB_Day1320_CD8_CMV
1 0.0 0.01799961 0
2 0.0 0.00000000 0
3 1.8 0.00000000 0
4 0.0 0.03654798 0
5 0.0 0.00000000 0
6 0.0 0.00000000 0

TCRB_Day1320_Unsorted TCRB_Day32_Unsorted TCRB_Day369_CD8_CMV
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0

Tracking sequences across samples

To visually track the frequency of sequences across multiple samples, use the function cloneTrack. This function takes the
output from the seqMatrix function. You can specify a character vector of amino acid sequences using the parameter track
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to highlight those sequences with a different color. Alternatively, you can highlight all of the sequences from a given sample
using the parameter map. If the mapping feature is use, then you must specify a productive amino acid list and a character
vector of labels to title the mapped samples. To hide sequences that are not being tracked or mapped, set unassigned to
FALSE.

cloneTrack(sequence.matrix = sequence.matrix,
productive.aa = productive.aa,
map = c("TCRB_Day949_CD4", "TCRB_Day949_CD8"),
label = c("CD4", "CD8"),
track = "CASSPPTGERDTQYF",
unassigned = FALSE)
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Refer to the cloneTrack manual for examples on how to reformat the chart using ggplot2 function.

Comparing V(D)J gene usage

To compare the V, D, and J gene usage across samples, start by creating a data frame of V, D, and J gene counts and
frequencies using the function geneFreq. You can specify if you are interested in the “VDJ”, “DJ”, “VJ”, “DJ”, “V”, “D”,
or “J” loci using the locus parameter. Set family to TRUE if you prefer the family names instead of the gene names as
reported by ImmunoSeq.

vGenes <- geneFreq(productive.nt = productive.nt, locus = "V", family = TRUE)
head(vGenes)

samples familyName count frequencyGene
1 TCRB_Day949_Unsorted TCRBV02 16707 1.409503
2 TCRB_Day949_Unsorted TCRBV03 44147 3.724508
3 TCRB_Day949_Unsorted TCRBV04 176436 14.885207
4 TCRB_Day949_Unsorted TCRBV05 89025 7.510687
5 TCRB_Day949_Unsorted TCRBV06 97462 8.222483
6 TCRB_Day949_Unsorted TCRBV07 106095 8.950815
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To create a chord diagram showing VJ or DJ gene associations from one or more more samples, combine the output of
geneFreq with the function chordDiagramVDJ. This function works well the topSeqs function that creates a data frame of a
selected number of top productive sequences. In the example below, a chord diagram is made showing the association between
V and J genes of just the single dominant clones in each sample. The size of the ribbons connecting VJ genes correspond to the
number of samples that have that recombination event. The thicker the ribbon, the higher the frequency of the recombination.

top.seqs <- topSeqs(productive.seqs = productive.nt, top = 1)
chordDiagramVDJ(sample = top.seqs,

association = "VJ",
colors = c("darkred", "navyblue"))
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You can also visualize the results of geneFreq as a heat map, word cloud, our cumulative frequency bar plot with the support
of additional R packages as shown below.

vGenes <- geneFreq(productive.nt = productive.nt, locus = "V", family = TRUE)
library(RColorBrewer)
library(grDevices)
RedBlue <- grDevices::colorRampPalette(rev(RColorBrewer::brewer.pal(11, "RdBu")))(256)
library(wordcloud)
wordcloud::wordcloud(words = vGenes[vGenes$samples == "TCRB_Day83_Unsorted", "familyName"],

freq = vGenes[vGenes$samples == "TCRB_Day83_Unsorted", "frequencyGene"],
colors = RedBlue)
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library(reshape)
vGenes <- reshape::cast(vGenes, familyName ~ samples, value = "frequencyGene", sum)
rownames(vGenes) = as.character(vGenes$familyName)
vGenes$familyName = NULL
library(pheatmap)
pheatmap::pheatmap(vGenes, color = RedBlue, scale = "row")
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vGenes <- geneFreq(productive.nt = productive.nt, locus = "V", family = TRUE)
library(ggplot2)
multicolors <- grDevices::colorRampPalette(rev(RColorBrewer::brewer.pal(9, "Set1")))(28)
ggplot2::ggplot(vGenes, aes(x = samples, y = frequencyGene, fill = familyName)) +

geom_bar(stat = "identity") +
theme_minimal() +
scale_y_continuous(expand = c(0, 0)) +
guides(fill = guide_legend(ncol = 2)) +
scale_fill_manual(values = multicolors) +
labs(y = "Frequency (%)", x = "", fill = "") +
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theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1))
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Removing sequences from the dataset

Occasionally you may identify one or more sequences in your data set that appear to be contamination. You can remove an
amino acid sequence from all data frames using the function removeSeq and recompute frequencyCount for all remaining
sequences.

searchSeq(list = productive.aa, sequence = "CASSDLIGNGKLFF")

sample aminoAcid count frequencyCount
49 TCRB_Day0_Unsorted CASSDLIGNGKLFF 3494 0.383479434
668 TCRB_Day949_CD8 CASSDLIGNGKLFF 82 0.004444141

estimatedNumberGenomes
49 55
668 1

cleansed <- removeSeq(file.list = productive.aa, sequence = "CASSDLIGNGKLFF")
searchSeq(list = cleansed, sequence = "CASSDLIGNGKLFF")

No sequences found.
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Merging samples

If you need to combine multiple samples into one, use the mergeFiles function. It merges two or more sample data frames
into a single data frame and aggregates count, frequencyCount, and estimatedNumberGenomes.

TCRB_Day949_Merged <- mergeFiles(samples = c("TCRB_Day949_CD4", "TCRB_Day949_CD8"),
file.list = file.list)

Conclusion

Advances in high-throughput sequencing have enabled characterizing T and B lymphocyte repertoires with unprecedented
depth. LymphoSeq was developed as a tool to assist in the analysis of targeted next generation sequencing of the hypervariable
CDR3 region of T and B cell receptors. The three key features of this R package are to characterize lymphocyte repertoire
diversity, compare two or more lymphocyte repertoires, and track the frequency of CDR3 sequences across multiple samples.
LymphoSeq also provides the unique ability to search for sequences in a curated database of published TCRB sequences with
known antigen specificity. Finally, LymphoSeq can assign the percent prevalence that any given TCRB sequence appears in a
the peripheral blood in healthy population of donors.

Session info

sessionInfo()

## R version 3.3.1 (2016-06-21)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.1 LTS
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] ggplot2_2.1.0 pheatmap_1.0.8 reshape_0.8.5
## [4] wordcloud_2.5 RColorBrewer_1.1-2 LymphoSeq_1.2.0
## [7] LymphoSeqDB_0.99.2
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.7 knitr_1.14 magrittr_1.5
## [4] munsell_0.4.3 colorspace_1.2-7 R6_2.2.0
## [7] ineq_0.2-13 dplyr_0.5.0 stringr_1.1.0
## [10] plyr_1.8.4 tools_3.3.1 grid_3.3.1
## [13] data.table_1.9.6 gtable_0.2.0 circlize_0.3.9
## [16] DBI_0.5-1 lambda.r_1.1.9 futile.logger_1.4.3
## [19] htmltools_0.3.5 lazyeval_0.2.0 yaml_2.1.13
## [22] assertthat_0.1 digest_0.6.10 tibble_1.2
## [25] formatR_1.4 GlobalOptions_0.0.10 futile.options_1.0.0
## [28] slam_0.1-38 shape_1.4.2 VennDiagram_1.6.17
## [31] evaluate_0.10 rmarkdown_1.1 labeling_0.3
## [34] stringi_1.1.2 scales_0.4.0 chron_2.3-47
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