
Extending flowQ: how to implement QA processes

F. Hahne

May 3, 2016

Abstract

flowQ provides infrastructure to generate interactive quality reports based on a unified
HTML output. The software is readily extendable via modules, where each module com-
prises a single QA process. This Vignette is a brief tutorial how to create your own QA
process modules.

1 Installation

The flowCore package can be installed using Bioconductor’s biocLite function, making sure
that all R dependencies are met. In addition, the ImageMagick library has to be installed
on your system and its binaries have to be available in the system path. ImageMagick can
be downloaded from http://www.imagemagick.org. On Debian linux systems, the command
sudo apt-get install imagemagick usually works. A more detailed description of the Im-
ageMagic installation procedure can be found in the EBImageInstallHOWTO Vignette of the
EBImage package, which has similar dependencies.

2 Basic idea of flowQ’s QA reports

In flowCore, flow cytometry data is organized in flowFrames and flowSets. Usually, a flowSet
comprises multiple flowFrames for one complete experiment or the flowFrames of a single
staining panel of one particular experiment. The initial step of all data analysis is typically a
basic quality assessment (QA). Depending on the design of the experiment, the measurement
channels and the biological question, there are various levels on which QA makes sense and
also various different parameters which can be checked.

In flowQ we tried to implement a framework that allows to create consise QA reports for one
or several flowSets and that is readily extendable using self-defined modules, thus allowing for
arbitrary quality checks of the data. To this end, we define the abstract structure QA process.
Essentially, a QA process can be viewed as a function that iterates over all flowFrames in a
flowSet or even across several flowSets, assessing whether a particular check has been passed
for the respective sample or set of samples, and that generates some sort of graphical output to
indicate the findings. Some quality checks are independent of particular flow parameters, while
others may check each parameter separately, in which case each of these checks constitutes a
QA subprocess. The outcome for each subprocess can be indicated separately, however there
also has to be an aggregated outcome for the whole QA process. This definiton is somewhat

1

http://www.imagemagick.org

abstract, and in the following we will present some more concrete examples which hopefully
will make this structure much clearer.

The general design of a flowQ QA process is:

� aggregator: a qualitative or quantitative value that indicates the outcome of a QA process
or of one of its subprocesses for one single flowFrame in the set.

� summary graph: a plot summarizing the result of the QA process for the whole flowSet .

� frame graphs: plots visualizing the outcome of a QA process or of one of its subprocesses
for a single flowFrame (optional).

As mentioned before, a single QA process may contain various subprocesses, for instance
looking at each measurement channel in a flowFrame separately. Each of these subprocesses
may have its own aggregator and/or graphs. A unified aggregator indicating the overall out-
come of the QA process is mandatory.

Abstractions for each of these building blocks are avaible as classes and for each class there
are constructors which will do the dirty work behind the scenes. All that needs to be provided
by the user-defined QA functions are file paths to the respective plots and lists of aggregators
indicating the outcome (based on cutoff values that have been computed before. For each of
these classes, there are writeLine methods, which create the appropriate HTML output. The
user doesn’t have to care about this step, a fully formated report will be generated when calling
the writeQAReport function.

Figure 1 shows a schematic of a flowQ QA report.

3 Aggregators

There are several subclasses of aggregators, all inheriting from the virtual parent class qaAg-
gregator , which defines a single slot, passed. This slot is the basic indicator whether the
flowFrame has passes the particular quality check. More fine-grained output can be archived
by the following types of sub-classes (see their documentation for details):

� binaryAggregator : the most basic aggregator, indicating “passed” or “not passed” by color
coding. A green bulb indicates passing of the check and a red bulb indicates failing.

� discreteAggregator : allows three different states: “passed”, “not passes” and “warn”, also
coded by colored bulbs. Warnings are indicated by yellow color. Note that “warn” will
set the passed slot to FALSE.

� factorAggregator : multiple outcome states. The factor levels are plotted in gray along
with the actual factor value, color coded for the overall outcome (“passed” in green or
“not passed” in red).

2

Sample 1 

Sample 1 

Process A  Process B  … 

… 

sample summary 
plot 

channel summary 
plot 

process summary 
plot 

summary 
aggregator 

channel 
aggregator 

Figure 1: Schematics of an flowQ QA report. Columns in the table represent different QA
criteria, rows represent samples. For each criterion there may be a single overall summary
plot. For each sample in the respective QA criterion there may be a single detailed plot as
well as several channel-specific plots if necessary. Accordingly, for each sample, the overall
QA result is sumamrized by a single aggregator, and optional channel-specific results can be
summarized by additional channel aggregators.

3

� stringAggregator : arbitrary character string describing the outcome. Font color indicates
the overall outcome (“passed” in green or “not passed” in red).

� numericAggregator : a numerical value describing the outcome. Currently, the value is
plotted as a character string, but this might change in the future. Font color indicates
the overall outcome (“passed” in green or “not passed” in red).

� rangeAggregator : a numerical value within a certain range describing the outcome. A
horizontal barplot is produced with color indicating the overall outcome (“passed” in
green or “not passed” in red).

Aggregator objects can be created using their constructor functions of the same name as the
respective class. The input to the constructors varies depending on the type of the aggregator,
e.g. the binaryAggregator function takes a logical scalar. See their documentation for further
details. The following code creates instances of each of the six aggregator types:

> binaryAggregator()

Binary quality score passing the requirements

> discreteAggregator(2)

Discrete quality score not passing the requirements with state warn

> factorAggregator(factor("a", levels=letters[1:3]))

Factorized quality score passing the requirements of value=a

> stringAggregator("test", passed=FALSE)

Textual quality score not passing the requirements of value=test

> numericAggregator(20)

Numeric quality score passing the requirements of value=20

> rangeAggregator(10, 0, 100)

Range quality score passing the requirements of value=10

A special class aggregatorList exists that holds multiple aggregators, not necessarily of the
same type, and this is used for QA processes with several subprocesses. The constructor takes
an arbitrary number of qaAggregator objects, or a list of such objects. This class mainly exists
for method dispatch.

> aggregatorList(bin=binaryAggregator(FALSE), disc=discreteAggregator(1))

List of 2 aggregators

4

4 Storing images as qaGraphs

While aggregators indicate the general outcome of a QA process, or, at most, a single quanti-
tative value, the amount of information they can provide is very limited. flowQ’s design allows
to include additional diagnostic plots, both on the level of the whole flowSet and for each
flowFrame individually. Smaller bitmap versions of the plots are used for the overview page,
and each image is clickable, opening a bigger vectorized version of the plot that is better suited
for detailed inspection. This feature can be turned off in order to minimize the size of the final
report, since pdf versions of the plots tend to be much bigger than the bitmap versions. To
take the burden of file naming and file conversion away from the user, the class qaGraph was
implemented, which stores links to single images and whose initializer either creates vectorized
versions from bitmaps or vice versa. The class constructor takes two mandatory arguments:
fileName which is a valid path to an image file (either bitmap or vectorized), and imageDir,
which is a file path to the output directory where the image files are to be stored. If you are
planning to place the final QA report on a web server, you should make sure, that this path
is accessable. The safest solution is to chose a directory below the root directory of the QA
report, e.g., qaReport/images if the root directory is qaReport.

You can control the final width of the bitmap version of the image through the optional
width argument, and empty qaGraph objects can be created by setting empty=TRUE. During
object instantiation, the file type is detected automatically and the image file will be converted,
resized and copied if necessary.

> tmp <- tempdir()

> fn <- file.path(tmp, "test.jpg")

> jpeg(file=fn)

> plot(1:3)

> dev.off()

pdf

2

> idir <- file.path(tmp, "images")

> g <- qaGraph(fn, imageDir=idir)

> g

QA process image information

> qaGraph(imageDir=idir, empty=TRUE)

QA process image information

For the special case of QA processes with multiple subprocesses (e.g., individual plots for
each channel), there is a class qaGraphList and an associated constructor, which will take a
character vector of multiple file names. This class mainly exists for method dispatch and to
facilitate batch processing of multiple image files.

5

5 Information for a single frame: class qaProcessFrame

All the information of a QA process for a single frame has to be bundled in objects of class
qaProcessFrame. Again, a constructor facilitates instantiating these objects; the mandatory
arguments of the constructor are:

� frameID: a unique identifier for the flowFrame. Most of the time, this will be the sam-

pleName of the frame in the flowSet . The frame will be identified by this symbol in all
of the following steps and you should make sure that you use unique values, otherwise
the downstream functions will not work.

� summaryAggregator: an object inheriting from class qaAggregator indicating the overall
outcome of the process for this frame.

Further optional arguments are:

� summaryGraph: an object of class qaGraph providing a graphical summary of the whole
QA process for this frame. Unless there are several subprocesses, this is the natural choice
for a single plot depicting the outcome for a particular frame, however this infrastructure
allows all possible combinations (no overall plot but plots for each suprocess, only plots
for the subprocesses, no plots at all).

� frameAggregators: an object of class aggregatorList . Each aggregator in the list in-
dicates the outcome of one single subprocess for this frame, e.g., for every individual
measurement channel.

� frameGraphs: an object of class qaGraphList . Each qaGraph in the list is a graphical
overview over the outcome of one single subprocess for this frame. Note that the length
of both frameAggregators and frameGraphs have to be the same if you want to provide
graphical output for subprocesses. Assuming that you don’t want to include images
for one or several of the subprocesses, you have to provide empty qaGraph objects (see
above). It is not possible to omit aggregators for subprocesses, because they are used to
link to the repsective images.

� details: a list of additional information that you want to keep attached to the qaPro-
cessFrame. For example, this can be the values of a quality score that was computed in
order to decide whether the QA process has passed the requirements. Such information
can be useful to update aggregators later without reproducing the images (e.g., when a
cutoff value has been changed). There is no fixed structure for this list, and it is up to
the developer to provide useful information as well as and update function which utilizes
this information and changes the aggregator outcome status.

6 The whole QA process: class qaProcess

Now that we have all the information for the single frames together, we can proceed and
bundle things up in a unified object of class qaProcess. Again, the constructor has a couple of
mandatory arguments:

6

� id: a unique identifier for this QA process. This will be used to identify the process in
all downstream functions, which will not work unless it really is unique (assuming that
you want to combine multiple QA processes in one single report).

� type: A character scalar describing the type of the QA process. This might become
useful for functions that operate on objects of class qaProcess in a type-specific way
(e.g., updating agregators).

� frameProcesses: a list of qaProcessFrame objects. You have to make sure that the
identifier for each qaProcessFrame is unique and that the length of the list is equal to the
length of the flowSet . We strongly recommend taking the sampleNames of the flowSet
as unique identifiers for the individual qaProcessFrames to avoid mix-ups.

Further optional arguments are:

� name: The name of the process that is used as caption in the output. If this is not
provided, the constructor tries to come up with a more or less intelligent default, and it
is always better to explicitely name the process.

� summaryGraph: An object of class qaGraph summarizing the outcome of the QA process
for the whole frame. Although this is optional, we strongly recommend including such a
plot, as it provides a good initial overview.

The output of you own QA process function should always be an object of class qaProcess,
which can be used in the downstream functions to produce the quality assessment report. Most
of the time, the function would have a structure similar to the following:

1. iterate over frames to create the qaProcessFrame object, possibly with an additional level
of iteration for each subprocess (e.g. each channel). Each iteration involves creation of
(usually at least one) qaGraph and at least one qaAggregator object.

2. create an qaProcessFrame object summarizing the process for the whole set.

3. bundle things up in a qaProcess object.

7 Examples

In this final section we are going to provide a couple of very simple examples for potential QA
process functions in order to get you started. Note that the inputs to such a function are totally
free, and you could build arbitrarily complex procedures, potentially comparing features across
several flowSets, groups of flowFrames or any other checks you deem to be valuable. However,
the output always has to be a single object of class QAProcess.

7.1 Simple process without subprocesses

We start with an very simple example which is — in a slightly more sophisticated version
— already a part of the package in the function qaProcess.cellnumber. The idea is to

7

take a single flowSet as input and check whether the total number of cells for the individual
flowFrames is above a certain threshold. The user should be able to specify the flowSet , the
threshold value, the output directory in which to generate the images and the name of the
process which will later appear in the report. We could use the following function header:

> ## Detect unusually low cell counts

> cellnumber <- function(set, threshold=5000, outdir, name="cellnumber")

+ {

+ }

We first have to think about reasonable graphical outputs for our report. A barplot seems
to be a good idea to show total cell numbers for each sample in the summary graph. The
check is trivial for individual sample, and it doesn’t make much sense to provide plots for each
of them, after all we are simply checking whether a number is bigger or smaller than another
number. This reasoning also suggests a aggregator type to use: the numericAggregator . Let’s
start with the overview plot.

> cellnumber <- function(set, threshold=5000, outdir, name="cellnumber")

+ {

+ ## create the output directory in case it doesn't exist

+ if(!file.exists(outdir))

+ dir.create(outdir, recursive=TRUE)

+ ## get number of counts for each frame

+ cellNumbers <- as.numeric(fsApply(set, nrow))

+ ## produce a barplot from these numbers

+ sfile <- file.path(outdir, "summary.pdf")

+ pdf(file=sfile)

+ col <- "gray"

+ par(mar=c(10.1, 4.1, 4.1, 2.1), las=2)

+ barplot(cellNumbers, col=col, border=NA, names.arg=sampleNames(set),

+ cex.names=0.8, cex.axis=0.8)

+ abline(h=mean(cellNumbers), lty=3, lwd=2)

+ dev.off()

+ ## create a qaGraph object using the image

+ sgraph <- qaGraph(fileName=sfile, imageDir=outdir)

+ }

In the above code we are making sure that the output directory is created if necessary,
record the number of cells for each flowFrame in the flowSet and produce a barplot in the pdf
file summary.pdf. In a subsequent step, we create a qaGraph object from this filename and
we also specify to use the output directory to store the images in. We could have created the
initial pdf file anywhere on our system, for instance in a temporary folder. The constructor
is smart enough to copy it into the output directory if necessary, and it will also create this
directory if it doesn’t exist.

This already looks nice, but we are not done yet. Now it is time to create the aggregators
for our report. We have to supply them to the qaProcess constructor in the form of a list,

8

so we first create a list of appropriate length. We then iterate over each flowFrame in order
to check whether the number of cells is above the threshold and create the appropriate nu-
mericAggregator objects. In a final step we provide both the qaGraph object containing the
summary plot as well as the frameProcesses list and the user-defined name for the process
to the qaProcess constructor function.

> cellnumber <- function(set, threshold=5000, outdir, name="cellnumber")

+ {

+ ## create the output directory in case it doesn't exist

+ if(!file.exists(outdir))

+ dir.create(outdir, recursive=TRUE)

+ ## get number of counts for each frame

+ cellNumbers <- as.numeric(fsApply(set, nrow))

+ ## produce a barplot from these numbers

+ sfile <- file.path(outdir, "summary.pdf")

+ pdf(file=sfile)

+ col <- "gray"

+ par(mar=c(10.1, 4.1, 4.1, 2.1), las=2)

+ barplot(cellNumbers, col=col, border=NA, names.arg=sampleNames(set),

+ cex.names=0.8, cex.axis=0.8)

+ dev.off()

+ ## create a qaGraph object using the image

+ sgraph <- qaGraph(fileName=sfile, imageDir=outdir)

+ ## create numericAggregators for each frame and store in list

+ frameIDs <- sampleNames(set)

+ frameProcesses <- vector(mode="list", length=length(frameIDs))

+ for(i in seq_along(frameIDs)){

+ agg <- new("numericAggregator", x=cellNumbers[i], passed=cellNumbers[i]>threshold)

+ frameProcesses[[i]] <- qaProcessFrame(frameIDs[i], agg)

+ }

+ ## create qaProcess object

+ return(qaProcess(id="cellnumprocess", name=name, type="cell number",

+ summaryGraph=sgraph, frameProcesses=frameProcesses))

+ }

As you can see, the function is not particularly complicated, and the biggest part was
actually creating the barplot. We didn’t have to worry at all about the structure of the final
report or any of the details of displaying the provided information. This is the idea behind the
design of this package. The only things you should worry about are:

1. Which particular aspect of the data do I want to check?

2. How (if at all) can I visualize this aspect for the whole flowSet?

3. How (if at all) can I visualize this aspect for each flowFrame?

4. What is my “test statistic”? Is it a simple yes now answer? Is is a quantitative value?
Which type of aggregator best fits the test?

9

7.2 Subprocesses

This next example is a little bit more complicated in the sense that we want to check each of
the flow parameters in the flowSet separately. The question is how many events are squished
on the borders of the measurement range for each parameter. Again, a similar but slightly
more complex function is implemented as part of the package (qaProcess.marginevents). As
explained earlier, the separate checks on each parameter constitute several subprocess, and
consequently we have one additional level of complexity here.

We start again by first defining the inputs to our function. In addition to the threshold,
which should be a percentage between 0 and 100, we want to give the user the choice of which
flow parameters to include in the analysis. The default is to do it for all available parameters.

> marginevents <- function(set, threshold=10, channels=colnames(set), outdir,

+ name="margin events")

+ {

+ }

Next we have to find out how many margin events there are for each frame and for each
parameter. Conveniently, the boundaryFilter defined in flowCore does exactly that. We can
wrap this in another function.

> mevents <- function(set, channels)

+ {

+ ## count events on the margins using an boundaryFilter

+ sapply(channels, function(x)

+ {

+ ff <- filter(set, boundaryFilter(x))

+ sapply(ff, function(y) summary(y)$p)

+ })

+ }

Now it is again time to decide about informative visualizations. For the overview plot over
all samples and parameters, and image plot would be quite helpful. We will use the levelplot
function defined in the lattice package for this purpose. It might also be nice to get a better
understanding of why there are a lot of margin events for a particular parameter and sample.
This could for instance be caused by a shift of the underlying data. We should be able to see
such effects in density plots of the data. If we try to translate this back into the abstract flowQ
framework, we realize that we will need one single qaGraph object for each subprocess within
each frame. We don’t really have a need for a per-frame summary graph, so we can skip this
step. There might be other situations where it makes sense to have both the parameter-specific
plots, frame-specific summary plots and also overall summary plots for the whole flowSet . We
will first take care of the summary plots.

> marginevents <- function(set, threshold=10, channels=colnames(set), outdir,

+ name="margin events")

+ {

+ ## count margin events

+ perc <- mevents(set, channels)

10

+ ## create summary plot

+ require("lattice")

+ tmp <- tempdir()

+ sfile <- file.path(tmp, "summary.pdf")

+ pdf(file=sfile)

+ col.regions=colorRampPalette(c("white", "darkblue"))(256)

+ print(levelplot(t(perc)*100, scales = list(x = list(rot = 90)),

+ xlab="", ylab="", main="% margin events",

+ col.regions=col.regions))

+ dev.off()

+ sgraph <- qaGraph(fileName=sfile, imageDir=outdir)

+ }

In order to check whether any of the margin event counts is above the threshold and to
produce the density plots we have to iterate over both frames and parameters. The constructor
for the qaFrameProcess object needs a little more input this time. As explained before, we can
supply the graphs for each of the subprocesses by means of a qaGraphList , which again can be
created from a character vector of file names using the qaGraphList constructor. So one thing
we need to keep track of while iterating over parameters are the file names. For each parameter
in each frame we also want to create an appropriate aggregator. We said this before: for each
subprocess we need a separate aggregator. As a matter of fact, we tell the software about the
presence of subprocesses by supplying multiple aggregators for a frame. Our test statistic is a
percentage, so we know that all values fall in the range between 0 and 100. The rangeAggregator
seems to be a good choice here, since it won’t only tell us whether the check has passed or
failed, but even indicate the magnitude of the effect. The individual aggregators need to be
stored in some form of a list, and the aggregatorList class is the appropriate container. You can
think of this class as a regular list, and it mainly exists for internal software design purpose.
We fill it in exactly the same way as we would fill a regular R list.

To complete the qaProcess object we also need a summary aggregator. In this case, we
came up with a simple rule: if one of the subprocesses doesn’t pass we want to issue a warning.
If more than two fail, a failed overall quality check should be indicated and if all of the
subprocesses pass the test we are happy to report no problems at all. The final call to the
qaProcess constructur doesn’t really look any different than in our previous example. Indeed,
all the additional complexity is encapsulated in the qaProcessFrame objects.

> marginevents <- function(set, threshold=10, channels=colnames(set), outdir,

+ name="margin events")

+ {

+ ## count margin events

+ perc <- mevents(set, channels)

+ ## create summary plot

+ require("lattice")

+ tmp <- tempdir()

+ sfile <- file.path(tmp, "summary.pdf")

+ pdf(file=sfile)

+ col.regions=colorRampPalette(c("white", "darkblue"))(256)

11

+ print(levelplot(perc*100, scales = list(x = list(rot = 90)),

+ xlab="", ylab="", main="% margin events",

+ col.regions=col.regions))

+ dev.off()

+ sgraph <- qaGraph(fileName=sfile, imageDir=outdir)

+ frameIDs <- sampleNames(set)

+ frameProcesses <- list()

+ ## create graphs and aggregators for each frame (and each channel)

+ for(i in 1:length(set)){

+ fnames <- NULL

+ ## this will hold the aggregators for all channels

+ agTmp <- aggregatorList()

+ for(j in 1:length(channels)){

+ ## the frame and parameter specific density plots

+ tfile <- file.path(tmp, paste("frame_", sprintf("%0.2d", i), "_",

+ gsub("\\..*$", "", channels[j]), ".pdf",

+ sep=""))

+ pdf(file=tfile, height=3)

+ par(mar=c(1,0,1,0))

+ plot(density(exprs(set[[i]][,channels[j]])), main=NULL)

+ dev.off()

+ fnames <- c(fnames, tfile)

+ ## test whether the particular frame and channel passes the check

+ ## and use a rangeAggregator to store that information

+ passed <- perc[i,j] < threshold/100

+ agTmp[[j]] <- new("rangeAggregator", passed=passed,

+ x=perc[i,j], min=0, max=1)

+ }

+ ## summarize the results for individual subprocesses

+ names(agTmp) <- channels

+ nfail <- !sapply(agTmp, slot, "passed")

+ val <- if(sum(nfail)==1) factor(2) else if(sum(nfail)==0) factor(1) else factor(0)

+ ba <- new("discreteAggregator", x=val)

+ ## bundle up the graphs for all channels for this particular frame

+ fGraphs <- qaGraphList(imageFiles=fnames, imageDir=outdir)

+ ## create the qaProcessFrame objects for this sample

+ frameProcesses[[frameIDs[i]]] <- qaProcessFrame(frameID=frameIDs[i],

+ summaryAggregator=ba,

+ frameAggregators=agTmp,

+ frameGraphs=fGraphs)

+ }

+ ## finally create the qaProcess object

+ return(qaProcess(id="processmarginevents", name=name,

+ type="margin events", summaryGraph=sgraph,

+ frameProcesses=frameProcesses))

12

+ }

Rather than specifiying a strict cutoff for a quality assessment process, it is often more
reasonable to try to find outlier samples based on a certain test statistic in comparison to all
other samples or all other samples in the same sample group. The qaProcesses implemented
in qaProcess.cellnumber and qaProcess.marginevents use such dynamic assessment, but
other than that they are pretty similar to the above examples.

8 Further extensions of the framework

It is worth mentioning here that the flowQ’s framework can be extended even further. Since the
individual building blocks like aggregators are all abstract classes, one could easily add more
complicated ones. For the purpose of producing the interactive output via writeQAReport, all
that is needed in addition to the extended aggregator class definition is a writeLines method
which generates the necessary HTML code.

flowQ is also not limitted to producing fancy HTML output. The qaProcess object holds all
the necessary information, and it is straight forward to extract this in order to put it into a data
base, or to simply create a table containing the QA results. The details of such extensions are
beyond the scope of this document, but the interested reader is referred to the documentation
of the classes presented before, in particular that of qaProcess and qaProcessFrame.

13

	Installation
	Basic idea of flowQ's QA reports
	Aggregators
	Storing images as qaGraphs
	Information for a single frame: class qaProcessFrame
	The whole QA process: class qaProcess
	Examples
	Simple process without subprocesses
	Subprocesses

	Further extensions of the framework

