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Introduction

BayesPeak is a Bioconductor package for the analysis of data sets from ChIP-seq experiments, particularly
for identifying the genomic sites of protein–DNA interactions. The model is designed for use on transcription
factor data sets, and on H3K4me3 histone mark data sets (in which the peak structure is similar to that
found in a transcription factor data set).
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The algorithm models the positions and orientations of the sequenced fragments and determines the locations
of enriched areas, corresponding to binding sites and histone modifications, by using a hidden Markov model
and Bayesian statistical methodology.

The Bayesian approach to parameter and state estimation returns posterior probabilities as measure of
certainty, and offers great scope for interpretation, as well as allowing for the use of these probabilities as
weights in subsequent analyses (e.g. motif discovery).

The other important feature of the algorithm is the use of the negative binomial distribution to model the
counts of sequenced reads. This allows for overdispersion and provides a better fit to the data than the
Poisson distribution that has been widely used by other methods.

1 What is ChIP-seq?

Chromatin ImmunoPrecipitation (ChIP) is an experiment designed to study protein-DNA interactions, par-
ticularly to identify the genomic sites where proteins, such as transcription factors, bind to the DNA, or sites
where histone modifications occur (Robertson, Gordon et al., 2007). The experiment produces samples that
are enriched for the sites of interest compared to the rest of the genome. The use of this method combined
with high-throughput sequencing of the samples is referred to as ChIP-seq.

Given our protein of interest, the ChIP-seq protocol usually consists of the following steps. (The exact
protocol may vary between different experiments, but BayesPeak will still be able to perform the peak-
calling step.)

� Cross-linking the proteins to the DNA - The protein is permanently bound to the DNA, usually with
formaldehyde.

� Shearing - The cells are lysed, and the DNA is randomly cut into small fragments by sonication.
� Immunoprecipitation - An antibody specific to the protein of interest is used to isolate the protein and

the attached DNA fragments. The resulting sample is enriched for those genomic regions. If we are
instead interested in locating histones with a certain epigenetic modification, then we use an antibody
specific to histones with that modification.

� Reverse crosslinking and purification - The bonds between the protein and DNA are broken. The DNA
is subsequently purified.

� Sequencing - The contents of the samples are size selected such that the fragments’ length lies in the
region of 200-300 bp. This step is required by the sequencing protocol. Adaptors are attached to the
fragments and amplification usually takes place. Subsequently, the sample undergoes“high-throughput
sequencing”during which the sequences of the ends of the present fragments are identified. For ChIP-
seq applications usually one end of each fragment is sequenced to produce “single-end” reads.

� Alignment - The DNA is aligned back to reference genome, taking the quality of the reads into account.
Usually only the reads that map to unique locations in the genome are included in the downstream
analysis.

� Analysis - The sites of interest correspond to the genomic regions where there is high abundance of
reads compared to the background or the control sample. BayesPeak performs this identification step,
also referred to as “peak-calling”.

Usually this process is repeated omitting the immunoprecipitation step to produce a sample with no pref-
erential enrichment. This control sample has the same characteristics as ChIP-seq data and its inclusion is
important to identify experimental biases.

There are many sources of error - for example, misalignment, impurities, or DNA that simply has a high
affinity for being sequenced - which can result in noise across the genome, or even false peaks. The BayesPeak
model is designed to separate the peaks from the noise, and to avoid calling false peaks.
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2 Simple workflow

Load the package as follows:

> library(BayesPeak)

The example data set used below, consisting of the files “H3K4me3-chr16.bed” and “Input-chr16.bed”, can
be downloaded from
http://www.compbio.group.cam.ac.uk/software/bayespeak. These data were generated from a his-
tone mark ChIP-seq experiment, performed on mouse chromosome 16. (Other data sets will contain data
from multiple chromosomes - there is no need to split these up.)

The following code is a very simple example of a BayesPeak workflow, where we analyse the region 92,000,000
- 95,000,000 bp on chromosome 16. It should take a couple of minutes on a relatively modern machine.

> raw.output <- bayespeak("H3K4me3-chr16.bed", "Input-chr16.bed",

+ chr = "chr16", start = 9.2E7, end = 9.5E7, job.size = 6E6)

> output <- summarize.peaks(raw.output, method = "lowerbound")

� bayespeak() runs the actual BayesPeak algorithm on the data. The two input files are bed files
located in the working directory, with H3K4me3 being the IP-treated data set and Input ID being the
control data. In each case, we could have provided a data.frame or a RangedData object (from the
IRanges package) instead of a file path. (A GRange from the GenomicRanges package can trivially be
coerced to a RangedData object, using the as() function.)
In a valid bed file, each row of the file contains information for a single read. In particular, the
chromosome, start position, end position and DNA strand appear in the 1st, 2nd, 3rd and 6th columns
respectively.
The function applies the algorithm to 6 Mb partitions of the genome (or“jobs”) by default, as explained
in section 3.

� raw.output is a list - it contains not only the bins called, but also some useful QC information (such
as the model fit - in particular, this can be used to spot unreliable jobs as described in section 8). This
output needs to be summarized.

� summarize.peaks() is used to summarize the raw.output object. This consolidates the raw bin
calls into peaks and combines data across jobs.

We can analyse all of the data present in the .bed file with the following code, although this will take
somewhat longer.

> raw.output <- bayespeak("H3K4me3-chr16.bed", "Input-chr16.bed")

> output <- summarize.peaks(raw.output, method = "lowerbound")

A parallelization strategy is available to reduce the running time of this process, which is given in section
4.1.

2.1 Exporting output

To export the full output, one can coerce the output to a data frame, and export this with standard output
functions provided in R. For example:

> write.table(as.data.frame(output), file = "H3K4me3output.txt", quote = FALSE)

> write.csv(as.data.frame(output), file = "H3K4me3output.csv", quote = FALSE)

Alternatively, the output can be saved to disk with the export() function from the rtracklayer package.
Please be aware that posterior probabilities may not be exported in some examples of this, at time of writing.
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We now go into the workflow in more depth.

3 The algorithm

BayesPeak fits a Markov model to the data (the aligned reads) via Markov Chain Monte Carlo (MCMC)
techniques.

The genome is firstly divided up into“jobs”, i.e. short regions, by default of size 6 Mb, on which the algorithm
is run independently. This allows us to account for the variation in read abundance across each chromosome.

Within a job, we divide the region into small bins (by default, 100 bases each), and we consider the number
of reads whose starts lie within each bin, for each strand.

A hidden Markov model is fitted to the bins, thereby classifying them as enriched or unenriched for sites of
interest. However, since the parameters of the model are unknown (for example, the mean number of counts
within enriched or unenriched bins), we estimate them by sampling from their posterior distributions using
MCMC methods.

The output of the algorithm is the Posterior Probability (often abbreviated to PP) of each bin being enriched.
The PP value is useful not only for calling the peaks, but could also be used in downstream analyses - for
example, to weight observations when searching for a novel transcription factor motif. The PP value is not
to be confused with the p value from hypothesis testing.

For a full description of the model, please refer to (C. Spyrou et al., 2009).

4 The bayespeak() function

The bayespeak() function performs the algorithm described above on a given experiment, consisting of
either one or two data sets - a treated data set must be supplied, which can optionally be complemented by
a control data set. Each of these data sets must be in .bed format, and can be specified as a file location,
a data.frame containing the columns “chr”, “start”, “end”, “strand” (specified as forward, “+”, or reverse, “-”),
or a RangedData object from the IRanges package in BioConductor. For example:

> raw.output <- bayespeak("H3K4me3-chr16.bed", "Input-chr16.bed")

As mentioned in section 3, we break down the chromosome into“jobs”, which by default are of length 6 Mb,
and run the algorithm on each job to account for the variability of conditions across the chromosome. Thus,
each job has its own set of associated parameters.

Within each job, read abundance is modelled using non-overlapping bins. To avoid missing any peaks that
straddle a boundary between two bins, we run the algorithm a second time. This second job is described as
“offset” and shifts the boundaries of the bins by half a bin’s length.

The output of this function is a list of four things:

� raw.output$peaks: Locations of“potentially enriched”bins, with their associated posterior probabil-
ities. (A “potentially enriched” bin is defined as any bin with PP > 0.01.) Note that this is output is
preliminary and does not correspond to the final result of the analysis.

� raw.output$QC: Information about the individual jobs.
� raw.output$call: A record of the arguments used when the function was called.
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� raw.output$p.samples: A list of parameter samples from the MCMC runs. This output can be used
to assess convergence e.g. by applying the Geweke test through the CRAN packages coda or boa. See
section 9 for more details.

4.1 Parallelizing BayesPeak

Due to its computational intensity, BayesPeak can be slow. However, the jobs can be run in parallel. This
allows us to take advantage of multiple processors and dramatically reduce the time the algorithm takes.

BayesPeak optionally supports two parallelization schemas provided in the parallel package: multicore (fork-
ing) and snow. The snow method will take precedence if both options are enabled.

4.1.1 multicore

The multicore method cannot be used in Windows, but provides a quick and simple parallization method for
all other platforms.

To use multicore, run the bayespeak() function in parallel by using the use.multicore = TRUE option.
You can override the number of cores that multicore uses with the mc.cores argument.

> library(parallel)

> raw.output <- bayespeak("H3K4me3-chr16.bed", "Input-chr16.bed",

+ use.multicore = TRUE, mc.cores = 4)

> output <- summarize.peaks(raw.output, method = "lowerbound")

4.1.2 snow

With snow, BayesPeak can be run in parallel - on one machine, or on a cluster of machines. To use this
method, one must create a cluster, and then supply it to the bayespeak() function via the snow.cluster

argument. For example:

> library(parallel)

> cl <- makeCluster(4, type="PSOCK") ##adapt this line as appropriate for your cluster

> cl <- clusterEvalQ(cl, library(BayesPeak)) ##load BayesPeak on the cluster

> raw.output <- bayespeak("H3K4me3-chr16.bed", "Input-chr16.bed",

+ snow.cluster = cl)

> output <- summarize.peaks(raw.output, method = "lowerbound")

NB: If a snow cluster is in use, then bayespeak() will only display progress when a chromosome has been
analysed - progress that has been made through a chromosome will not be displayed.

5 The summarize.peaks() function

The raw output of bayespeak() consists of the details of all of the individual bins in each individual job.
The function summarize.peaks() combines the output of the individual jobs and joins adjacent bins into
contiguous regions to give the final peak calls.

In more detail, summarize.peaks() does the following:
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� Filtering of unenriched jobs: The model naturally tries to identify enriched states in the background
even for jobs with consistently low read abundance. This can result in many unreliable calls and, to
avoid this, all calls associated with such jobs can be removed. (This issue, “overfitting”, is described
in detail in section 8.)

� Filtering of unenriched bins: We remove all bins whose PP values are below a certain value (see section
7).

� Assembly of enriched bins: The bins across all remaining jobs are collected together. If two jobs call
exactly the same bin, which could happen in regions where jobs overlap, then the one with the larger
PP value is used.

� Conversion of bins to peaks: Where a number of bins form a contiguous region, we combine them into
one large peak. The large peak is assigned a PP value, based on the PP values of its component bins.
Combining the PP values from multiple bins may be done in several ways. By default, the“lowerbound”
method is used, which calculates a lower bound for the overall PP by a dynamic programming technique.
(See the help file for more information.) The alternative method that the package provides is the“max”
method, which simply takes the maximum PP value in the component bins and is therefore ill-equipped
to provide appropriate credit for sustained regions of moderate enrichment.

6 Examining the results

The quality of ChIP-seq samples should be monitored to ensure that the experimental procedure was suc-
cessful, in terms of the immunoprecipitation, the library preparation and the sequencing. Occasionally, very
low read abundance in the data sets may be related to a failed step in the process and will lead to unreliable
findings when the experimental noise and signal cannot be distinguished.

Moreover, care should be taken when even successful ChIP-seq samples are analysed and the results are
interpreted. In the following sections we discuss the stringency with which the potential peaks are chosen
and how to avoid false peaks being called in regions of “noisy background”. Enrichment varies along the
genome and is naturally low in long regions including the centromere and the ends of the chromosomes. If
an entire job is contained in such a region, the model will still try to identify peaks and in the next sections
we explain how to identify and filter out these false discoveries.

7 Choosing an appropriate PP threshold value

Selecting the threshold for PP values (i.e. the threshold argument in summarize.peaks()) is an important
step in the analysis, and its choice will affect the peaks returned. First, we will observe how the PP values
are distributed within jobs.

For this section, we load the example raw.output object included with the package:

> data(raw.output)

> raw.output$call

bayespeak(treatment = "~/bed/MCF/MCF7_ER.bed", control = "~/bed/MCF/MCF7_Input.bed",

use.multicore = TRUE)

(Note that although raw.output was generated from running bayespeak() with the above arguments,
raw.output$peaks has been manually reduced to only contain the data from chr16 to save space. raw.output$p.samples
has also been reduced, for the same reason.)

We can view the PP values generated from each job as follows:
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Figure 1: A histogram of the PP values found in job 324. Nearly all of the bins have a PP of 0 or 1.

> min.job <- min(raw.output$peaks$job)

> max.job <- max(raw.output$peaks$job)

> par(mfrow = c(2,2), ask = TRUE)

> for(i in min.job:max.job) {plot.PP(raw.output, job = i, ylim = c(0,50))}

(We will not wish to do this in most large data sets, as the number of jobs will be prohibitively large, making
it impractical to look at each plot in turn.)

Examining the plots, they appear to have two distinct behaviours, as explained below.

High density of reads

For example, consider the PP profile of job 324:

> i <- 324

> plot.PP(raw.output, job = i, ylim = c(0,50))

The plot is given in Figure 1
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PP histogram − Job 325
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Figure 2: A histogram of the PP values found in job 325. The PP values are more evenly distributed over
the interval (0,1) than they are in Figure 1.

For data with a high density of reads, peaks are clearer and thus the PP values of bins converge to 0 or 1,
as observed in the figure above. So, the default PP threshold value of 0.5 will suffice to distinguish between
enrichment and unenrichment. This is the expected outcome from jobs that include enriched peaks.

Low density of reads

On the other hand, as expected before, some jobs fall in areas of low enrichment and this affects their results.
We demonstrate this by considering the PP values across job 325:

> i <- 325

> plot.PP(raw.output, job = i, ylim = c(0,50))

The plot is given in Figure 2.

When the coverage is sparse and therefore less information is available, the PP values tend to be more
uniformly spread over the interval [0,1], as above. This means that the distinction between peaks and
background is harder to make, which is usually a result of poor enrichment, if any. Such a uniform trend
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Figure 3: An example of overfitting. In each of these histograms, only reads on the positive strand are shown
for clarity. A blue bar indicates that BayesPeak has called that bin as containing a peak at PP > 0.5. On the
left, BayesPeak uses the enriched and unenriched states to explain the variance present in the background.
On the right, the algorithm correctly identifies the large peaks present in the region of interest. (Notice the
difference in scale between the two plots.) These plots were produced with the plot.job() function.

may be indicative of overfitting - we explore this effect in section 8.

In these jobs even the bins with highest PP cannot be classified as enriched since they are likely to correspond
to random noise and, instead of choosing a high PP threshold, the whole job should be considered as
unenriched.

8 Overfitting

BayesPeak can run into an overfitting problem when a job does not contain any peaks, or when peaks are
weak compared to the background.

For this section, we again load the example raw.output object included with the package:

> data(raw.output)

The model assumes that there are both unenriched and enriched regions present. When the data contains
no enriched regions, the model still tries to identify peaks in the data. Since some bins in the background
will have higher counts than others, purely by chance, these will be marked as enriched. (See Figure 3.)

This effect will be reflected in the parameters of the model, since the expected number of reads allocated at
“enriched” regions will be much lower for the jobs where no peaks are present compared to the other jobs.
This is one purpose of the QC component of the output - we can diagnose which peaks were called simply
because they are in an unenriched job rather than because they are actual peaks.

Jobs suffering from this problem tend to exhibit three properties:

� Unusually large number of calls.
� Low mean number of counts in an enriched bin, defined as λ1 in the model description in (C. Spyrou

et al., 2009).
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Figure 4: Each point represents a job. On the X axis, we plot the log of the number of bins with PP > 0.01
in that job. On the Y axis, we plot the log of the mean number of counts in enriched bins. The plot is on
the log scale to aid visualisation of the clusters.

� PP values spread out over the interval [0,1] rather than mostly falling at 0 or 1, as explained in section
7. We quantify this using a score: of the bins with PP values > 0.01, the score is the proportion that
have PP > 0.5. A low score is therefore indicative of overfitting.

We can observe when overfitting has occured in our data set by plotting these properties against each other.
We generate two such plots with this code:

> plot.overfitdiag(raw.output, whatX = "calls", whatY = "lambda1",

+ logX = TRUE, logY = TRUE)

> plot.overfitdiag(raw.output, whatX = "calls", whatY = "score",

+ logX = TRUE, logY = TRUE)

The plots generated are given in Figures 4 and 5. Two clusters are visible in each, one of which is a cluster
of jobs suffering from overfitting.

It is worth trying different arguments to this function to find the plot in which the overfit clusters are most
clearly defined - e.g.
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Figure 5: Each point represents a job. On the X axis, we plot the log of the number of bins with PP > 0.01
in that job. On the Y axis, we plot the log of the score of that job (i.e. of the bins with PP > 0.01, this is
the proportion of those bins with PP > 0.5).

> plot.overfitdiag(raw.output, whatX = "calls", whatY = "score",

+ logX = TRUE, logY = FALSE)

or

> plot.overfitdiag(raw.output, whatX = "lambda1", whatY = "score",

+ logX = TRUE, logY = TRUE)

(These figures are not shown in this vignette.)

Some jobs are expected to show no enrichment throughout, such as the centromere, and the location of
these regions can be taken into account at a later version of the algorithm. At the moment, our approach
is to apply BayesPeak to the whole genome and subsequently to filter out peaks that are allocated within
regions of no enrichment.



BayesPeak: Bayesian Analysis of ChIP-seq data 12

8.1 Excluding calls from unenriched jobs

We can choose to simply remove all calls from the jobs that we believe to be overfit. For example, having
looked at Figure 4, we can specify the overfit cluster by removing all jobs with low counts in their enriched
bins - for example, log(λ1) < 1.5:

> unreliable.jobs <- log(raw.output$QC$lambda1) < 1.5

> output <- summarize.peaks(raw.output, method = "lowerbound",

+ exclude.jobs = unreliable.jobs)

Alternatively, from looking at either Figure 4 or Figure 5, we could try to specify the overfit cluster better
by adding jobs with excessive numbers of calls e.g. log(calls) > 5. This gives us two selection criteria as
follows:

> unreliable.jobs2 <- log(raw.output$QC$lambda1) < 1.5 | log(raw.output$QC$calls) > 5

> output.2 <- summarize.peaks(raw.output, method = "lowerbound",

+ exclude.jobs = unreliable.jobs2)

Another method provided by the BayesPeak package is the ability to define an overfit cluster on one of the
above plots by drawing a polygon onto it. This is achieved via use of the region.overfitdiag() function
(using exactly the same arguments as plot.overfitdiag()), which subsequently collects the job IDs of
any points in that polygon for use as the exclude.jobs argument in summarize.peaks. To perform this
procedure on Figure 5, we would use the following code:

> unreliable.jobs3 <- region.overfitdiag(raw.output, whatX = "lambda1", whatY = "score",

+ logX = TRUE, logY = TRUE)

> ##user defines a polygon on the resulting plot

> ##left-click to place each vertex, right-click to close polygon

> output.3 <- summarize.peaks(raw.output, method = "lowerbound",

+ exclude.jobs = unreliable.jobs3)

An example of a region that we might define on the plot is given in Figure 6.

Finally, for a more reproducible method of defining the overfit cluster, one could use one’s favourite clustering
method on the rows of the QC data, obtained as follows:

> log(raw.output$QC[,c("calls", "score", "lambda1")])

Of course, the drawback of such methods is that they have no concept of selecting conservatively (i.e. picking
a small overfit cluster) and may be confused by strangely-shaped or close-together clusters - therefore, direct
use of output from clustering algorithms should be treated with care.

9 Assessing convergence

If desired, we can assess the convergence of the MCMC chains by examining the parameter samples obtained.
The output of the parameter samples from job i is given in raw.output$p.samples[[i]], with half of the
data discarded as burn-in and samples taken every 10 iterations. This data can be imported into MCMC
packages, such as the CRAN packages coda and boa, allowing use of their inbuilt convergence assessment
functions.

For example, we can assess the convergence of job 316 with coda, using the Geweke diagnostic, with the
following code. This code requires that coda has been installed from CRAN.

> data(raw.output)

> library(coda)
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Figure 6: Application of region.overfitdiag() to the raw.output data. Jobs in the red hatched region
will be excluded from the summary.

> mcmc.job1 <- mcmc(raw.output$p.samples[[316]], thin = 10)

> geweke.diag(mcmc.job1)

Fraction in 1st window = 0.1

Fraction in 2nd window = 0.5

p theta a0 b0 lambda0 a1 b1 lambda1

0.6900 -0.1239 -0.4860 -0.7983 1.9774 0.5859 -0.3364 0.3297

loglhood

0.3716

More information on the interpretation of this diagnostic can be found in the individual packages’ help files,
and in (J. Geweke, 1992).

If convergence is deemed unsatisfactory, this may be solved by increasing the iterations parameter in the
bayespeak() function.
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10 Citing BayesPeak

If you use the BayesPeak algorithm, then please cite (Cairns, J. et al., 2011) and (C. Spyrou et al., 2009).

11 Session Info

> sessionInfo()

R version 3.3.1 (2016-06-21)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 16.04.1 LTS

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8

[4] LC_COLLATE=C LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats4 parallel stats graphics grDevices utils datasets methods

[9] base

other attached packages:

[1] BayesPeak_1.26.0 IRanges_2.8.0 S4Vectors_0.12.0 BiocGenerics_0.20.0

loaded via a namespace (and not attached):

[1] BiocStyle_2.2.0 tools_3.3.1
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