Package 'LOBSTAHS'

April 14, 2017

Title Lipid and Oxylipin Biomarker Screening through Adduct Hierarchy Sequences

Version 1.0.0

Date 2016-08-25

Depends R (>= 3.3), xcms, CAMERA, methods

Imports utils

Suggests PtH2O2lipids, knitr, rmarkdown

Description LOBSTAHS is a multifunction package for screening, annotation, and putative identification of mass spectral features in large, HPLC-MS lipid datasets. In silico data for a wide range of lipids, oxidized lipids, and oxylipins can be generated from user-supplied structural criteria with a database generation function. LOBSTAHS then applies these databases to assign putative compound identities to features in any high-mass accuracy dataset that has been processed using xcms and CAMERA. Users can then apply a series of orthogonal screening criteria based on adduct ion formation patterns, chromatographic retention time, and other properties, to evaluate and assign confidence scores to this list of preliminary assignments. During the screening routine, LOBSTAHS rejects assignments that do not meet the specified criteria, identifies potential isomers and isobars, and assigns a variety of annotation codes to assist the user in evaluating the accuracy of each assignment.

License GPL (>= 3) + file LICENSE

URL http://bioconductor.org/packages/LOBSTAHS

BugReports https://github.com/vanmooylipidomics/LOBSTAHS/issues/new

VignetteBuilder knitr

biocViews MassSpectrometry, Metabolomics, Lipidomics, DataImport

NeedsCompilation no

- Author James Collins [aut, cre], Helen Fredricks [aut], Bethanie Edwards [aut], Benjamin Van Mooy [aut]
- Maintainer James Collins <james.r.collins@aya.yale.edu>

R topics documented:

doLOBscreen

extractLOBdbasedata	4
generateLOBdbase	5
getLOBpeaklist	7
loadLOBdbase	9
LOBdbase	11
LOBdbase-class	13
LOBdefaults	
LOBSet	16
LOBSet-class	18
	20

Index

doLOBscreen

Screen, annotate, and identify compounds in an xsAnnotate object

Description

Primary function of the LOBSTAHS package. Screen, annotate, and assign compound identities to peak groups in a CAMERA xsAnnotate object containing HPLC-ESI-MS lipid data. Identify and annotate possible isomers and isobars.

Usage

```
doLOBscreen(xsA, polarity = NULL, database = NULL, remove.iso = TRUE,
    rt.restrict = TRUE, rt.windows = NULL, exclude.oddFA = TRUE,
    match.ppm = NULL)
```

Arguments

xsA	A CAMERA xsAnnotate-class object with identified pseudospectra. Must contain isotope data from findIsotopes if user elects remove.iso = TRUE).
polarity	Specify polarity mode of data in xsA: "positive" or "negative." doLOBscreen will attempt to detect the polarity mode if nothing is given.
database	Specify the LOBdbase from which compound identities and adduct ion hierar- chy data are to be applied. If nothing is specified, doLOBscreen will use the LOBSTAHS default database (default.LOBdbase) for the appropriate ioniza- tion mode.
	The database generation function generateLOBdbase can be used to create a LOBdbase from structural property ranges specified by the user in a series of input tables. loadLOBdbase can be used to import and reconstruct a "LOBdbase" object from a previously generated database that was saved as a .csv file.
remove.iso	Should secondary isotope peaks be removed? (If TRUE, xsA must contain isotope data obtained using findIsotopes.)
rt.restrict	Should lipid class retention time screening criteria be applied to putative compound assignments?
rt.windows	File path to a .csv file containing retention time "window" data to be used for screening by lipid class, if rt.restrict = TRUE. If nothing is specified, doLOBscreen will use the package default windows (default.rt.windows), which are specific to the HPLC-MS method currently used in the Van Mooy Lab at Woods Hole Oceanographic Institution.

	Because the user is advised to provide retention time data specific to his/her HPLC-MS method, failure to specify a value for rt.windows will result in a warning. A Microsoft Excel spreadsheet template included with the package at Resources/library/LOBSTAHS/doc/xlsx/LOBSTAHS_lipid_class_rt_windows.xlsx can be used to generate a .csv file of retention time data in a format appropri- ate for rt.windows. Alternatively, the spreadsheet file may be downloaded at https://github.com/vanmooylipidomics/LOBSTAHS/blob/master/inst/doc/ xlsx/LOBSTAHS_lipid_class_rt_windows.xlsx.
exclude.oddFA	Should compound assignments with an odd total number of acyl carbon atoms be excluded? (Applies only to assignments where the parent lipid class is TAG, IP-DAG, PUA, or FFA.) Useful if data are (or are believed to be) of exclusively eukaryotic origin.
match.ppm	m/z tolerance (in ppm) used for matching observed data against the calculated m/z 's in the database

Details

doLOBscreen draws compound identities from a LOBdbase database. The function applies various retention time and adduct ion hierarchy screening criteria to winnow the list of putative compound assignments. It returns a table of annotated peak data with compound assignments and various annotation codes to assist the user in interpretation and follow-on data analysis.

Value

A "LOBSet-class" object.

Author(s)

James Collins, <james.r.collins@aya.yale.edu>

References

Collins, J.R., B.R. Edwards, H.F. Fredricks, and B.A.S. Van Mooy. 2016. LOBSTAHS: An adductbased lipidomics strategy for discovery and identification of oxidative stress biomarkers. *Analytical Chemistry* 88:7154-7162

See Also

LOBSet, LOBdbase, loadLOBdbase, getLOBpeaklist, generateLOBdbase, default.LOBdbase, default.rt.windows, xcmsSet, xsAnnotate, findIsotopes

Examples

screen & annotate xsAnnotate object from the PtH202lipids dataset using all
screening options
library(PtH202lipids)

show some diagnostics

```
LOBscreen_diagnostics(myPtH202LOBSet) # screening diagnostics
LOBisoID_diagnostics(myPtH202LOBSet) # isomer identification data
```

extractLOBdbasedata Extract compound data from a LOBdbase

Description

Extracts data from a LOBSTAHS LOBdbase-class object for a given molecular species.

Usage

extractLOBdbasedata(frag_ID, database)

Arguments

frag_ID	The LOBdbase fragment ID(s) corresponding to the species for which data should be extracted.
database	The LOBdbase from which data are to be extracted.

Value

A data frame containing the extracted data, with field names corresponding to the slots in database.

Author(s)

James Collins, <james.r.collins@aya.yale.edu>

References

Collins, J.R., B.R. Edwards, H.F. Fredricks, and B.A.S. Van Mooy. 2016. LOBSTAHS: An adductbased lipidomics strategy for discovery and identification of oxidative stress biomarkers. *Analytical Chemistry* 88:7154-7162

See Also

LOBdbase, LOBdbase loadLOBdbase, generateLOBdbase, default.LOBdbase

Examples

```
## extract data from the default database for the [M+H]+ adduct of
## dinitrophenyl-phosphatidylethanolamine (DNPPE), a synthetic lipid used as an
## internal standard
```

data(default.LOBdbase)

generateLOBdbase Conduct in silico simulation and generate lipid-oxylipin database

Description

Applies an *in silico* simulation to generate data by ionization mode (polarity) for a wide range of lipids, oxidized lipids, and oxylipins. User-supplied structural criteria and empirically-determined adduct ion abundance rankings for the major lipid classes are used to create entries for a range of lipid moieties. The database(s) can then be used in doLOBscreen to assign compound identities to grouped peakdata.

Usage

Arguments

polarity	Ionization mode for which database is to be generated.
gen.csv	Should results also be written to a .csv file?
component.defs	File path to a .csv file containing elemental composition definitions for the var- ious chemical components needed by generateLOBdbase. If nothing is speci- fied, generateLOBdbase will use the default composition table (default.componentCompTable). The default table includes definitions for the masses of a wide range of adducts, photosynthetic pigments, and structural backbones of some major lipid classes. A Microsoft Excel spreadsheet template included with the package at Resources/library/LOBSTAHS/ can be used to generate a .custom csv file with elemental composition definitions in a format appropriate for generateLOBdbase. Alternatively, the spreadsheet may be downloaded at https://github.com/vanmooylipidomics/LOBSTAHS/ blob/master/inst/doc/xlsx/LOBSTAHS_basic_component_matrix.xlsx.
AIH.defs	File path to a .csv file containing empirical adduct ion hierarchy (AIH) data for various pigments and lipid classes. If nothing is specified, generateLOBdbase will use the default AIH data in (default.adductHierarchies). A Microsoft Excel spreadsheet template included with the package at Resources/library/LOBSTAHS/ can be used to generate a .csv file with additional (or alternative) adduct hier- archy data in a format appropriate for generateLOBdbase. Alternatively, the spreadsheet may be downloaded at https://github.com/vanmooylipidomics/ LOBSTAHS/blob/master/inst/doc/xlsx/LOBSTAHS_adduct_ion_hierarchies. xlsx.
acyl.ranges	File path to a .csv file containing ranges of values for the total number of acyl (i.e., fatty acid) carbon atoms to be considered during the <i>in silico</i> similation on intact polar diacylglycerols (IP-DAG), triacylglycerols (TAG), polyunsat- urated aldehydes (PUAs), and free fatty acids (FFA). If nothing is specified, generateLOBdbase will use the default acyl carbon atom range data in (default.acylRanges). A Microsoft Excel spreadsheet template included with the package at Resources/library/LOBSTAHS/ can be used to generate a .csv file with custom acyl carbon range data in a for- mat appropriate for generateLOBdbase. Alternatively, the spreadsheet may be downloaded at https://github.com/vanmooylipidomics/LOBSTAHS/blob/ master/inst/doc/xlsx/LOBSTAHS_acyl_prop_ranges.xlsx.

oxy.ranges	File path to a .csv file containing ranges of values for the number of additional
	oxygen atoms to be considered during the <i>in silico</i> similation on intact polar
	diacylglycerols (IP-DAG), triacylglycerols (TAG), polyunsaturated aldehydes
	(PUAs), and free fatty acids (FFA). If nothing is specified, generateLOBdbase
	will use the default oxidation state ranges in (default.oxyRanges).
	A Microsoft Excel spreadsheet template included with the package at Resources/library/LOBSTAHS/
	can be used to generate a .csv file with custom oxidation state ranges in a for-
	mat appropriate for generateLOBdbase. Alternatively, the spreadsheet may be
	downloaded at https://github.com/vanmooylipidomics/LOBSTAHS/blob/
	<pre>master/inst/doc/xlsx/LOBSTAHS_addl_oxy_ranges.xlsx. By default, generateLOBdbase</pre>
	considers 0-4 additional oxygen atoms on each chemically possible IP-DAG,
	TAG, PUA, and FFA.

Details

Using the default structural property inputs described here, generateLOBdbase can produce databases with entries for a wide range of intact polar diacylglycerols (IP-DAG), triacylglycerols (TAG), polyunsaturated aldehydes (PUAs), free fatty acids (FFA), and common photosynthetic pigments. The default databases (as of June 2016) contain data on 13,578 and 11,073 unique compounds that can be identifed in positive and negative ion mode spectra, respectively.

Note that the default databases have been pre-generated (see default.LOBdbase) and it is therefore unnecessary to call generateLOBdbase with the default parameters.

Value

A "LOBdbase-class" object with the structure:

frag_ID: Object of class "integer", a unique identifier for this molecular species

mz: Object of class "numeric", the calculated m/z of this species

- exact_parent_neutral_mass: Object of class "numeric", the calculated (monoisotopic) exact
 mass of the parent compound of this species
- lipid_class: Object of class "factor", the parent lipid class of this species
- species: Object of class "character", the lipid subclass

adduct: Object of class "factor", the adduct ion represented by this entry

- adduct_rank: Object of class "integer", the relative abundance ranking of this adduct relative to the other adducts of the same parent compound
- FA_total_no_C: Object of class "integer", total number of acyl (fatty acid) carbon atoms in the parent compound; NA if lipid_class is not TAG, IP-DAG, PUA, or FFA
- FA_total_no_DB: Object of class "integer", total number of acyl (fatty acid) carbon-carbon double bonds in the parent compound; NA if lipid_class is not TAG, IP-DAG, PUA, or FFA
- degree_oxidation: Object of class "integer", number of additional oxygen atoms present

parent_elem_formula: Object of class "character", elemental formula of the parent compound

parent_compound_name: Object of class "character", name of the parent compound; see the reference for this entry for the naming convention applied to compounds other than pigments

polarity: Object of class "factor", ionization mode of data in the database

- num_entries: Object of class "integer", number of total entries (adducts) in the database

getLOBpeaklist

Author(s)

James Collins, <james.r.collins@aya.yale.edu>

References

Collins, J.R., B.R. Edwards, H.F. Fredricks, and B.A.S. Van Mooy. 2016. LOBSTAHS: An adductbased lipidomics strategy for discovery and identification of oxidative stress biomarkers. *Analytical Chemistry* 88:7154-7162

See Also

LOBdbase, LOBdbase, loadLOBdbase, doLOBscreen, default.LOBdbase, default.componentCompTable, default.adductHierarchies, default.acylRanges, default.oxyRanges

Examples

generate the default positive ionization mode database

```
LOBdbase.pos = generateLOBdbase(polarity = "positive", gen.csv = FALSE,
component.defs = NULL, AIH.defs = NULL,
acyl.ranges = NULL, oxy.ranges = NULL)
```

getLOBpeaklist Export screened LOBSTAHS peaklist with compound assignments

Description

Extracts screened peak data, compound assignments, annotation codes, and (optionally) isomer data from a LOBSet-class object. Returns a table containing the requested data, with option to export to a .csv file.

Usage

```
getLOBpeaklist(LOBSet, include.iso = TRUE, gen.csv = FALSE)
```

Arguments

LOBSet	A LOBSTAHS "LOBSet" object.
include.iso	Specify whether isomer and isobar identification data should be included in peaklist.
gen.csv	Should a .csv file be generated in addition to the data frame that is returned?

Details

getLOBpeaklist extracts data from all slots in a given "LOBSet" object and flows it into a data frame. Annotation codes indicating compliance with the adduct ion hierarchy screening criteria are appended to the m/z, retention time, and peak area data for each xcms peakgroup remaining in the final dataset.

If include.iso = TRUE, three additional columns containing the match_IDs of the possible isomers and isobars for each peakgroup are also appended. getLOBpeaklist does not export any of the diagnostic data in the LOBSet LOBscreen_diagnostics or LOBisoID_diagnostics slots.

Value

A data frame with the following structure:

- match_ID: Object of class "integer", unique identifier for each assignment of a compound to a peakgroup (multiple match_IDs can exist for a peakgroup if the group was assigned multiple compound identities
- compound_name: Object of class "character", name of compound; see reference for naming convention applied to compounds other than pigments
- elem_formula: Object of class "character", empirical formula of compound
- LOBdbase_mz: Object of class "numeric", calculated *m/z* of the adduct for which data in this group are reported; obtained database
- peakgroup_mz: Object of class "numeric", mean observed m/z of the feature in this peakgroup across all samples in which it was identified
- LOBdbase_ppm_match: Object of class "numeric", ppm deviation between observed and calculated m/z
- peakgroup_rt: Object of class "numeric", mean observed retention time of the feature in this peakgroup across all samples in which it was identified
- peakgroup_mzmin: Object of class "numeric", minimum observed m/z of feature across samples
- peakgroup_mzmax: Object of class "numeric", maximum observed m/z of feature across samples
- peakgroup_rtmin: Object of class "numeric", minimum observed retention time of feature across samples
- peakgroup_rtmax: Object of class "numeric", maximum observed retention time of feature across samples
- **peak area data:** Several objects of class "numeric", containing integrated peak area data for this group by sample (one column for each sample in the dataset)
- xcms_peakgroup: Object of class "integer", the xcms xcmsSet peakgroup identifier
- CAMERA_pseudospectrum: Object of class "integer", the CAMERA xsAnnotate pseudospectrum identifier
- LOBdbase_frag_ID: Object of class "integer", the LOBdbase fragment ID corresponding to the adduct of this compound for which data are reported; this is the dominant adduct of the compound according to the adduct ion hierarchy rules for the parent lipid class
- LOBdbase_exact_parent_neutral_mass: Object of class "numeric", the calculated exact (monoiso-topic) mass of the compound; from database
- lipid_class: Object of class "factor", parent lipid class of this compound
- species: Object of class "character", if a pigment or IP-DAG, the specific compound species
- major_adduct: Object of class "factor", adduct of the compound for which data in this entry is reported
- FA_total_no_C: Object of class "integer", total number of acyl (fatty acid) carbon atoms in this compound; "NA" if lipid_class is not TAG, IP-DAG, PUA, or FFA
- FA_total_no_DB: Object of class "integer", total number of acyl (fatty acid) carbon-carbon double bonds in this compound; "NA" if lipid_class is not TAG, IP-DAG, PUA, or FFA
- degree_oxidation: Object of class "integer", number of additional oxygen atoms present on this compound, compared with its unoxidized parent
- C1-C6b: Several objects of class "integer", containing binary indicators for each possible annotation code applied by doLOBscreen

- casecodes: Object of class "character", character string containing list of all codes applied to this assignment

Author(s)

James Collins, <james.r.collins@aya.yale.edu>

References

Collins, J.R., B.R. Edwards, H.F. Fredricks, and B.A.S. Van Mooy. 2016. LOBSTAHS: An adductbased lipidomics strategy for discovery and identification of oxidative stress biomarkers. *Analytical Chemistry* 88:7154-7162

See Also

LOBSet, LOBSet, doLOBscreen

Examples

export peaklist, with isomer data library(PtH202lipids)

loadLOBdbase Import and reconstruct LOBdbase from a text file

Description

Reconstruct a "LOBdbase" object from properly formatted data in a .csv file. More robust than the generic constructor function LOBdbase.

Usage

```
loadLOBdbase(file, polarity, num_compounds = NULL)
```

Arguments

file	Path to a .csv file containing the database to be imported. The file format should
	be consistent with the .csv output that is obtained using gen.csv = TRUE in generateLOBdbase. Some leeway is allowed for variation in capitalization and punctuation of column headers.
polarity	Specify polarity (ionization mode) of the database being imported ("positive" or "negative"). loadLOBdbase will attempt to detect the polarity mode based on data in the "adduct" column if nothing is given.

num_compounds If known, the number of parent compounds represented in the database being imported. Can be unspecified.

Details

loadLOBdbase is a glorified implementation of read.table that attempts to determine whether the format of the data in file is consistent with that of a saved "LOBdbase" object. Some leeway is allowed for variation in punctuation and spelling of column headers in the source file. Special attention should be paid to how adduct ions are specified (e.g., "[M+H]+", "[M+NH4]+", or "[M+Cl]-"). Most users will find this function more useful than the generic constructor function LOBdbase.

Value

```
A "LOBdbase-class" object.
```

Author(s)

James Collins, <james.r.collins@aya.yale.edu>

References

Collins, J.R., B.R. Edwards, H.F. Fredricks, and B.A.S. Van Mooy. 2016. LOBSTAHS: An adductbased lipidomics strategy for discovery and identification of oxidative stress biomarkers. *Analytical Chemistry* 88:7154-7162

See Also

LOBdbase, LOBdbase, doLOBscreen, generateLOBdbase, default.LOBdbase

Examples

save the default negative mode database as a .csv file

```
data(default.LOBdbase)
```

neg.DB = default.LOBdbase\$negative

LOBdbase

LOBdbase

LOBdbase constructor for manual creation or reconstruction of a LOBdbase object

Description

Constructor function for manual assembly or reconstruction of a LOBdbase object to be used in screening data with the LOBSTAHS function doLOBscreen.

Usage

Arguments

frag_ID	An object of class "integer"; vector of unique identifiers for the molecular species in the database.	
mz	An object of class "numeric"; calculated m/z of each species for which an entry exists.	
exact_parent_ne	eutral_mass	
	An object of class "numeric"; calculated (monoisotopic) exact masses of the parent compound of each species.	
lipid_class	An object of class "factor"; parent lipid classes of each species	
species	An object of class "character"; the lipid subclasses of each species	
adduct	An object of class "factor"; the adduct ions represented by each entry	
adduct_rank	An object of class "integer"; the relative abundance rankings of each adduct relative to the other adducts of the same parent compound	
FA_total_no_C	An object of class "integer"; the total number of acyl (fatty acid) carbon atoms in the parent compound of each entry; values should be NA where lipid_class is not TAG, IP-DAG, PUA, or FFA	
FA_total_no_DB	An object of class "integer"; the total number of acyl (fatty acid) carbon- carbon double bonds in the parent compound of each entry; values should be NA where lipid_class is not TAG, IP-DAG, PUA, or FFA	

degree_oxidatio	on	
	An object of class "integer"; the number of additional oxygen atoms present on each species	
parent_elem_for	mula	
	An object of class "character"; the elemental formulae of the parent com- pound of each species	
parent_compound_name		
	An object of class "character"; names of the parent compound of each species; see the reference for this entry for snaming conventions that should be applied for pigments and compounds other than pigments	
polarity	An object of class "factor" with length = 1; the ionization mode of data in the database to be constructed	
num_entries	An object of class "integer" with length = 1; the number of total entries (adducts) in the database to be constructed. If specified, the value of num_entries should be equal to the length of any arguments that contain database data	
num_compounds	An object of class "integer" with length = 1; the number of parent com- pounds represented in the database to be constructed. If specified, the value of num_compounds should be < the value specifed for num_entries.	

Details

Typically, a LOBdbase will be created using the in silico simulation function generateLOBdbase. Formatted database entries (such as from an external .csv file) can be loaded using loadLOBdbase. The rudimentary LOBdbase constructor function is therefore provided only for manual object creation; it will not be needed by most users. All arguments except for those containing metadata (i.e., polarity, num_entries, and num_compounds) should be of the same length.

Value

A "LOBdbase-class" object.

Author(s)

James Collins, <james.r.collins@aya.yale.edu>

References

Collins, J.R., B.R. Edwards, H.F. Fredricks, and B.A.S. Van Mooy. 2016. LOBSTAHS: An adductbased lipidomics strategy for discovery and identification of oxidative stress biomarkers. *Analytical Chemistry* 88:7154-7162

See Also

generateLOBdbase, loadLOBdbase, doLOBscreen, LOBdbase

Examples

create an empty LOBdbase

library(LOBSTAHS)

```
species = NULL, adduct = NULL, adduct_rank = NULL,
FA_total_no_C = NULL, FA_total_no_DB = NULL,
degree_oxidation = NULL, parent_elem_formula = NULL,
parent_compound_name = NULL, polarity = NULL,
num_entries = NULL, num_compounds = NULL)
```

LOBdbase-class

Class LOBdbase: A class for LOBSTAHS lipid-oxylipin databases

Description

A class for LOBSTAHS databases that contain a combination of *in silico* and empirical data for a wide range of lipids, oxidized lipids, and oxylipins.

Objects from the class

Objects can be created using the simulation function generateLOBdbase (preferred; satisfies the needs of most users), imported from a .csv file of proper format using loadLOBdbase, or created using the rudimentary constructor LOBdbase (least preferred). A 'LOBdbase' can also be created by calls of the form new("LOBdbase", ...).

Slots

frag_ID: Object of class "integer", a unique identifier for this molecular species

- mz: Object of class "numeric", the calculated m/z of this species
- exact_parent_neutral_mass: Object of class "numeric", the calculated (monoisotopic) exact
 mass of the parent compound of this species
- lipid_class: Object of class "factor", the parent lipid class of this species
- species: Object of class "character", the lipid subclass
- adduct: Object of class "factor", the adduct ion represented by this entry
- adduct_rank: Object of class "integer", the relative abundance ranking of this adduct relative to the other adducts of the same parent compound
- FA_total_no_C: Object of class "integer", total number of acyl (fatty acid) carbon atoms in the parent compound; NA if lipid_class is not TAG, IP-DAG, PUA, or FFA
- FA_total_no_DB: Object of class "integer", total number of acyl (fatty acid) carbon-carbon double bonds in the parent compound; NA if lipid_class is not TAG, IP-DAG, PUA, or FFA

degree_oxidation: Object of class "integer", number of additional oxygen atoms present

parent_elem_formula: Object of class "character", elemental formula of the parent compound

parent_compound_name: Object of class "character", name of the parent compound; see the reference for this entry for the naming convention applied to compounds other than pigments

polarity: Object of class "factor", ionization mode of data in the database

- num_entries: Object of class "integer", number of total entries (adducts) in the database

Methods

show signature(object = "LOBdbase"): ... polarity signature(object = "LOBdbase"): get polarity slot num_compounds signature(object = "LOBdbase"): get num_compounds slot num_entries signature(object = "LOBdbase"): get num_entries slot frag_ID signature(object = "LOBdbase"): get frag_ID slot exact_parent_neutral_mass signature(object = "LOBdbase"): get exact_parent_neutral_mass slot lipid_class signature(object = "LOBdbase"): get lipid_class slot species signature(object = "LOBdbase"): get species slot adduct signature(object = "LOBdbase"): get adduct slot adduct_rank signature(object = "LOBdbase"): get adduct_rank slot FA_total_no_C signature(object = "LOBdbase"): get FA_total_no_C slot FA_total_no_DB signature(object = "LOBdbase"): get FA_total_no_DB slot degree_oxidation signature(object = "LOBdbase"): get degree_oxidation slot parent_elem_formula signature(object = "LOBdbase"): get parent_elem_formula slot parent_compound_name signature(object = "LOBdbase"): get parent_compound_name slot

Author(s)

James Collins, <james.r.collins@aya.yale.edu>

References

Collins, J.R., B.R. Edwards, H.F. Fredricks, and B.A.S. Van Mooy. 2016. LOBSTAHS: An adductbased lipidomics strategy for discovery and identification of oxidative stress biomarkers. *Analytical Chemistry* 88:7154-7162

See Also

generateLOBdbase, loadLOBdbase, doLOBscreen, LOBdbase

Examples

return object information

showClass("LOBdbase")

LOBdefaults

Description

Default databases (in default.LOBdbase), and the .RData files containing default ranges of structural properties used by generateLOBdbase to generate these databases.

Also described is default.rt.windows, which contains the default retention time windows (by lipid class) used by doLOBscreen when rt.restrict = TRUE.

Usage

```
data(default.LOBdbase)
data(default.adductHierarchies)
data(default.acylRanges)
data(default.oxyRanges)
data(default.componentCompTable)
data(default.rt.windows)
```

Format

- default.LOBdbase A list of two "LOBdbase" objects, which are the default LOBSTAHS databases
 for positive and negative ion mode species, respectively. These were generated using generateLOBdbase
 with the default values defined in default.adductHierarchies, default.acylRanges, default.oxyRanges,
 and default.componentCompTable.
- default.adductHierarchies A data frame containing empirically-determined adduct ion hierarchy data, by lipid class.
- default.acylRanges A data frame containing ranges of numbers of acyl carbon atoms for which *in silico* data are generated for each lipid class by generateLOBdbase.
- default.oxyRanges A data frame containing ranges of additional oxygen atoms to be considered on species of each lipid class when databases are generated with generateLOBdbase.
- default.componentCompTable A data frame that defines the elemental compositions of the various adducts, parent lipid "backbones," and pigments that are used by generateLOBdbase.
- default.rt.windows A data frame containing the default retention time data for various lipids and parent lipid classes that are used by doLOBscreen when rt.restrict = TRUE. These retention time windows are specific to the HPLC-MS method currently used in the Van Mooy Lab at Woods Hole Oceanographic Institution, where LOBSTAHS was developed. As described in doLOBscreen, users outside the Van Mooy Lab should supply their own retention time data.

Details

Empirical determination of the retention time window data in default.rt.windows and adduct ion hierarchies in default.adductHierarchies is described in the reference below.

The default ranges for the structural properties given in the other files were chosen to yield databases that encompass a broad variety of moieites across lipid types. Microsoft Excel spreadsheet templates are included with the package in Resources/library/LOBSTAHS/doc for users wishing to modify any of the default data inputs. Alternatively, the spreadsheet files may be downloaded from https://github.com/vanmooylipidomics/LOBSTAHS/tree/master/inst/doc/xlsx. These templates can be used to generate .csv files in formats appropriate for generateLOBdbase and doLOBscreen.

Value

Various list and data.frame objects (as indicated above).

Source

http://github.com/vanmooylipidomics/LOBSTAHS/

References

Collins, J.R., B.R. Edwards, H.F. Fredricks, and B.A.S. Van Mooy. 2016. LOBSTAHS: An adductbased lipidomics strategy for discovery and identification of oxidative stress biomarkers. *Analytical Chemistry* 88:7154-7162

See Also

doLOBscreen, generateLOBdbase, LOBdbase LOBdbase

LOBSet	LOBSet constructor for manual creation or reconstruction of a LOB-
	Set object

Description

Constructor function for manual creation or reconstruction of a LOBSet object for HPLC-MS peak data that have been screened using LOBSTAHS.

Usage

```
LOBSet(peakdata = NULL, iso_C3r = NULL, iso_C3f = NULL, iso_C3c = NULL,
LOBscreen_diagnostics = NULL, LOBisoID_diagnostics = NULL,
LOBscreen_settings = NULL, polarity = c("positive","negative"),
sampnames = NULL)
```

Arguments

peakdata	An object of class "data.frame" containing peak data and LOBSTAHS annotation information by assignment. Column headings and data types should conform to those of the peakdata slot of a LOBSet-class object produced using the function doLOBscreen. Each row in the peakdata table represents one compound assignment made by LOBSTAHS. The format of the data frame occupying the peakdata slot in a LOBSet object can be obtained using the peakdata accessor for objects of LOBSet-class.
iso_C3r	An object of class "list", a list of the match_IDs of possible regioisomers of each compound for which there is a row in peakdata. Length of iso_C3r should equal the number of rows in the data frame given for peakdata.
iso_C3f	An object of class "list", a list of the match_IDs of possible functional struc- tural isomers of each compound for which there is a row in peakdata. Length of iso_C3f should equal the number of rows in the data frame given for peakdata.
iso_C3c	An object of class "list", a list of the match_IDs of the isobars of each com- pound for which there is a row in peakdata. Length of iso_C3c should equal the number of rows in the data frame given for peakdata.

LOBSet

LOBscreen_diagnostics	
	An object of class "data.frame", containing diagnostic information recorded by the function doLOBscreen during creation of a LOBSet. The numbers of peaks, peakgroups, adducts, and unique parent compounds present the dataset after application of each LOBSTAHS screening criterion.
LOBisoID_diagnostics	
	An object of class "data.frame", containing isomer and isobar summary statis- tics. The numbers of peakgroups and parent compounds to which the various isomer identifications have been applied by doLOBscreen to a given LOBSet.
LOBscreen_settings	
	An object of class "list"; the settings used in doLOBscreen to generate the LOBSet $% \left(\mathcal{A}_{n}^{\prime}\right) =\left(\mathcal{A}_{n}^{\prime}\right) \left(\mathcal{A}_{n}^{\prime$
polarity	An object of class "factor", polarity of data in the LOBSet. Must be either "negative" or "positive."
sampnames	An object of class "character"; the names of the samples from which the LOBSet was generated.

Details

Typically, a LOBSet will be created from a CAMERA xsAnnotate-class object using the LOBSTAHS function doLOBscreen. The LOBSet constructor function is therefore provided only for manual object creation; it will not be needed by most users.

Value

A "LOBSet-class" object.

Author(s)

James Collins, <james.r.collins@aya.yale.edu>

References

Collins, J.R., B.R. Edwards, H.F. Fredricks, and B.A.S. Van Mooy. 2016. LOBSTAHS: An adductbased lipidomics strategy for discovery and identification of oxidative stress biomarkers. *Analytical Chemistry* 88:7154-7162

See Also

LOBSet, doLOBscreen, xsAnnotate

Examples

```
## create an empty LOBSet for positive ion mode data
```

library(LOBSTAHS)

LOBSet-class

Description

A class for HPLC-MS peak data that have been screened and annotated using LOBSTAHS function doLOBscreen.

Objects from the class

Objects can be created with the LOBSet constructor. A 'LOBSet' can also be created by calls of the form new("LOBSet", ...).

Slots

peakdata: Object of class "data.frame", containing peakdata by compound assignment

- iso_C3r: Object of class "list", a list of the match_IDs of possible regioisomers of each compound
- iso_C3c: Object of class "list", a list of the match_IDs of possible isobars of this compound
- LOBscreen_diagnostics: Object of class "data.frame", numbers of peaks, peakgroups, adducts, and unique parent compounds present in the dataset after application of each screening criterion in doLOBscreen
- LOBisoID_diagnostics: Object of class "data.frame", numbers of peakgroups and parent compounds to which the various isomer annotations have been assigned
- LOBscreen_settings: Object of class "list", captures the settings used in doLOBscreen to generate the "LOBSet"
- polarity: Object of class "factor", polarity of data in the "LOBSet"
- sampnames: Object of class "character", the names of the samples from which the "LOBSet" was
 generated

Methods

show signature(object = "LOBSet"): ...

LOBisoID_diagnostics signature(object = "LOBSet"): get LOBisoID_diagnostics slot LOBscreen_diagnostics signature(object = "LOBSet"): get LOBscreen_diagnostics slot LOBscreen_settings signature(object = "LOBSet"): get LOBscreen_settings slot sampnames signature(object = "LOBSet"): get sampnames slot peakdata signature(object = "LOBSet"): get peakdata slot polarity signature(object = "LOBSet"): get polarity slot

Author(s)

James Collins, <james.r.collins@aya.yale.edu>

LOBSet-class

References

Collins, J.R., B.R. Edwards, H.F. Fredricks, and B.A.S. Van Mooy. 2016. LOBSTAHS: An adductbased lipidomics strategy for discovery and identification of oxidative stress biomarkers. *Analytical Chemistry* 88:7154-7162

See Also

doLOBscreen, getLOBpeaklist, LOBSet, xsAnnotate

Examples

return object information

showClass("LOBSet")

Index

*Topic classes LOBdbase-class, 13 LOBSet-class, 18 *****Topic **datasets** LOBdefaults, 15 *Topic methods doLOBscreen, 2 extractLOBdbasedata, 4 generateLOBdbase, 5 getLOBpeaklist, 7 loadLOBdbase, 9 LOBdbase, 11 LOBSet, 16 adduct (LOBdbase-class), 13 adduct,LOBdbase-method (LOBdbase-class), 13 adduct<- (LOBdbase-class), 13 adduct<-,LOBdbase-method</pre> (LOBdbase-class), 13 adduct_rank (LOBdbase-class), 13 adduct_rank,LOBdbase-method (LOBdbase-class), 13 adduct_rank<- (LOBdbase-class), 13</pre> adduct_rank<-,LOBdbase-method (LOBdbase-class), 13 default.acylRanges, 5, 7 default.acylRanges (LOBdefaults), 15 default.adductHierarchies, 5, 7 default.adductHierarchies (LOBdefaults), 15 default.componentCompTable, 5, 7 default.componentCompTable (LOBdefaults), 15 default.LOBdbase, 2-4, 6, 7, 10 default.LOBdbase (LOBdefaults), 15 default.oxyRanges, 6, 7default.oxyRanges (LOBdefaults), 15 default.rt.windows, 2, 3 default.rt.windows (LOBdefaults), 15 degree_oxidation (LOBdbase-class), 13 degree_oxidation,LOBdbase-method (LOBdbase-class), 13

degree_oxidation<- (LOBdbase-class), 13</pre> degree_oxidation<-,LOBdbase-method</pre> (LOBdbase-class), 13 doLOBscreen, 2, 5, 7, 9-12, 14-19 exact_parent_neutral_mass (LOBdbase-class), 13 exact_parent_neutral_mass,LOBdbase-method (LOBdbase-class), 13 exact_parent_neutral_mass<-</pre> (LOBdbase-class), 13 exact_parent_neutral_mass<-,LOBdbase-method</pre> (LOBdbase-class), 13 extractLOBdbasedata, 4 FA_total_no_C (LOBdbase-class), 13 FA_total_no_C,LOBdbase-method (LOBdbase-class), 13 FA_total_no_C<- (LOBdbase-class), 13 FA_total_no_C<-,LOBdbase-method</pre> (LOBdbase-class), 13 FA_total_no_DB (LOBdbase-class), 13 FA_total_no_DB,LOBdbase-method (LOBdbase-class), 13 FA_total_no_DB<- (LOBdbase-class), 13 FA_total_no_DB<-,LOBdbase-method (LOBdbase-class), 13 findIsotopes, 2, 3 frag_ID (LOBdbase-class), 13 frag_ID,LOBdbase-method (LOBdbase-class), 13 frag_ID<- (LOBdbase-class), 13</pre> frag_ID<-,LOBdbase-method</pre> (LOBdbase-class), 13 generateLOBdbase, 2-4, 5, 9, 10, 12-16 getLOBpeaklist, 3, 7, 19 lipid_class (LOBdbase-class), 13

INDEX

loadLOBdbase, 2-4, 7, 9, 12-14 LOBdbase, 3, 4, 7, 9, 10, 11, 12–16 LOBdbase-class, 13 LOBdefaults, 15 LOBisoID_diagnostics (LOBSet-class), 18 LOBisoID_diagnostics,LOBSet-method (LOBSet-class), 18 LOBisoID_diagnostics<- (LOBSet-class), 18 LOBisoID_diagnostics<-,LOBSet-method (LOBSet-class), 18 LOBscreen_diagnostics (LOBSet-class), 18 LOBscreen_diagnostics,LOBSet-method (LOBSet-class), 18 LOBscreen_diagnostics<- (LOBSet-class), 18 LOBscreen_diagnostics<-,LOBSet-method (LOBSet-class), 18 LOBscreen_settings (LOBSet-class), 18 LOBscreen_settings,LOBSet-method (LOBSet-class), 18 LOBscreen_settings<- (LOBSet-class), 18 LOBscreen_settings<-,LOBSet-method (LOBSet-class), 18 LOBSet, 3, 9, 16, 17–19 LOBSet-class, 18

13
parent_compound_name,LOBdbase-method
 (LOBdbase-class),13
parent_compound_name< (LOBdbase-class),13</pre>

parent_compound_name<-,LOBdbase-method</pre> (LOBdbase-class), 13 parent_elem_formula (LOBdbase-class), 13 parent_elem_formula,LOBdbase-method (LOBdbase-class), 13 parent_elem_formula<- (LOBdbase-class),</pre> 13 parent_elem_formula<-,LOBdbase-method</pre> (LOBdbase-class), 13 peakdata, 16 peakdata (LOBSet-class), 18 peakdata,LOBSet-method (LOBSet-class), 18 peakdata<- (LOBSet-class), 18</pre> peakdata<-,LOBSet-method</pre> (LOBSet-class), 18 polarity (LOBSet-class), 18 polarity,LOBdbase-method (LOBdbase-class), 13 polarity,LOBSet-method(LOBSet-class), 18 polarity<- (LOBSet-class), 18</pre> polarity<-,LOBdbase-method</pre> (LOBdbase-class), 13 polarity<-,LOBSet-method</pre> (LOBSet-class), 18 read.table, 10

xcmsSet, *3* xsAnnotate, *2*, *3*, *17*, *19*