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1 Introduction

The QuasR package (short for Quantify and annotate short reads in R) integrates the functionality of
several R packages (such as IRanges [1] and Rsamtools) and external software (e.g. bowtie, through
the Rbowtie package). The package aims to cover the whole analysis workflow of typical ultra-high
throughput sequencing experiments, starting from the raw sequence reads, over pre-processing and
alignment, up to quantification. A single R script can contain all steps of a complete analysis, making
it simple to document, reproduce or share the workflow containing all relevant details.

The current QuasR release supports the analysis of single read and paired-end ChIP-seq (chromatin
immuno-precipitation combined with sequencing), RNA-seq (gene expression profiling by sequencing
of RNA) and Bis-seq (measurement of DNA methylation by sequencing of bisulfite-converted genomic
DNA) experiments. It has been successfully used with data from Illumina GA/GA II/MiSeq/HiSeq, 454
Life Technologies and SOLiD sequencers, the latter by using bam files created externally of QuasR .

2 Preliminaries

2.1 Citing QuasR

If you use QuasR [2] in your work, you can cite it as follows:

> citation("QuasR")

Please use the QuasR reference below to cite the software itself. If

you were using qAlign with Rbowtie as aligner, it can be cited as

Langmead et al. (2009) (unspliced alignments) or Au et al. (2010)

(spliced alignments).

Gaidatzis D, Lerch A, Hahne F, Stadler MB. QuasR: Quantification and

annotation of short reads in R. Bioinformatics 31(7):1130-1132

(2015).

Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and

memory-efficient alignment of short DNA sequences to the human

genome. Genome Biology 10(3):R25 (2009).

Au KF, Jiang H, Lin L, Xing Y, Wong WH. Detection of splice junctions

from paired-end RNA-seq data by SpliceMap. Nucleic Acids Research,

38(14):4570-8 (2010).

This free open-source software implements academic research by the

authors and co-workers. If you use it, please support the project by

citing the appropriate journal articles.

http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/IRanges
http://bioconductor.org/packages/Rsamtools
http://bioconductor.org/packages/Rbowtie
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
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2.2 Installation

QuasR is a package for the R computing environment and it is assumed that you have already installed R .
See the R project at http://www.r-project.org. To install the latest version of QuasR , you will need to be
using the latest version of R . QuasR is part of the Bioconductor project at http://www.bioconductor.org.
To get QuasR together with its dependencies you can use

> source("http://www.bioconductor.org/biocLite.R")

> biocLite("QuasR")

Bioconductor works on a 6-monthly official release cycle. As with other Bioconductor packages, there
are always two versions of QuasR . Most users will use the current official release version, which will be
installed by biocLite if you are using the current version of R . There is also a developmental version
of QuasR that includes new features due for the next official release. The developmental version will be
installed if you are using the developmental version of R . The official release version always has an even
second number (for example 0.2.1), whereas the developmental version has an odd second number (for
example 0.3.6).

2.3 Loading of QuasR and other required libraries

In order to run the code examples in this vignette, the QuasR library and a few additional libraries need
to be loaded:

> library(QuasR)

> library(BSgenome)

> library(Rsamtools)

> library(rtracklayer)

> library(GenomicFeatures)

> library(Gviz)

2.4 How to get help

Most questions about QuasR will hopefully be answered by the documentation or references. If you’ve
run into a question which isn’t addressed by the documentation, or you’ve found a conflict between
the documentation and software itself, then there is an active support community which can offer help.
The authors of the package (maintainer: Michael Stadler <michael.stadler@fmi.ch>) always appreciate
receiving reports of bugs in the package functions or in the documentation. The same goes for well-
considered suggestions for improvements. Any other questions or problems concerning QuasR should be
sent to the Bioconductor mailing list bioconductor@stat.math.ethz.ch. To subscribe to the mailing list,
see https://stat.ethz.ch/mailman/listinfo/bioconductor. Please send requests for general assistance
and advice to the mailing list rather than to the individual authors. Users posting to the mailing list for
the first time should read the helpful posting guide at http://www.bioconductor.org/doc/postingGuide.
html. Note that each function in QuasR has it’s own help page, as described in the section 3.1. Mailing
list etiquette requires that you read the relevant help page carefully before posting a problem to the list.

http://bioconductor.org/packages/QuasR
http://www.r-project.org
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
http://www.bioconductor.org
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
bioconductor@stat.math.ethz.ch
https://stat.ethz.ch/mailman/listinfo/bioconductor
http://www.bioconductor.org/doc/postingGuide.html
http://www.bioconductor.org/doc/postingGuide.html
http://bioconductor.org/packages/QuasR
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3 Quick Start

3.1 A brief introduction to R

If you already use R and know about its command line interface, just skip this section and continue
with section 3.2 on page 6.

The structure of this vignette and in particular this section is based on the excellent user guide of the
limma package, which we would like to hereby acknowledge. R is a program for statistical computing.
It is a command-driven language meaning that you have to type commands into it rather than pointing
and clicking using a mouse. In this guide it will be assumed that you have successfully downloaded
and installed R from http://www.r-project.org as well as QuasR (see section 2.2). A good way to get
started is to type

> help.start()

at the R prompt or, if you’re using R for Windows, to follow the drop-down menu items Help � Html
help. Following the links Packages � QuasR from the html help page will lead you to the contents
page of help topics for functions in QuasR . Before you can use any QuasR commands you have to load
the package by typing

> library(QuasR)

at the R prompt. You can get help on any function in any loaded package by typing ? and the function
name at the R prompt, for example

> ?preprocessReads

or equivalently

> help("preprocessReads")

for detailed help on the preprocessReads function. The individual function help pages are especially
important for listing all the arguments which a function will accept and what values the arguments can
take.

A key to understanding R is to appreciate that anything that you create in R is an object. Objects
might include data sets, variables, functions, anything at all. For example

> x <- 2

will create a variable x and will assign it the value 2. At any stage of your R session you can type

> ls()

to get a list of all the objects you have created. You can see the contents of any object by typing the
name of the object at the prompt. The following command will print out the contents of x:

> x

We hope that you can use QuasR without having to spend a lot of time learning about the R language
itself but a little knowledge in this direction will be very helpful, especially when you want to do

http://bioconductor.org/packages/limma
http://www.r-project.org
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
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something not explicitly provided for in QuasR or in the other Bioconductor packages. For more details
about the R language see An Introduction to R which is available from the online help. For more
background on using R for statistical analysis see [3].

3.2 Sample QuasR session

This is a quick overview of what an analysis could look like for users preferring to jump right into an
analysis. The example uses data that is provided with the QuasR package, which is first copied to the
current working directory, into a subfolder called "extdata":

> file.copy(system.file(package="QuasR", "extdata"), ".", recursive=TRUE)

[1] TRUE

The sequence files to be analyzed are listed in sampleFile (see section 5.1 on page 11 for details).
The sequence reads will be aligned using bowtie [4] (from the Rbowtie package [5]) to a small reference
genome (consisting of three short segments from the hg19 human genome assembly, available in full
for example in the BSgenome.Hsapiens.UCSC.hg19 package). Make sure that you have sufficient disk
space, both in your R temporary directory (tempdir) as well as to store the resulting alignments (see
section 7.2).

> sampleFile <- "extdata/samples_chip_single.txt"

> genomeFile <- "extdata/hg19sub.fa"

> proj <- qAlign(sampleFile, genomeFile)

nodeNames

zin2

1

> proj

Project: qProject

Options : maxHits : 1

paired : no

splicedAlignment: FALSE

bisulfite : no

snpFile : none

Aligner : Rbowtie v1.12.0 (parameters: -m 1 --best --strata)

Genome : /tmp/RtmpWf5rej/Rbuild3ff810e5f983/QuasR/vigne.../hg19sub.fa (file)

Reads : 2 files, 2 samples (fastq format):

1. chip_1_1.fq.bz2 Sample1 (phred33)

2. chip_2_1.fq.bz2 Sample2 (phred33)

Genome alignments: directory: same as reads

1. chip_1_1_45d26363cec7.bam

2. chip_2_1_45d234e1ae4a.bam

http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/Rbowtie
http://bioconductor.org/packages/BSgenome.Hsapiens.UCSC.hg19
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Aux. alignments: none

The proj object keeps track of all the information of a sequencing experiment, for example where
sequence and alignment files are stored, and what aligner and reference genome was used to generate
the alignments.

Now that the alignments have been generated, further analyses can be performed. A quality control
report is saved to the "extdata/qc_report.pdf" file using the qQCReport function.

> qQCReport(proj, "extdata/qc_report.pdf")

The number of alignments per promoter region is quantified using qCount. Genomic coordinates for
promoter regions are imported from a gtf file (annotFile) into the GRanges-object with the name
promReg:

> library(rtracklayer)

> library(GenomicFeatures)

> annotFile <- "extdata/hg19sub_annotation.gtf"

> txStart <- import.gff(annotFile, format="gtf", feature.type="start_codon")

> promReg <- promoters(txStart, upstream=500, downstream=500)

> names(promReg) <- mcols(promReg)$transcript_name

> promCounts <- qCount(proj, query=promReg)

> promCounts

width Sample1 Sample2

TNFRSF18-003 1000 20 4

TNFRSF18-002 1000 20 4

TNFRSF18-001 1000 20 4

TNFRSF4-001 1000 5 2

SDF4-007 1000 8 2

SDF4-001 1000 8 2

SDF4-002 1000 8 2

SDF4-201 1000 8 2

B3GALT6-001 1000 25 274

RPS7-001 1000 121 731

RPS7-008 1000 121 731

RPS7-009 1000 121 731

RPS7-005 1000 121 731

C3orf10-201 1000 176 496

C3orf10-001 1000 176 496

AC034193.1-201 1000 5 2

VHL-001 1000 61 336

VHL-002 1000 61 336

VHL-201 1000 61 336
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4 QuasR Overview

The following scheme shows the major components of QuasR and their relationships:

Figure 1: QuasR package overview

QuasR works with data (sequences and alignments, reference genome, etc.) that are stored as files
on your storage (the gray cylinder on the lower left of Figure 1, see section 4.1 for details on storage
locations). QuasR does not need a database management system, or these files to be named and
organized according to a specific scheme.

In order to keep track of directory paths during an analysis, QuasR makes use of a qProject object
that is returned by the qAlign function, which at the minimum requires two inputs: the name of a
samples text file (see section 5.1 for details), and the reference genome for the alignments (see section
5.3).

The qProject object is the main argument passed to subsequent functions such as qQCReport and
qCount. The qProject object contains all necessary information on the current project and eliminates
the need to repeatedly enter the same information. All functions that work on qProject objects can
be recognized by their names starting with the letter q.

Read quantification (apart from quantification of methylation which has its own function qMeth) is
done using the qCount function: It counts the alignments in regions of interest (e.g. promoters, genes,
exons, etc.) and produces a count table (regions in rows, samples in columns) for further visualization
and analysis. The count table can also be used as input to a statistical analysis using packages such as
edgeR [6], DESeq [7], DESeq2 , TCC [8], DEXSeq [9] or baySeq [10].

http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/edgeR
http://bioconductor.org/packages/DESeq
http://bioconductor.org/packages/DESeq2
http://bioconductor.org/packages/TCC
http://bioconductor.org/packages/DEXSeq
http://bioconductor.org/packages/baySeq
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In summary, a typical QuasR analysis consists of the following steps (some of them are optional):

� preprocessReads (optional): Remove adapters from start or end of reads, filter out
reads of low quality, short length or low complexity (section 5.4 on page 16).

� Prepare samples file: List sequence files or alignments, provide sample names (section
5.1 on page 11).

� Prepare auxiliary file (optional): List additional reference sequences for alignment of
reads not matching the reference genome (section 5.2 on page 13).

� qAlign: Create qProject object and specify project parameters. Also download
BSgenome package, create aligner indices and align reads if not already existing (7.2
on page 41).

� qQCReport (optional): Create quality control report with plots on sequence qualities
and alignment statistics (section 7.4 on page 42).

� qExportWig (optional): Export genomic alignments as wiggle tracks for genome
browser visualization (section 7.6 on page 46).

� qCount: Quantify alignments in regions of interest (section 7.7 on page 47).

Recurrent example tasks that may be part of any typical analysis are described in section 5 starting
on page 11. Example workflows for specific experiment types (ChIP-seq, RNA-seq and Bis-seq) are
described in section 6 starting on page 18.

4.1 File storage locations

Apart from qExportWig and qQCReport, which generate wig files and pdf reports, qAlign is the only
function in QuasR that stores files on the disk (see section 7.2 for details). All files generated by qAlign

are listed here by type, together with their default location and how locations can be changed.

� Temporary files (default: tempdir()): Temporary files include reference genomes in FASTA

format, decompressed input sequence files, and temporary alignments in text format, and can
require a large amount of disk space. By default, these files will be written to the temporary
directory of the R process (as reported by tempdir()). If using clObj for parallel processing,
this may be the tempdir() from the cluster node(s). An alternative location can be set using
the TMPDIR environment variable (see ?tempdir).

� Alignment files (BAM format) (default: same directory as the input sequence files): Alignments
against reference genome and auxiliary targets are stored in BAM format in the same directory
that also contains the input sequence file (listed in sampleFile). Please note that if the input
sequence file correspond to a symbolic link, QuasR will follow the link and use the directory of the
original file instead. An alternative directory can be specified with the alignmentsDir argument
from qAlign, which will store all BAM in that directory even if the input sequence files are located
in different directories.

� Alignment index files (default: depends on genome and snpFile arguments): Many alignment
tools including bowtie require an index of the reference sequence to perform alignments. If
necessary, qAlign will build this index automatically and store it in a default location that depends
on the genome argument:

– BSgenome: If genome is the name of a BSgenome package (such as ”BSgenome.Hsapiens.

http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/BSgenome


An Introduction to QuasR 10

UCSC.hg19”), the index will be stored as a new R package in the default library path (as
reported by .libPaths()[1], see ?install.packages for details). The name of this index
package will be the name of the original BSgenome package with a suffix for the index type,
for example ”BSgenome.Hsapiens.UCSC.hg19.Rbowtie”.

– FASTA: If genome refers to a reference genome file in FASTA format, the index will be stored
in a subdirectory at the same location. Similarly, the indices for files listed in auxiliaryFile

are store at the location of these files. For example, the Rbowtie index for the genome at
”./genome/mm9.fa” is stored in ”./genome/mm9.fa.Rbowtie”.

– Allele-specific analysis: A special case is the allele-specific analysis, where reference and
alternative alleles listed in snpFile (e.g. ”./mySNPs.tab”) are injected into the genome (e.g.
”BSgenome.Mmusculus.UCSC.mm9”) to create two variant genomes to be indexed. These
indices are saved at the location of the snpFile in a directory named after snpFile, genome
and the index type (e.g. ”./mySNPs.tab.BSgenome.Mmusculus.UCSC.mm9.A.fa.Rbowtie”).

http://bioconductor.org/packages/BSgenome
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5 Example tasks

5.1 Create a sample file

The sample file is a tab-delimited text file with two or three columns. The first row contains the
column names: For a single read experiment, these are ’FileName’ and ’SampleName’; for a paired-end
experiment, these are ’FileName1’, ’FileName2’ and ’SampleName’. If the first row does not contain
the correctly spelled column names, QuasR will not accept the samples file. Subsequent rows contain
the input sequence files.

Here are examples of such sample files for a single read experiment:

FileName SampleName

chip_1_1.fq.bz2 Sample1

chip_2_1.fq.bz2 Sample2

and for a paired-end experiment:

FileName1 FileName2 SampleName

rna_1_1.fq.bz2 rna_1_2.fq.bz2 Sample1

rna_2_1.fq.bz2 rna_2_2.fq.bz2 Sample2

These example files are also contained in the QuasR package and may be used as templates. The path
of the files can be determined using:

> sampleFile1 <- system.file(package="QuasR", "extdata",

"samples_chip_single.txt")

> sampleFile2 <- system.file(package="QuasR", "extdata",

"samples_rna_paired.txt")

The columns FileName for single-read, or FileName1 and FileName2 for paired-end experiments contain
paths and names to files containing the sequence data. The paths can be absolute or relative to the
location of the sample file. This allows combining files from different directories in a single analysis.
For each input sequence file, qAlign will create one alignment file and by default store it in the same
directory as the sequence file. Already existing alignment files with identical parameters will not be
re-created, so that it is easy to reuse the same sequence files in multiple projects without unnecessarily
copying sequence files or recreating alignments.

The SampleName column contains sample names for each sequence file. The same name can be used
on several lines to indicate multiple sequence files that belong to the same sample (qCount can use this
information to automatically combine counts for one sample from multiple files).

Three file formats are supported for input files (but cannot be mixed within a single sample file):

� FASTA files have names that end with ’.fa’, ’.fna’ or ’.fasta’. They contain only sequences (and no
base qualities) and will thus by default be aligned on the basis of mismatches (the best alignment
is the one with fewest mismatches).

http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
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� FASTQ files have names that end with ’.fq’ or ’.fastq’. They contain sequences and corresponding
base qualities and will be aligned by default using these qualities. The encoding scheme of base
qualities is automatically detected for each individual fastq file.

� BAM files have names that end with ’.bam’. They can be used if the sequence reads have already
been aligned outside of QuasR , and QuasR will only be used for downstream analysis based on
the alignments contained in the BAM files. This makes it possible to use alignment tools that
are not available within QuasR , but making use of this option comes with a risk and should
only be used by experienced users. For example, it cannot be guaranteed any more that certain
assumptions made by qCount are fulfilled by the external aligner (see below). In addition, since
the data provided to QuasR has already been processed, quality control plots that are based
on unprocessed raw data will be missing from the output of qQCReport. When using external
BAM files, we recommend to use files which contain only one alignment per read. This may also
include multi-hit reads, for which one of the alignments is randomly selected. This allows QuasR
to count the total number of reads by counting the total number of alignments. Furthermore,
if the BAM files also contain the unmapped reads, QuasR will be able to calculate the fraction
of mapped reads. For bisulfite samples we require ungapped alignments stored in unpaired or
paired ff orientation (even if the input reads are fr). For allele-specific BAM files, QuasR requires
an additional tag for each alignment called XV of type A (printable character) with the possible
values R (Reference), U (Unknown) and A (Alternative).

FASTA and FASTQ files can be compressed with gzip, bzip2 or xz (file extensions ’.gz’, ’.bz2’ or ’xz’,
respectively) and will automatically decompressed when necessary.

Working only with BAM files after performing alignments

Once alignments have been created, most analyses will only require the BAM files and will not access
the original raw sequence files anymore. However, re-creating a qProject object by a later identical
call to qAlign will still need access to the raw sequences to verify consistency between raw data and
alignments. It may be desirable to remove this dependency, for example to archive or move away the
raw sequence files and to reclaim used disk space.

This can be achieved using the following procedure involving two sequential calls to qAlign. First,
qAlign is called with the orignial sample file (sampleFile1) that lists the raw sequence files, and
subsequently with a second sample file (sampleFile2) that lists the BAM files generated in the first call.
Such a second sample file can be easily generated given the qProject object (proj1) returned by the
first call:

> sampleFile1 <- "samples_fastq.txt"

> sampleFile2 <- "samples_bam.txt"

> proj1 <- qAlign(sampleFile1, genomeFile)

> write.table(alignments(proj1)$genome, sampleFile2, sep="\t", row.names=FALSE)

> proj2 <- qAlign(sampleFile2, genomeFile)

The analysis can now be exclusively based on the BAM files using sampleFile2 and proj2.

http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
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Consistency of samples within a project

The sample file implicitly defines the type of samples contained in the project: single read or paired-end
read, sequences with or without qualities. This type will have a profound impact on the downstream
analysis. For example, it controls whether alignments will be performed in single or paired-end mode,
either with or without base qualities. That will also determine availability of certain options for quality
control and quantification in qQCReport and qCount. For consistency, it is therefore required that all
samples within a project have the same type; it is not possible to mix both single and paired-end read
samples, or FASTA and FASTQ files in a single project (sample file). If necessary, it may be possible to
analyse different types of files in separate QuasR projects and combine the derived results at the end.

5.2 Create an auxiliary file (optional)

By default QuasR aligns reads only to the reference genome. However, it may be interesting to align
non-matching reads to further targets, for example to identify contamination from vectors or a different
species, or in order to quantify spike-in material not contained in the reference genome. In QuasR ,
such supplementary reference files are called auxiliary references and can be specified to qAlign using
the auxiliaryFile argument (see section 7.2 on page 41 for details). The format of the auxiliary file
is similar to the one of the sample file described in section 5.1: It contains two columns with column
names ’FileName’ and ’AuxName’ in the first row. Additional rows contain names and files of one or
several auxiliary references in FASTA format.

An example auxiliary file looks like this:

FileName AuxName

NC_001422.1.fa phiX174

and is available from your QuasR installation at

> auxFile <- system.file(package="QuasR", "extdata", "auxiliaries.txt")

5.3 Select the reference genome

Sequence reads are primarily aligned against the reference genome. If necessary, QuasR will create an
aligner index for the genome. The reference genome can be provided in one of two different formats:

� a string, referring to the name of a BSgenome package:
> available.genomes()

[1] "BSgenome.Alyrata.JGI.v1"

[2] "BSgenome.Amellifera.BeeBase.assembly4"

[3] "BSgenome.Amellifera.UCSC.apiMel2"

[4] "BSgenome.Amellifera.UCSC.apiMel2.masked"

[5] "BSgenome.Athaliana.TAIR.04232008"

[6] "BSgenome.Athaliana.TAIR.TAIR9"

http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/BSgenome
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[7] "BSgenome.Btaurus.UCSC.bosTau3"

[8] "BSgenome.Btaurus.UCSC.bosTau3.masked"

[9] "BSgenome.Btaurus.UCSC.bosTau4"

[10] "BSgenome.Btaurus.UCSC.bosTau4.masked"

[11] "BSgenome.Btaurus.UCSC.bosTau6"

[12] "BSgenome.Btaurus.UCSC.bosTau6.masked"

[13] "BSgenome.Btaurus.UCSC.bosTau8"

[14] "BSgenome.Celegans.UCSC.ce10"

[15] "BSgenome.Celegans.UCSC.ce11"

[16] "BSgenome.Celegans.UCSC.ce2"

[17] "BSgenome.Celegans.UCSC.ce6"

[18] "BSgenome.Cfamiliaris.UCSC.canFam2"

[19] "BSgenome.Cfamiliaris.UCSC.canFam2.masked"

[20] "BSgenome.Cfamiliaris.UCSC.canFam3"

[21] "BSgenome.Cfamiliaris.UCSC.canFam3.masked"

[22] "BSgenome.Dmelanogaster.UCSC.dm2"

[23] "BSgenome.Dmelanogaster.UCSC.dm2.masked"

[24] "BSgenome.Dmelanogaster.UCSC.dm3"

[25] "BSgenome.Dmelanogaster.UCSC.dm3.masked"

[26] "BSgenome.Dmelanogaster.UCSC.dm6"

[27] "BSgenome.Drerio.UCSC.danRer10"

[28] "BSgenome.Drerio.UCSC.danRer5"

[29] "BSgenome.Drerio.UCSC.danRer5.masked"

[30] "BSgenome.Drerio.UCSC.danRer6"

[31] "BSgenome.Drerio.UCSC.danRer6.masked"

[32] "BSgenome.Drerio.UCSC.danRer7"

[33] "BSgenome.Drerio.UCSC.danRer7.masked"

[34] "BSgenome.Ecoli.NCBI.20080805"

[35] "BSgenome.Gaculeatus.UCSC.gasAcu1"

[36] "BSgenome.Gaculeatus.UCSC.gasAcu1.masked"

[37] "BSgenome.Ggallus.UCSC.galGal3"

[38] "BSgenome.Ggallus.UCSC.galGal3.masked"

[39] "BSgenome.Ggallus.UCSC.galGal4"

[40] "BSgenome.Ggallus.UCSC.galGal4.masked"

[41] "BSgenome.Hsapiens.1000genomes.hs37d5"

[42] "BSgenome.Hsapiens.NCBI.GRCh38"

[43] "BSgenome.Hsapiens.UCSC.hg17"

[44] "BSgenome.Hsapiens.UCSC.hg17.masked"

[45] "BSgenome.Hsapiens.UCSC.hg18"

[46] "BSgenome.Hsapiens.UCSC.hg18.masked"

[47] "BSgenome.Hsapiens.UCSC.hg19"

[48] "BSgenome.Hsapiens.UCSC.hg19.masked"

[49] "BSgenome.Hsapiens.UCSC.hg38"

[50] "BSgenome.Hsapiens.UCSC.hg38.masked"

[51] "BSgenome.Mfascicularis.NCBI.5.0"
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[52] "BSgenome.Mfuro.UCSC.musFur1"

[53] "BSgenome.Mmulatta.UCSC.rheMac2"

[54] "BSgenome.Mmulatta.UCSC.rheMac2.masked"

[55] "BSgenome.Mmulatta.UCSC.rheMac3"

[56] "BSgenome.Mmulatta.UCSC.rheMac3.masked"

[57] "BSgenome.Mmusculus.UCSC.mm10"

[58] "BSgenome.Mmusculus.UCSC.mm10.masked"

[59] "BSgenome.Mmusculus.UCSC.mm8"

[60] "BSgenome.Mmusculus.UCSC.mm8.masked"

[61] "BSgenome.Mmusculus.UCSC.mm9"

[62] "BSgenome.Mmusculus.UCSC.mm9.masked"

[63] "BSgenome.Osativa.MSU.MSU7"

[64] "BSgenome.Ptroglodytes.UCSC.panTro2"

[65] "BSgenome.Ptroglodytes.UCSC.panTro2.masked"

[66] "BSgenome.Ptroglodytes.UCSC.panTro3"

[67] "BSgenome.Ptroglodytes.UCSC.panTro3.masked"

[68] "BSgenome.Rnorvegicus.UCSC.rn4"

[69] "BSgenome.Rnorvegicus.UCSC.rn4.masked"

[70] "BSgenome.Rnorvegicus.UCSC.rn5"

[71] "BSgenome.Rnorvegicus.UCSC.rn5.masked"

[72] "BSgenome.Rnorvegicus.UCSC.rn6"

[73] "BSgenome.Scerevisiae.UCSC.sacCer1"

[74] "BSgenome.Scerevisiae.UCSC.sacCer2"

[75] "BSgenome.Scerevisiae.UCSC.sacCer3"

[76] "BSgenome.Sscrofa.UCSC.susScr3"

[77] "BSgenome.Sscrofa.UCSC.susScr3.masked"

[78] "BSgenome.Tgondii.ToxoDB.7.0"

[79] "BSgenome.Tguttata.UCSC.taeGut1"

[80] "BSgenome.Tguttata.UCSC.taeGut1.masked"

[81] "BSgenome.Tguttata.UCSC.taeGut2"

[82] "BSgenome.Vvinifera.URGI.IGGP12Xv0"

[83] "BSgenome.Vvinifera.URGI.IGGP12Xv2"

[84] "BSgenome.Vvinifera.URGI.IGGP8X"

> genomeName <- "BSgenome.Hsapiens.UCSC.hg19"

In this example, the BSgenome package "BSgenome.Hsapiens.UCSC.hg19" refers to an un-
masked genome; alignment index and alignments will be performed on the full unmasked genome
sequence (recommended). If using a masked genome (e.g. "BSgenome.Hsapiens.UCSC.hg19.masked"),
masked regions will be replaced with "N" bases, and this hard-masked version of the genome will
be used for creating the alignment index and further alignments.

� a file name, referring to a sequence file containing one or several reference sequences (e.g. chro-
mosomes) in FASTA format:
> genomeFile <- system.file(package="QuasR", "extdata", "hg19sub.fa")
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5.4 Sequence data pre-processing

The preprocessReads function can be used to prepare the input sequence files prior to alignment.
The function takes one or several sequence files (or pairs of files for a paired-end experiment) in FASTA

or FASTQ format as input and produces the same number of output files with the processed reads.

In the following example, we truncate the reads by removing the three bases from the 3’-end (the right
side), remove the adapter sequence AAAAAAAAAA from the 5’-end (the left side) and filter out reads
that, after truncation and adapter removal, are shorter than 14 bases or contain more than 2 N bases:

> td <- tempdir()

> infiles <- system.file(package="QuasR", "extdata",

c("rna_1_1.fq.bz2","rna_2_1.fq.bz2"))

> outfiles <- file.path(td, basename(infiles))

> res <- preprocessReads(filename = infiles,

outputFilename = outfiles,

truncateEndBases = 3,

Lpattern = "AAAAAAAAAA",

minLength = 14,

nBases = 2)

> res

rna_1_1.fq.bz2 rna_2_1.fq.bz2

totalSequences 3002 3000

matchTo5pAdapter 466 463

matchTo3pAdapter 0 0

tooShort 107 91

tooManyN 0 0

lowComplexity 0 0

totalPassed 2895 2909

> unlink(outfiles)

preprocessReads returns a matrix with a summary of the pre-processing. The matrix contains one
column per (pair of) input sequence files, and contains the total number of reads (totalSequences),
the number of reads that matched to the five prime or three prime adapters (matchTo5pAdapter
and matchTo3pAdapter), the number of reads that were too short (tooShort), contained too many
non-base characters (tooManyN) or were of low sequence complexity (lowComplexity, deactivated
by default). Finally, the number of reads that passed the filtering steps is reported in the last row
(totalPassed).

In the example below we process paired-end reads, removing all pairs with one or several N bases. Even
if only one sequence in a pair fulfills the filtering criteria, both reads in the pair are removed, thereby
preserving the matching order of the sequences in the two files:

> td <- tempdir()

> infiles1 <- system.file(package="QuasR", "extdata", "rna_1_1.fq.bz2")

> infiles2 <- system.file(package="QuasR", "extdata", "rna_1_2.fq.bz2")
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> outfiles1 <- file.path(td, basename(infiles1))

> outfiles2 <- file.path(td, basename(infiles2))

> res <- preprocessReads(filename=infiles1,

filenameMate=infiles2,

outputFilename=outfiles1,

outputFilenameMate=outfiles2,

nBases=0)

> res

rna_1_1.fq.bz2:rna_1_2.fq.bz2

totalSequences 3002

matchTo5pAdapter NA

matchTo3pAdapter NA

tooShort 0

tooManyN 3

lowComplexity 0

totalPassed 2999

> unlink(c(outfiles1,outfiles2))

More details on the preprocessReads function can be found in the function documentation (see
?preprocessReads) or in the section 7.1 on page 41.
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6 Example workflows

6.1 ChIP-seq: Measuring protein-DNA binding and chromatin modifica-
tions

Here we show an exemplary single-end ChIP-seq workflow using a small number of reads from a histone
3 lysine 4 trimethyl (H3K4me3) ChIP-seq experiment. This histone modification is known to locate
to genomic regions with a high density of CpG dinucleotides (so called CpG islands); about 60% of
mammalian genes have such a CpG island close to their transcript start site. All necessary files are
included in the QuasR package, and we start the example workflow by copying those files into the
current working directly, into a subfolder called "extdata":

> file.copy(system.file(package="QuasR", "extdata"), ".", recursive=TRUE)

[1] TRUE

6.1.1 Align reads using the qAlign function

We assume that the sequence reads have already been pre-processed as described in section 5.4. Also, a
sample file (section 5.1) that lists all sequence files to be analyzed has been prepared. A FASTA file with
the reference genome sequence(s) is also available (section 5.3), as well as a auxiliary file for alignment
of reads that failed to match the reference genome (section 5.2).

By default, newly generated BAM files will be stored at the location of the input sequence files, which
should be writable and have sufficient capacity (an alternative location can be specified using the align-
mentsDir argument). Make also sure that you have sufficient temporary disk space for intermediate
files in tempdir() (see section 7.2). We start by aligning the reads using qAlign:

> sampleFile <- "extdata/samples_chip_single.txt"

> auxFile <- "extdata/auxiliaries.txt"

> genomeFile <- "extdata/hg19sub.fa"

> proj1 <- qAlign(sampleFile, genome=genomeFile, auxiliaryFile=auxFile)

nodeNames

zin2

1

> proj1

Project: qProject

Options : maxHits : 1

paired : no

splicedAlignment: FALSE

bisulfite : no

snpFile : none

Aligner : Rbowtie v1.12.0 (parameters: -m 1 --best --strata)

Genome : /tmp/RtmpWf5rej/Rbuild3ff810e5f983/QuasR/vigne.../hg19sub.fa (file)

http://bioconductor.org/packages/QuasR
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Reads : 2 files, 2 samples (fastq format):

1. chip_1_1.fq.bz2 Sample1 (phred33)

2. chip_2_1.fq.bz2 Sample2 (phred33)

Genome alignments: directory: same as reads

1. chip_1_1_45d26363cec7.bam

2. chip_2_1_45d234e1ae4a.bam

Aux. alignments: 1 file, directory: same as reads

a. /tmp/RtmpWf5rej/Rbuild3ff810e5f983/QuasR/vignet.../NC_001422.1.fa phiX174

1. chip_1_1_45d2520ddbe1.bam

2. chip_2_1_45d22576985f.bam

qAlign will build alignment indices if they do not yet exist (by default, if the genome and auxiliary
sequences are given in the form of FASTA files, they will be stored in the same folder). The qProject

object (proj1) returned by qAlign now contains all information about the ChIP-seq experiment: the
(optional) project name, the project options, aligner package, reference genome, and at the bottom the
sequence and alignment files. For each input sequence file, there will be one BAM file with alignments
against the reference genome, and one for each auxiliary target sequence with alignments of reads
without genome hits. Our auxFile contains a single auxiliary target sequence, so we expect two BAM

files per input sequence file:

> list.files("extdata", pattern=".bam$")

[1] "chip_1_1_45d2520ddbe1.bam" "chip_1_1_45d26363cec7.bam"

[3] "chip_2_1_45d22576985f.bam" "chip_2_1_45d234e1ae4a.bam"

[5] "phiX_paired_withSecondary.bam"

The BAM file names consist of the base name of the sequence file with an added random string. The
random suffix makes sure that newly generated alignment files do not overwrite existing ones, for
example of the same reads aligned against an alternative reference genome. Each alignment file is
accompanied by two additional files with suffixes “.bai” and “.txt”:

> list.files("extdata", pattern="^chip_1_1_")[1:3]

[1] "chip_1_1_45d2520ddbe1.bam" "chip_1_1_45d2520ddbe1.bam.bai"

[3] "chip_1_1_45d2520ddbe1.bam.txt"

The“.bai”file is the BAM index used for fast access by genomic coordinate. The“.txt”file contains all the
parameters used to generate the corresponding BAM file. Before new alignments are generated, qAlign
will look for available “.txt” files in default locations (the directory containing the input sequence file,
or the value of alignmentsDir), and read their contents to determine if a compatible BAM file already
exists. A compatible BAM file is one with the same reads and genome, aligned using the same aligner
and identical alignment parameters. If a compatible BAM file is not found, or the “.txt” file is missing,
qAlign will generate a new BAM file. It is therefore recommended not to delete the “.txt” file - without
it, the corresponding BAM file will become unusable for QuasR .

http://bioconductor.org/packages/QuasR
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6.1.2 Create a quality control report

QuasR can produce a quality control report in the form of a series of diagnostic plots with details on
sequences and alignments (see Figure 1 on page 8). The plots are generated by calling the qQCReport

function with the qProject object as argument. qQCReport uses ShortRead [11] internally to obtain
some of the quality metrics, and some of the plots are inspired by the FastQC quality control tool
by Simon Andrews (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/). The plots will be stored
into a multipage PDF document defined by the pdfFilename argument, or else shown as individual
plot windows on the current graphics device. In order to keep the running time reasonably short, some
quality metrics are obtained from a random sub-sample of the sequences or alignments.

> qQCReport(proj1, pdfFilename="extdata/qc_report.pdf")

Currently available plots are described in section 7.4 on page 42 and following.

6.1.3 Alignment statistics

The alignmentStats gets the number of (un-)mapped reads for each sequence file in a qProject

object, by reading the BAM file indices, and returns them as a data.frame. The function also works for
arguments of type character with one or several BAM file names (for details see section 7.5 on page
46).

> alignmentStats(proj1)

seqlength mapped unmapped

Sample1:genome 95000 2339 258

Sample2:genome 95000 3609 505

Sample1:phiX174 5386 251 7

Sample2:phiX174 5386 493 12

6.1.4 Export genome wig file from alignments

For visualization in a genome browser, alignment coverage along the genome can be exported to a
(compressed) wig file using the qExportWig function. The created fixedStep wig file (see http://
genome.ucsc.edu/goldenPath/help/wiggle.html for details on the wig format) will contain one track
per sample in the qProject object. The resolution is defined using the binsize argument, and if
scaling is set to TRUE, read counts per bin are scaled by the total number of aligned reads in each
sample to improve comparability:

> qExportWig(proj1, binsize=100L, scaling=TRUE, collapseBySample=TRUE)

6.1.5 Count alignments using qCount

Alignments are quantified using qCount, for example using a GRanges object as a query. In our
H3K4me3 ChIP-seq example, we expect the reads to occur around the transcript start site of genes.

http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/ShortRead
http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/
http://genome.ucsc.edu/goldenPath/help/wiggle.html
http://genome.ucsc.edu/goldenPath/help/wiggle.html


An Introduction to QuasR 21

We can therefore construct suitable query regions using genomic intervals around the start sites of
known genes. In the code below, this is achieved with help from the GenomicFeatures package: We
first create a TxDb object from a “.gtf” file with gene annotation. With the promoters function, we
can then create the GRanges object with regions to be quantified. Finally, because most genes consist
of multiple overlapping transcripts, we select the first transcript for each gene:

> library(GenomicFeatures)

> annotFile <- "extdata/hg19sub_annotation.gtf"

> chrLen <- scanFaIndex(genomeFile)

> chrominfo <- data.frame(chrom=as.character(seqnames(chrLen)),

length=width(chrLen),

is_circular=rep(FALSE, length(chrLen)))

> txdb <- makeTxDbFromGFF(file=annotFile, format="gtf",

chrominfo=chrominfo,

dataSource="Ensembl",

organism="Homo sapiens")

> promReg <- promoters(txdb, upstream=1000, downstream=500,

columns=c("gene_id","tx_id"))

> gnId <- sapply(mcols(promReg)$gene_id, paste, collapse=",")

> promRegSel <- promReg[ match(unique(gnId), gnId) ]

> names(promRegSel) <- unique(gnId)

> head(promRegSel)

GRanges object with 6 ranges and 2 metadata columns:

seqnames ranges strand | gene_id tx_id

<Rle> <IRanges> <Rle> | <CharacterList> <integer>

ENSG00000176022 chr1 [31629, 33128] + | ENSG00000176022 1

ENSG00000186891 chr1 [ 6452, 7951] - | ENSG00000186891 2

ENSG00000186827 chr1 [14013, 15512] - | ENSG00000186827 6

ENSG00000078808 chr1 [31882, 33381] - | ENSG00000078808 9

ENSG00000171863 chr2 [ 1795, 3294] + | ENSG00000171863 17

ENSG00000252531 chr2 [ 7160, 8659] + | ENSG00000252531 26

-------

seqinfo: 3 sequences from an unspecified genome

Using promRegSel object as query, we can now count the alignment per sample in each of the promoter
windows.

> cnt <- qCount(proj1, promRegSel)

> cnt

width Sample1 Sample2

ENSG00000176022 1500 157 701

ENSG00000186891 1500 22 5

ENSG00000186827 1500 10 3

ENSG00000078808 1500 73 558

ENSG00000171863 1500 94 339

http://bioconductor.org/packages/GenomicFeatures
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ENSG00000252531 1500 59 9

ENSG00000247886 1500 172 971

ENSG00000254999 1500 137 389

ENSG00000238642 1500 8 3

ENSG00000134086 1500 9 18

ENSG00000238345 1500 13 25

ENSG00000134075 1500 7 3

The counts returned by qCount are the raw number of alignments per sample and region, without any
normalization for the query region length, or the total number of aligned reads in a sample. As expected,
we can find H3K4me3 signal at promoters of a subset of the genes with CpG island promoters, which
we can visualize with help of the Gviz package:

> gr1 <- import("Sample1.wig.gz")

> gr2 <- import("Sample2.wig.gz")

> library(Gviz)

> axisTrack <- GenomeAxisTrack()

> dTrack1 <- DataTrack(range=gr1, name="Sample 1", type="h")

> dTrack2 <- DataTrack(range=gr2, name="Sample 2", type="h")

> txTrack <- GeneRegionTrack(txdb, name="Transcripts", showId=TRUE)

> plotTracks(list(axisTrack, dTrack1, dTrack2, txTrack),

chromosome="chr3", extend.left=1000)
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6.1.6 Create a genomic profile for a set of regions using qProfile

Given a set of anchor positions in the genome, qProfile calculates the number of nearby alignments
relative to the anchor position, for example to generate a average profile. The neighborhood around
anchor positions can be specified by the upstream and downstream argument. Alignments that are

http://bioconductor.org/packages/Gviz
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upstream of an anchor position will have a negative relative position, and downstream alignments a
positive. The anchor positions are all aligned at position zero in the return value.

Anchor positions will be provided to qProfile using the query argument, which takes a GRanges

object. The anchor positions correspond to start() for regions on ”+” or ”*” strands, and to end()

for regions on the ”-” strand. As mentioned above, we expect H3K4me3 ChIP-seq alignments to be
enriched around the transcript start site of genes. We can therefore construct a suitable query object
from the start sites of known genes. In the code below, start sites (’start codon’) are imported from
a ”.gtf” file with the help of the rtracklayer package. In addition, ’strand’ and ’gene name’ are also
selected for import. Duplicated start sites, e.g. from genes with multiple transcripts, are removed.
Finally, all regions are given the name ”TSS”, because qProfile combines regions with identical names
into a single profile.

> library(rtracklayer)

> annotationFile <- "extdata/hg19sub_annotation.gtf"

> tssRegions <- import.gff(annotationFile, format="gtf",

feature.type="start_codon",

colnames="gene_name")

> tssRegions <- tssRegions[!duplicated(tssRegions)]

> names(tssRegions) <- rep("TSS", length(tssRegions))

> head(tssRegions)

GRanges object with 6 ranges and 1 metadata column:

seqnames ranges strand | gene_name

<Rle> <IRanges> <Rle> | <character>

TSS chr1 [ 6949, 6951] - | TNFRSF18

TSS chr1 [14505, 14507] - | TNFRSF4

TSS chr1 [29171, 29173] - | SDF4

TSS chr1 [32659, 32661] + | B3GALT6

TSS chr2 [ 3200, 3202] + | RPS7

TSS chr3 [ 2386, 2388] + | C3orf10

-------

seqinfo: 3 sequences from an unspecified genome; no seqlengths

Alignments around the tssRegions coordinates are counted in a window defined by the upstream and
downstream arguments, which specify the number of bases to include around each anchor position.
For query regions on ”+” or ”*” strands, upstream refers to the left side of the anchor position (lower
coordinates), while for regions on the ”-” strand, upstream refers to the right side (higher coordinates).
The following example creates separate profiles for alignments on the same and on the opposite strand
of the regions in query.

> prS <- qProfile(proj1, tssRegions, upstream=3000, downstream=3000,

orientation="same")

> prO <- qProfile(proj1, tssRegions, upstream=3000, downstream=3000,

orientation="opposite")

> lapply(prS, "[", , 1:10)

$coverage

http://bioconductor.org/packages/rtracklayer
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-3000 -2999 -2998 -2997 -2996 -2995 -2994 -2993 -2992 -2991

8 8 8 8 8 8 8 8 8 8

$Sample1

-3000 -2999 -2998 -2997 -2996 -2995 -2994 -2993 -2992 -2991

1 0 0 0 0 0 0 0 0 0

$Sample2

-3000 -2999 -2998 -2997 -2996 -2995 -2994 -2993 -2992 -2991

0 0 0 2 0 0 1 1 1 0

The counts returned by qProfile are the raw number of alignments per sample and position, without
any normalization for the number of query regions or the total number of alignments in a sample per
position. To obtain the average number of alignments, we divide the alignment counts by the number of
query regions that covered a given relative position around the anchor sites. This coverage is available
as the first element in the return value. The shift between same and opposite strand alignments is
indicative for the average length of the sequenced ChIP fragments.

> prCombS <- do.call("+", prS[-1]) /prS[[1]]

> prCombO <- do.call("+", prO[-1]) /prO[[1]]

> plot(as.numeric(colnames(prCombS)), filter(prCombS[1,], rep(1/100,100)),

type='l', xlab="Position relative to TSS", ylab="Mean no. of alignments")

> lines(as.numeric(colnames(prCombO)), filter(prCombO[1,], rep(1/100,100)),

type='l', col="red")

> legend(title="strand", legend=c("same as query","opposite of query"),

x="topleft", col=c("black","red"), lwd=1.5, bty="n", title.adj=0.1)
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6.1.7 Using a BSgenome package as reference genome

QuasR also allows using of BSgenome packages instead of a FASTA file as reference genome (see section
5.3). To use a BSgenome, the genome argument of qAlign is set to a string matching the name of
a BSgenome package, for example ”BSgenome.Hsapiens.UCSC.hg19”. If that package is not already
installed, qAlign will check if it is available from bioconductor.org and download it automatically. The
corresponding alignment index will be saved as a new package, named after the original BSgenome
package and the aligner used to build the index, for example BSgenome.Hsapiens.UCSC.hg19.Rbowtie.

The code example below illustrates the use of a BSgenome reference genome for the same example
data as above. Running it for the first time will take several hours in order to build the aligner index:

> file.copy(system.file(package="QuasR", "extdata"), ".", recursive=TRUE)

> sampleFile <- "extdata/samples_chip_single.txt"

> auxFile <- "extdata/auxiliaries.txt"

> available.genomes() # list available genomes

> genomeName <- "BSgenome.Hsapiens.UCSC.hg19"

> proj1 <- qAlign(sampleFile, genome=genomeName, auxiliaryFile=auxFile)

> proj1

6.2 RNA-seq: Gene expression profiling

In QuasR , an analysis workflow for an RNA-seq dataset is very similar to the one described above
for a ChIP-seq experiment. The major difference is that here reads are aligned using splicedAlign-

ment=TRUE, which will cause qAlign to align reads with SpliceMap[12], rather than bowtie[4] (both are
contained in the Rbowtie package). SpliceMap and QuasR also support spliced paired-end alignments;
the splicedAlignment argument can be freely combined with the paired argument.

6.2.1 Spliced-alignment of RNA-seq reads

We start the example workflow by copying the example data files into the current working directly, into
a subfolder called "extdata", and then create spliced alignments using qAlign:

> file.copy(system.file(package="QuasR", "extdata"), ".", recursive=TRUE)

[1] TRUE

> sampleFile <- "extdata/samples_rna_paired.txt"

> genomeFile <- "extdata/hg19sub.fa"

> proj2 <- qAlign(sampleFile, genome=genomeFile, splicedAlignment=TRUE)

nodeNames

zin2

1

> proj2

http://bioconductor.org/packages/BSgenome
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/BSgenome
http://bioconductor.org/packages/BSgenome
http://bioconductor.org/packages/BSgenome
bioconductor.org
http://bioconductor.org/packages/BSgenome
http://bioconductor.org/packages/BSgenome
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/Rbowtie
http://bioconductor.org/packages/QuasR
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Project: qProject

Options : maxHits : 1

paired : fr

splicedAlignment: TRUE

bisulfite : no

snpFile : none

Aligner : Rbowtie v1.12.0 (parameters: -max_intron 400000 -min_intron 20000 -max_multi_hit 10 -selectSingleHit TRUE -seed_mismatch 1 -read_mismatch 2 -try_hard yes)

Genome : /tmp/RtmpWf5rej/Rbuild3ff810e5f983/QuasR/vigne.../hg19sub.fa (file)

Reads : 2 pairs of files, 2 samples (fastq format):

1. rna_1_1.fq.bz2 rna_1_2.fq.bz2 Sample1 (phred33)

2. rna_2_1.fq.bz2 rna_2_2.fq.bz2 Sample2 (phred33)

Genome alignments: directory: same as reads

1. rna_1_1_45d25c2bae87.bam

2. rna_2_1_45d272b81ffb.bam

Aux. alignments: none

Aligning the reads with splicedAlignment=TRUE is much slower than the default, but will allow to
also align reads that cross one or two exon junctions, and thus have a large deletion (the intron) relative
to the reference genome.

> proj2unspl <- qAlign(sampleFile, genome=genomeFile,

splicedAlignment=FALSE)

nodeNames

zin2

1

> alignmentStats(proj2)

seqlength mapped unmapped

Sample1:genome 95000 6002 2

Sample2:genome 95000 6000 0

> alignmentStats(proj2unspl)

seqlength mapped unmapped

Sample1:genome 95000 2258 3746

Sample2:genome 95000 2652 3348

6.2.2 Quantification of gene and exon expression

As with ChIP-seq experiments, qCount is used to quantify alignments. For quantification of gene or
exon expression levels, qCount can be called with a query of type TxDb, such as the one we con-
structed in the ChIP-seq workflow above from a “.gtf” file. The argument reportLevel can be used
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to control if annotated exonic regions should be quantified independently (reportLevel="exon") or
non-redundantly combined per gene (reportLevel="gene"):

> geneLevels <- qCount(proj2, txdb, reportLevel="gene")

> exonLevels <- qCount(proj2, txdb, reportLevel="exon")

> head(geneLevels)

width Sample1 Sample2

ENSG00000078808 4697 708 1076

ENSG00000134075 589 1201 1322

ENSG00000134086 4213 282 295

ENSG00000171863 5583 2922 2224

ENSG00000176022 2793 62 344

ENSG00000186827 1721 37 8

> head(exonLevels)

width Sample1 Sample2

1 2793 62 344

10 187 1 0

11 307 1 0

12 300 9 2

13 493 18 2

14 129 5 0

6.2.3 Calculation of RPKM expression values

The values returned by qCount are the number of alignments. Sometimes it is required to normalize
for the length of query regions, or the size of the libraries. For example, gene expression levels in the
form of RPKM values (reads per kilobase of transcript and million mapped reads) can be obtained as
follows:

> geneRPKM <- t(t(geneLevels[,-1] /geneLevels[,1] *1000)

/colSums(geneLevels[,-1]) *1e6)

> geneRPKM

Sample1 Sample2

ENSG00000078808 21281 31628

ENSG00000134075 287879 309883

ENSG00000134086 9450 9667

ENSG00000171863 73892 54998

ENSG00000176022 3134 17005

ENSG00000186827 3035 642

ENSG00000186891 2679 202

ENSG00000238345 0 0

ENSG00000238642 0 0

ENSG00000247886 0 0
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ENSG00000252531 5197 1694

ENSG00000254999 210572 220589

Please note the RPKM values in our example are higher than what you would usually get for a real
RNA-seq dataset. The values here are artificially scaled up because our example data contains reads
only for a small number of genes.

6.2.4 Analysis of alternative splicing: Quantification of exon-exon junctions

Exon-exon junctions can be quantified by setting reportLevel="junction". In this case, qCount

will ignore the query argument and scan all alignments for any detected splices, which are returned
as a GRanges object: The region start and end coordinates correspond to the first and last bases of
the intron, and the counts are returned in the mcols() of the GRanges object. Alignments that are
identically spliced but reside on opposite strands will be quantified separately. In an unstranded RNA-seq
experiment, this may give rise to two separate counts for the same intron, one each for the supporting
alignments on plus and minus strands.

> exonJunctions <- qCount(proj2, NULL, reportLevel="junction")

> exonJunctions

GRanges object with 52 ranges and 2 metadata columns:

seqnames ranges strand | Sample1 Sample2

<Rle> <IRanges> <Rle> | <numeric> <numeric>

[1] chr1 [12213, 12321] + | 1 0

[2] chr1 [12213, 12321] - | 2 0

[3] chr1 [13085, 13371] - | 1 0

[4] chr1 [18069, 18837] + | 8 7

[5] chr1 [18069, 18837] - | 6 12

... ... ... ... . ... ...

[48] chr1 [14166, 14362] - | 0 1

[49] chr1 [19009, 19148] - | 0 2

[50] chr1 [29327, 32271] - | 0 2

[51] chr1 [ 4617, 4778] - | 0 1

[52] chr3 [ 2504, 5589] + | 0 2

-------

seqinfo: 3 sequences from an unspecified genome; no seqlengths

About half of the exon-exon junctions detected in this sample dataset correspond to known introns;
they tend to be the ones with higher coverage:

> knownIntrons <- unlist(intronsByTranscript(txdb))

> isKnown <- overlapsAny(exonJunctions, knownIntrons, type="equal")

> table(isKnown)

isKnown

FALSE TRUE

28 24



An Introduction to QuasR 29

> tapply(rowSums(as.matrix(mcols(exonJunctions))),

isKnown, summary)

$`FALSE`

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.0 2.0 5.0 32.2 47.8 177.0

$`TRUE`

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.0 1.0 10.5 42.7 60.0 209.0

When quantifying exon junctions, only spliced alignments will be included in the quantification. It is
also possible to only include unspliced alignments in the quantification, for example when counting
exon body alignments that complement the exon junction alignments. This can be done using the
includeSpliced argument from qCount:

> exonBodyLevels <- qCount(proj2, txdb, reportLevel="exon", includeSpliced=FALSE)

> summary(exonLevels - exonBodyLevels)

width Sample1 Sample2

Min. :0 Min. : 0 Min. : 0

1st Qu.:0 1st Qu.: 0 1st Qu.: 0

Median :0 Median : 3 Median : 3

Mean :0 Mean : 37 Mean : 29

3rd Qu.:0 3rd Qu.: 26 3rd Qu.: 31

Max. :0 Max. :735 Max. :564

6.3 smRNA-seq: small RNA and miRNA expression profiling

Expression profiling of miRNAs differs only slightly from the profiling of mRNAs. There are a few details
that need special care, which are outlined in this section.

6.3.1 Preprocessing of small RNA (miRNA) reads

Again, we start the example workflow by copying the example data files into the current working directly,
into a subfolder called "extdata".

> file.copy(system.file(package="QuasR", "extdata"), ".", recursive=TRUE)

[1] TRUE

As a next step, we need to remove library adapter sequences from short RNA reads. Most sequencing
experiments generate reads that are longer than the average length of a miRNA (22nt). Therefore, the
read sequence will run through the miRNA into the library adapter sequence and would not match when
aligned in full to the reference genome.
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We can remove those adapter sequences using preprocessReads (see section 7.1 on page 41 for more
details), which for each input sequence file will generate an output sequence file containing appropriately
truncated sequences. In the example below, we get the input sequence filenames from sampleFile,
and also prepare an updated sampleFile2 that refers to newly generated processed sequence files:

> # prepare sample file with processed reads filenames

> sampleFile <- file.path("extdata", "samples_mirna.txt")

> sampleFile

[1] "extdata/samples_mirna.txt"

> sampleFile2 <- sub(".txt", "_processed.txt", sampleFile)

> sampleFile2

[1] "extdata/samples_mirna_processed.txt"

> tab <- read.delim(sampleFile, header=TRUE, as.is=TRUE)

> tab

FileName SampleName

1 mirna_1.fa miRNAs

> tab2 <- tab

> tab2$FileName <- sub(".fa", "_processed.fa", tab$FileName)

> write.table(tab2, sampleFile2, sep="\t", quote=FALSE, row.names=FALSE)

> tab2

FileName SampleName

1 mirna_1_processed.fa miRNAs

> # remove adapters

> oldwd <- setwd(dirname(sampleFile))

> res <- preprocessReads(tab$FileName,

tab2$FileName,

Rpattern="TGGAATTCTCGGGTGCCAAGG")

> res

mirna_1.fa

totalSequences 1000

matchTo5pAdapter 0

matchTo3pAdapter 1000

tooShort 0

tooManyN 0

lowComplexity 0

totalPassed 1000

> setwd(oldwd)

The miRNA reads in mirna_1.fa are by the way synthetic sequences and do not correspond to any
existing miRNAs. As you can see above from the return value of preprocessReads, all reads matched
to the 3’-adapter and were therefore truncated, reducing their length to roughly the expected 22nt:
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> # get read lengths

> library(Biostrings)

> oldwd <- setwd(dirname(sampleFile))

> lens <- fasta.seqlengths(tab$FileName, nrec=1e5)

> lens2 <- fasta.seqlengths(tab2$FileName, nrec=1e5)

> setwd(oldwd)

> # plot length distribution

> lensTab <- rbind(raw=tabulate(lens,50),

processed=tabulate(lens2,50))

> colnames(lensTab) <- 1:50

> barplot(lensTab/rowSums(lensTab)*100,

xlab="Read length (nt)", ylab="Percent of reads")

> legend(x="topleft", bty="n", fill=gray.colors(2), legend=rownames(lensTab))
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6.3.2 Alignment of small RNA (miRNA) reads

Next, we create alignments using qAlign. In contrast to the general RNA-seq workflow (section 6.2),
alignment time can be reduced by using the default unspliced alignment (splicedAlignment=FALSE).
Importantly, we need to set maxHits=50 or similar to also align reads that perfectly match the genome
multiple times. This is required because of the miRNAs that are encoded by multiple genes. Reads
from such miRNAs would not be aligned and thus their expression would be underestimated if using the
default maxHits=1. An example of such a multiply-encoded miRNA is mmu-miR-669a-5p, which has
twelve exact copies in the mm10 genome assembly according to mirBase19.
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> proj3 <- qAlign(sampleFile2, genomeFile, maxHits=50)

nodeNames

zin2

1

> alignmentStats(proj3)

seqlength mapped unmapped

miRNAs:genome 95000 1000 0

A more detailed picture of the experiments’ quality can be obtained using qQCReport(proj3, "qcre-

port.pdf") or similar (see also section 7.4 on page 42).

6.3.3 Quantification of small RNA (miRNA) reads

As with other experiment types, miRNAs are quantified using qCount. For this purpose, we first
construct a query GRanges object with the genomic locations of mature miRNAs. The locations can
be obtained from the mirbase.db package, or directly from the species-specific gff files provided by the
mirBase database (e.g. ftp://mirbase.org/pub/mirbase/19/genomes/mmu.gff3). For the purpose of
this example, the QuasR package provides a small gff file ("mirbaseXX_qsr.gff3") that is formatted
as the ones available from mirBase. The gff file contains both the locations of pre-miRNAs (hairpin
precursors), as well as mature miRNAs. The two can be discriminated by their "type":

> mirs <- import("extdata/mirbaseXX_qsr.gff3")

> names(mirs) <- mirs$Name

> preMirs <- mirs[ mirs$type=="miRNA_primary_transcript" ]

> matureMirs <- mirs[ mirs$type=="miRNA" ]

Please note that the name attribute of the GRanges object must be set appropriately, so that qCount
can identify a single mature miRNA sequence that is encoded by multiple loci (see below) by their
identical names. In this example, there are no multiply-encoded mature miRNAs, but in a real sample,
you can detect them for example with table(names(mirs)).

The preMirs and matureMirs could now be used as query in qCount. In practise however, miRNA
seem to not always be processed with high accuracy. Many miRNA reads that start one or two bases
earlier or later can be observed in real data, and also their length may vary for a few bases. This is
the case for the synthetic miRNAs used in this example, whose lengthes and start positions have been
sampled from a read data set:

> library(Rsamtools)

> alns <- scanBam(alignments(proj3)$genome$FileName,

param=ScanBamParam(what=scanBamWhat(), which=preMirs[1]))[[1]]

> alnsIR <- IRanges(start=alns$pos - start(preMirs), width=alns$qwidth)

> mp <- barplot(as.vector(coverage(alnsIR)), names.arg=1:max(max(alnsIR)),

xlab="Relative position in pre-miRNA",

ylab="Alignment coverage")

> rect(xleft=mp[start(matureMirs)-start(preMirs)+1,1], ybottom=-par('cxy')[2],

http://bioconductor.org/packages/mirbase.db
ftp://mirbase.org/pub/mirbase/19/genomes/mmu.gff3
http://bioconductor.org/packages/QuasR
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xright=mp[end(matureMirs)-start(preMirs)+1,1], ytop=0,

col="#CCAA0088", border=NA, xpd=NA)
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By default, qCount will count alignments that have their 5’-end within the query region (see selec-

tReadPosition argument). The 5’-end correspond to the lower (left) coordinate for alignments on
the plus strand, and to the higher (right) coordinate for alignments on the minus strand. In order not
to miss miRNAs that have a couple of extra or missing bases, we therefore construct a query window
around the 5’-end of each mature miRNA, by adding three bases up- and downstream:

> matureMirsExtended <- matureMirs

> start(matureMirsExtended) <- ifelse(as.logical(strand(matureMirs)=="+"),

start(matureMirs) - 3,

end(matureMirs) - 3)

> end(matureMirsExtended) <- ifelse(as.logical(strand(matureMirs)=="+"),

start(matureMirs) + 3,

end(matureMirs) + 3)

The resulting extended query is then used to quantify mature miRNAs. Multiple-encoded miRNAs
will be represented by multiple ranges in matureMirs and matureMirsExtended, which have identical
names. qCount will automatically sum all alignments from any of those regions and return a single
number per sample and unique miRNA name.

> # quantify mature miRNAs

> cnt <- qCount(proj3, matureMirsExtended, orientation="same")

> cnt
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width miRNAs

qsr-miR-9876-5p 7 13

qsr-miR-9876-3p 7 984

> # quantify pre-miRNAs

> cnt <- qCount(proj3, preMirs, orientation="same")

> cnt

width miRNAs

qsr-mir-9876 75 1000

6.4 Bis-seq: Measuring DNA methylation

Sequencing of bisulfite-converted genomic DNA allows detection of methylated cytosines, which in
mammalian genomes typically occur in the context of CpG dinucleotides. The treatment of DNA with
bisulfite induces deamination of non-methylated cytosines, converting them to uracils. Sequencing and
aligning of such bisulfite-converted DNA results in C-to-T mismatches. Both alignment of converted
reads, as well as the interpretation of the alignments for calculation of methylation levels require specific
approaches and are supported in QuasR by qAlign (bisulfite argument, section 7.2) and qMeth

(section 7.9), respectively.

We start the analysis by copying the example data files into the current working directly, into a subfolder
called "extdata". Then, bisulfite-specific alignment is selected in qAlign by setting bisulfite to
"dir" for a directional experiment, or to "undir" for an undirectional Bis-seq experiment:

> file.copy(system.file(package="QuasR", "extdata"), ".", recursive=TRUE)

[1] TRUE

> sampleFile <- "extdata/samples_bis_single.txt"

> genomeFile <- "extdata/hg19sub.fa"

> proj4 <- qAlign(sampleFile, genomeFile, bisulfite="dir")

nodeNames

zin2

1

> proj4

Project: qProject

Options : maxHits : 1

paired : no

splicedAlignment: FALSE

bisulfite : dir

snpFile : none

Aligner : Rbowtie v1.12.0 (parameters: -k 2 --best --strata -v 2)

Genome : /tmp/RtmpWf5rej/Rbuild3ff810e5f983/QuasR/vigne.../hg19sub.fa (file)

http://bioconductor.org/packages/QuasR
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Reads : 1 file, 1 sample (fasta format):

1. bis_1_1.fa.bz2 Sample1

Genome alignments: directory: same as reads

1. bis_1_1_45d24efd620f.bam

Aux. alignments: none

The resulting alignments are not different from those of non-Bis-seq experiments, apart from the fact
that they may contain many C-to-T (or A-to-G) mismatches that are not counted as mismatches when
aligning the reads. The number of alignments in specific genomic regions could be quantified using
qCount as with ChIP-seq or RNA-seq experiments. For quantification of methylation the qMeth function
is used:

> meth <- qMeth(proj4, mode="CpGcomb", collapseBySample=TRUE)

> meth

GRanges object with 3110 ranges and 2 metadata columns:

seqnames ranges strand | Sample1_T Sample1_M

<Rle> <IRanges> <Rle> | <integer> <integer>

[1] chr1 [19, 20] * | 1 1

[2] chr1 [21, 22] * | 1 1

[3] chr1 [54, 55] * | 3 1

[4] chr1 [57, 58] * | 3 0

[5] chr1 [80, 81] * | 6 5

... ... ... ... . ... ...

[3106] chr3 [44957, 44958] * | 8 7

[3107] chr3 [44977, 44978] * | 5 3

[3108] chr3 [44981, 44982] * | 4 3

[3109] chr3 [44989, 44990] * | 1 1

[3110] chr3 [44993, 44994] * | 1 1

-------

seqinfo: 3 sequences from an unspecified genome

By default, qMeth quantifies methylation for all cytosines in CpG contexts, combining the data from plus
and minus strands (mode="CpGcomb"). The results are returned as a GRanges object with coordinates
of each CpG, and two metadata columns for each input sequence file in the qProject object. These
two columns contain the total number of aligned reads that overlap a given CpG (C-to-C matches or
C-to-T mismatches, suffix _T in the column name), and the number of read alignments that had a
C-to-C match at that position (methylated events, suffix _M).

Independent of the number of alignments, the returned object will list all CpGs in the target genome
including the ones that have zero coverage, unless you set keepZero=FALSE:

> chrs <- readDNAStringSet(genomeFile)

> sum(vcountPattern("CG",chrs))

[1] 3110
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> length(qMeth(proj4))

[1] 3110

> length(qMeth(proj4, keepZero=FALSE))

[1] 2929

The fraction methylation can easily be obtained as the ratio between _M and _T columns:

> percMeth <- mcols(meth)[,2] *100 /mcols(meth)[,1]

> summary(percMeth)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

0.0 75.0 90.9 75.4 100.0 100.0 181

> axisTrack <- GenomeAxisTrack()

> dTrack1 <- DataTrack(range=gr1, name="H3K4me3", type="h")

> dTrack2 <- DataTrack(range=meth, data=percMeth,

name="Methylation", type="p")

> txTrack <- GeneRegionTrack(txdb, name="Transcripts", showId=TRUE)

> plotTracks(list(axisTrack, dTrack1, dTrack2, txTrack),

chromosome="chr3", extend.left=1000)
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ENST00000458986

ENST00000459242

ENST00000477538

ENST00000530758

ENST00000543461

If qMeth is called without a query argument, it will by default return methylation states for each C or
CpG in the genome. Using a query argument it is possible to restrict the analysis to specific genomic
regions, and if using in addition collapseByQueryRegion=TRUE, the single base methylation states
will further be combined for all C’s that are contained in the same query region:

> qMeth(proj4, query=GRanges("chr1",IRanges(start=31633,width=2)),

collapseBySample=TRUE)

GRanges object with 1 range and 2 metadata columns:
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seqnames ranges strand | Sample1_T Sample1_M

<Rle> <IRanges> <Rle> | <integer> <integer>

CpGcomb chr1 [31633, 31634] * | 10 2

-------

seqinfo: 3 sequences from an unspecified genome

> qMeth(proj4, query=promRegSel, collapseByQueryRegion=TRUE,

collapseBySample=TRUE)

GRanges object with 12 ranges and 2 metadata columns:

seqnames ranges strand | Sample1_T Sample1_M

<Rle> <IRanges> <Rle> | <numeric> <numeric>

[1] chr1 [31629, 33128] + | 426 74

[2] chr1 [ 6452, 7951] - | 388 244

[3] chr1 [14013, 15512] - | 627 560

[4] chr1 [31882, 33381] - | 522 232

[5] chr2 [ 1795, 3294] + | 997 539

... ... ... ... . ... ...

[8] chr3 [ 1276, 2775] + | 715 253

[9] chr3 [19069, 20568] + | 253 204

[10] chr3 [26692, 28191] + | 934 818

[11] chr3 [26834, 28333] + | 934 777

[12] chr3 [13102, 14601] - | 307 287

-------

seqinfo: 3 sequences from an unspecified genome

Finally, qMeth allows the retrieval of methylation states for individual molecules (per alignment). This
is done by using a query containing a single genomic region (typically small, such as a PCR amplicon)
and setting reportLevel="alignment". In that case, the return value of qMeth will be a list (over
samples) of lists (with four elements giving the identities of alignment, C nucleotide, strand and the
methylation state). See the documentation of qMeth for more details.

6.5 Allele-specific analysis

All experiment types supported by QuasR (ChIP-seq, RNA-seq and Bis-seq; only alignments to the
genome, but not to auxiliaries) can also be analyzed in an allele-specific manner. For this, a file
containing genomic location and the two alleles of known sequence polymorphisms has to be provided
to the snpFile argument of qAlign. The file is in tab-delimited text format without a header and
contains four columns with chromosome name, position, reference allele and alternative allele.

Below is an example of a SNP file, also available from system.file(package="QuasR", "extdata",

"hg19sub_snp.txt"):

http://bioconductor.org/packages/QuasR
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chr1 8596 G A

chr1 18443 G A

chr1 18981 C T

chr1 19341 G A

...

For a given locus, either reference or alternative allele may but does not have to be identical to the
sequence of the reference genome (genomeFile in this case). To avoid an alignment bias, all reads are
aligned separately to each of the two new genomes, which QuasR generates by injecting the SNPs listed
in snpFile into the reference genome. Finally, the two alignment files are combined, only retaining the
best alignment for each read. While this procedure takes more than twice as long as aligning against
a single genome, it has the advantage to correctly align reads even in regions of high SNP density and
has been shown to produce more accurate results.

While combining alignments, each read is classified into one of three groups (stored in the BAM files
under the XV tag):

� R: the read aligned better to the reference genome
� U: the read aligned equally well to both genomes (unknown origin)
� A: the read aligned better to the alternative genome

Using these alignment classifications, the qCount and qMeth functions will produce three counts instead
of a single count; one for each class. The column names will be suffixed by _R, _U and _A.

The examples below use data provided with the QuasR package, which is first copied to the current
working directory, into a subfolder called "extdata":

> file.copy(system.file(package="QuasR", "extdata"), ".", recursive=TRUE)

[1] TRUE

The example below aligns the same reads that were also used in the ChIP-seq workflow (section 6.1),
but this time using a snpFile:

> sampleFile <- "extdata/samples_chip_single.txt"

> genomeFile <- "extdata/hg19sub.fa"

> snpFile <- "extdata/hg19sub_snp.txt"

> proj1SNP <- qAlign(sampleFile, genome=genomeFile, snpFile=snpFile)

nodeNames

zin2

1

> proj1SNP

Project: qProject

Options : maxHits : 1

paired : no

splicedAlignment: FALSE

bisulfite : no

http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
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snpFile : /tmp/RtmpWf5rej/Rbuild3ff810e.../hg19sub_snp.txt

Aligner : Rbowtie v1.12.0 (parameters: -k 2 --best --strata -v 2)

Genome : /tmp/RtmpWf5rej/Rbuild3ff810e5f983/QuasR/vigne.../hg19sub.fa (file)

Reads : 2 files, 2 samples (fastq format):

1. chip_1_1.fq.bz2 Sample1 (phred33)

2. chip_2_1.fq.bz2 Sample2 (phred33)

Genome alignments: directory: same as reads

1. chip_1_1_45d25814101.bam

2. chip_2_1_45d21febbab8.bam

Aux. alignments: none

Instead of one count per promoter region and sample, qCount now returns three (promRegSel was
generated in the ChIP-seq example workflow on page 21):

> head(qCount(proj1, promRegSel))

width Sample1 Sample2

ENSG00000176022 1500 157 701

ENSG00000186891 1500 22 5

ENSG00000186827 1500 10 3

ENSG00000078808 1500 73 558

ENSG00000171863 1500 94 339

ENSG00000252531 1500 59 9

> head(qCount(proj1SNP, promRegSel))

width Sample1_R Sample1_U Sample1_A Sample2_R Sample2_U

ENSG00000176022 1500 0 133 0 0 559

ENSG00000186891 1500 4 16 0 0 5

ENSG00000186827 1500 2 8 0 0 2

ENSG00000078808 1500 0 59 0 0 432

ENSG00000171863 1500 4 78 0 8 263

ENSG00000252531 1500 3 50 2 0 6

Sample2_A

ENSG00000176022 0

ENSG00000186891 0

ENSG00000186827 0

ENSG00000078808 0

ENSG00000171863 0

ENSG00000252531 0

The example below illustrates use of a snpFile for Bis-seq experiments. Similarly as for qCount, the
count types are labeled by R, U and A. These labels are added to the total and methylated column
suffixes _T and _M, resulting in a total of six instead of two counts per feature and sample:
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> sampleFile <- "extdata/samples_bis_single.txt"

> genomeFile <- "extdata/hg19sub.fa"

> proj4SNP <- qAlign(sampleFile, genomeFile,

snpFile=snpFile, bisulfite="dir")

nodeNames

zin2

1

> head(qMeth(proj4SNP, mode="CpGcomb", collapseBySample=TRUE))

GRanges object with 6 ranges and 6 metadata columns:

seqnames ranges strand | Sample1_TR Sample1_MR Sample1_TU Sample1_MU

<Rle> <IRanges> <Rle> | <integer> <integer> <integer> <integer>

[1] chr1 [ 19, 20] * | 0 0 1 1

[2] chr1 [ 21, 22] * | 0 0 1 1

[3] chr1 [ 54, 55] * | 0 0 3 1

[4] chr1 [ 57, 58] * | 0 0 3 0

[5] chr1 [ 80, 81] * | 0 0 6 5

[6] chr1 [103, 104] * | 0 0 6 5

Sample1_TA Sample1_MA

<integer> <integer>

[1] 0 0

[2] 0 0

[3] 0 0

[4] 0 0

[5] 0 0

[6] 0 0

-------

seqinfo: 3 sequences from an unspecified genome
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7 Description of Individual QuasR Functions

Please refer to the QuasR reference manual or the function documentation (e.g. using ?qAlign) for
a complete description of QuasR functions. The descriptions provided below are meant to give an
overview over all functions and summarize the purpose of each one.

7.1 preprocessReads

The preprocessReads function can be used to prepare the input sequences before alignment to the
reference genome, for example to filter out low quality reads unlikely to produce informative alignments.
When working with paired-end experiments, the paired reads are expected to be contained in identical
order in two separate files. For this reason, both reads of a pair are filtered out if any of the two reads
fulfills the filtering criteria. The following types of filtering tasks can be performed (in the order as
listed):

1. Truncate reads: remove nucleotides from the start and/or end of each read.
2. Trim adapters: remove nucleotides at the beginning and/or end of each read that

match to a defined (adapter) sequence. The adapter trimming is done by calling
trimLRPatterns from the Biostrings package [13].

3. Filter out low quality reads: Filter out reads that fulfill any of the filtering cri-
teria (contain more than nBases N bases, are shorter than minLength or have a
dinucleotide complexity of less than complexity-times the average complexity of the
human genome sequence).

The dinucleotide complexity is calculated in bits as Shannon entropy using the following formula −∑
i fi·

log2 fi, where fi is the frequency of dinucleotide i (i = 1, 2, ..., 16).

7.2 qAlign

qAlign is the function that generates alignment files in BAM format, for all input sequence files listed in
sampleFile (see section 5.1), against the reference genome (genome argument), and for reads that do
not match to the reference genome, against one or several auxiliary target sequences (auxiliaryFile,
see section 5.2).

The reference genome can be provided either as a FASTA sequence file or as a BSgenome package name
(see section 5.3). If a BSgenome package is not found in the installed packages but available from
Bioconductor, it will be automatically downloaded.

The alignment program is set by aligner, and parameters by maxHits, paired, splicedAlignment
and alignmentParameter. Currently, aligner can only be set to "Rbowtie", which is a wrapper for
bowtie [4] and SpliceMap [12]. SpliceMap will be used if splicedAlignment=TRUE. The alignment
strategy is affected by the parameters snpFile (alignments to variant genomes containing sequence
polymorphisms) and bisulfite (alignment of bisulfite-converted reads). Finally, clObj can be used
to enable parallelized alignment, sorting and conversion to BAM format.

http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/QuasR
http://bioconductor.org/packages/Biostrings
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For each input sequence file listed in sampleFile, one BAM file with alignments to the reference genome
will be generated, and an additional one for each auxiliary sequence file listed in auxiliaryFile. By
default, these BAM files are stored at the same location as the sequence files, unless a different location
is specified under alignmentsDir. If compatible alignment files are found at this location, they will
not be regenerated, which allows re-use of the same sequencing samples in multiple analysis projects by
listing them in several project-specific sampleFiles.

The alignment process produces temporary files, such as decompressed input sequence files or raw
alignment files before conversion to BAM format, which can be several times the size of the input
sequence files. These temporary files are stored in the directory specified by cacheDir, which defaults
to the R process temporary directory returned by tempdir(). The location of tempdir() can be set
using environment variables (see ?tempdir).

qAlign returns a qProject object that contains all file names and paths, as well as all alignment
parameters necessary for further analysis (see section 7.3 for methods to access the information contained
in a qProject object).

7.3 qProject class

The qProject objects are returned by qAlign and contain all information about a sequencing exper-
iment needed for further analysis. It is the main argument passed to the functions that start with a q
letter, such as qCount, qQCReport and qExportWig. Some information inside of a qProject object
can be accessed by specific methods (in the examples below, x is a qProject object):

� length(x) gets the number of input files.
� genome(x) gets the reference genome as a character(1). The type of genome is stored as an

attribute in attr(genome(x),"genomeFormat"): "BSgenome" indicates that genome(x) refers
to the name of a BSgenome package, "file" indicates that it contains the path and file name
of a genome in FASTA format.

� auxiliaries(x) gets a data.frame with auxiliary target sequences. The data.frame has one
row per auxiliary target file, and two columns ”FileName” and ”AuxName”.

� alignments(x) gets a list with two elements "genome" and "aux". "genome" contains a
data.frame with length(x) rows and two columns "FileName" (containing the path to bam
files with genomic alignments) and "SampleName". "aux" contains a data.frame with one row
per auxiliary target file (with auxiliary names as row names), and length(x) columns (one per
input sequence file).

� x[i] returns a qProject object instance with i input files, where i can be an NA-free logical,
numeric, or character vector.

7.4 qQCReport

The qQCReport function samples a random subset of sequences and alignments from each sample or
input file and generates a series of diagnostic plots for estimating data quality. The plots below show the
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currently available plots as produced by the ChIP-seq example in section 6.1 (except for the fragment
size distributions which are based on an unspliced alignment of paired-end RNA seq reads):

� Quality score boxplot shows the distribution of base quality values as a box plot for each
position in the input sequence. The background color (green, orange or red) indicates ranges of
high, intermediate and low qualities. The plot is available for fastq only (BAM files may contain
base quality information, which is however not used here because reads contained in the BAM file,
e.g. aligned reads, may not be a representative sub-sample of all sequenced reads).
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� Nucleotide frequency plot shows the frequency of A, C, G, T and N bases by position in the
read. The plot is always available.
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� Duplication level plot shows for each sample the fraction of reads observed at different duplica-
tion levels (e.g. once, two-times, three-times, etc.). In addition, the most frequent sequences are
listed. The plot is available for fasta or fastq files, but not for bam files, again because contained
reads may not be representative for the experiment.
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frequent sequences (per Mio.):
AAAATCACCTTTTAAGCATCCTCT.. (   770)
AATAAAGCTAGTTCTTGATTCTAC.. (   770)
ACACTGTGTTCTAGTGGTTTTCAG.. (   770)
AGAGAGGACTTCCAAGGTCCTACA.. (   770)
AGATCTTTTGGTATTTTGTTAGTC.. (   770)
AGCAGCTCAGTTCCCAGCAAGGAA.. (   770)
ATCCCTGGGCTTCAGCTCTGGTGG.. (   770)
ATTTTTCAAGTGGTCTATCCTGTA.. (   770)
CAAAATGAAAAAAGACTTTAAATT.. (   770)
CATCTGTAAATGGATCTGTTGTGA.. (   770)
CATTGTCTGAGAAAATTTGGAAAA.. (   770)
CCAAAGTACACTAGTCCCTATATC.. (   770)
CCCAAAAACTATCAATTTCAGCAT.. (   770)
CCCAATCCTACCATGCTGACACTG.. (   770)
CCCCGCCTCCCCTTGCTGGCCCGC.. (   770)
CCTTTTTCGAGACAGGGTCTTATC.. (   770)
CGCCAACATGACCCTGGCTTGTTC.. (   770)
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2. chip_2_1.fq.bz2
frequent sequences (per Mio.):
ACTGTTGACCGTTCCCCATCTTCA.. (  1215)
GCCGTGTTGTTTGGGAGTGATACC.. (  1215)
ACAGTCTCTGTAGGGTTATCCTGC.. (   729)
ATGCTCTGACGCTTACGAGCAGCG.. (   729)
CGAAGGCTGCGGGAGTCCTCTCAA.. (   729)
CGTGTGTGTTGTTAACTGCCAGAA.. (   729)
CGTGTTGTTTGGGAGTGATACCGC.. (   729)
CTCCGGTCCTCGGATCCCGAGCGC.. (   729)
GCCGAGCGGACGGACGATGCCCCA.. (   729)
GCCGGACTCTTCCGGGCCGGACTC.. (   729)
GCCGTATCTATAACTAAGTAAGGG.. (   729)
GTACTCTGCATCCATTCCGGTCCC.. (   729)
GTTCGGCCGTGTTGTTTGGGAGTG.. (   729)
TCACATTTCCTTATTCCAGGAAGG.. (   729)
AAAAAAAGAATGCTCTGACGCTTA.. (   486)
AAAAGAATGCTCTGACGCTTACGA.. (   486)

� Mapping statistics shows fractions of reads that were (un)mappable to the reference genome.
This plot is available for bam input, i.e. if input is a vector of BAM files, or a qProject with
alignment files as returned by qAlign.
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� Library complexity shows fractions of unique read(-pair) alignment positions. Please note that
this measure is not independent from the total number of reads in a library, and is best compared
between libraries of similar sizes. This plot is available for bam input.
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� Mismatch frequency shows the frequency and position (relative to the read sequence) of mis-
matches in the alignments against the reference genome. The plot is available for bam input.
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� Mismatch types shows the frequency of read bases that caused mismatches in the alignments
to the reference genome, separately for each genome base. This plot is available for bam input.
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� Fragment size shows the distribution of fragment sizes inferred from aligned read pairs. This
plot is available for paired-end bam input.
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7.5 alignmentStats

alignmentStats is comparable to the“idxstats”function from Samtools; it returns the size of the target
sequence, as well as the number of mapped and unmapped reads that are contained in an indexed BAM

file. The function works for arguments of type qProject, as well as on a string with one or several BAM
file names. There is however a small difference in the two that is illustrated in the following example,
which uses the qProject object from the ChIP-seq workflow created on page 25:

> # using bam files

> alignmentStats(alignments(proj1)$genome$FileName)

seqlength mapped unmapped

chip_1_1_45d26363cec7.bam 95000 2339 258

chip_2_1_45d234e1ae4a.bam 95000 3609 505

> alignmentStats(unlist(alignments(proj1)$aux))

seqlength mapped unmapped

chip_1_1_45d2520ddbe1.bam 5386 251 0

chip_2_1_45d22576985f.bam 5386 493 0

> # using a qProject object

> alignmentStats(proj1)

seqlength mapped unmapped

Sample1:genome 95000 2339 258

Sample2:genome 95000 3609 505

Sample1:phiX174 5386 251 7

Sample2:phiX174 5386 493 12

If calling alignmentStats on the bam files directly as in the first two expressions of the above exam-
ple, the returned numbers correspond exactly to what you would obtain by the“idxstats” function from
Samtools, only that the latter would report them separately for each target sequence, while align-

mentStats sums them for each BAM file. These numbers correctly state that there are zero unmapped
reads in the auxiliary BAM files. However, if calling alignmentStats on a qProject object, it will
report 7 and 12 unmapped reads in the auxiliary BAM files. This is because alignmentStats is aware
that unmapped reads are removed from auxiliary BAM files by QuasR , but can be calculated from the
total number of reads to be aligned to the auxiliary target, which equals the number of unmapped reads
in the corresponding genomic BAM file.

7.6 qExportWig

qExportWig creates fixed-step wig files (see http://genome.ucsc.edu/goldenPath/help/wiggle.html for
format definition) from the genomic alignments contained in a qProject object. The combine argu-
ment controls if several input files are combined into a single multi-track wig file, or if they are exported
as individual wig files. Alignments of single read experiments can be shifted towards there 3’-end using
shift; paired-end alignments are automatically shifted by half the insert size. The resolution of the

http://bioconductor.org/packages/QuasR
http://genome.ucsc.edu/goldenPath/help/wiggle.html
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created wig file is defines by the binsize argument, and if scaling=TRUE, multiple alignment files in
the qProject object are scaled by their total number of reads.

7.7 qCount

qCount is the workhorse for counting alignments that overlap query regions. Usage and details on
parameters can be obtained from the qCount function documentation. Two aspects that are of special
importance are also discussed here:

7.7.1 Determination of overlap

How an alignment overlap with a query region is defined can be controlled by the following arguments
of qCount:

� selectReadPosition specifies the read base that serves as a reference for overlaps with query
regions. The alignment position of that base, eventually after shifting (see below), needs to be
contained in the query region for an overlap. selectReadPosition can be set to "start" (the
default) or "end", which refer to the biological start (5’-end) and end (3’-end) of the read. For
example, the "start" of a read aligned to the plus strand is the leftmost base in the alignment
(the one with the lowest coordinate), and the "end" of a read aligned to the minus strand is also
its leftmost base in the alignment.

� shift allows shifting of alignments towards their 3’-end prior to overlap determination and count-
ing. This can be helpful to increase resolution of ChIP-seq experiments by moving alignments by
half the immuno-precipitated fragment size towards the middle of fragments. shift can either
contain "integer" values that specify the shift size, or for paired-end experiments, it can be
set to the keyword "halfInsert", which will estimate the true fragment size from the distance
between aligned read pairs and shift the alignments accordingly.

� orientation controls the interpretation of alignment strand relative to the strand of the query
region. The default value "any" will count all overlapping alignments, irrespective of the strand.
This setting is for example used in an unstranded RNA-seq experiment where both sense and
antisense reads are generated from an mRNA. A value of "same" will only count the alignments
on the same strand as the query region (e.g. in a stranded RNA-seq experiment), and "opposite"

will only count the alignments on the opposite strand from the query region (e.g. to quantify
anti-sense transcription in a stranded RNA-seq experiment).

� useRead only applies to paired-end experiments and allows to quantify either all alignments
(useRead="any"), or only the first (useRead="first") or last (useRead="last") read from
each read pair or read group. Note that for useRead="any" (the default), an alignment pair that
is fully contained within a query region will contribute two counts to the value of that region.

� includeSpliced: When set to FALSE, spliced alignments will be excluded from the quantifica-
tion. This could be useful for example to avoid redundant counting of reads when the spliced
alignments are quantified separately using reportLevel="junction".
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7.7.2 Running modes of qCount

The features to be quantified are specified by the query argument. At the same time, the type of
query selects the mode of quantification. qCount supports three different types of query arguments
and implements three corresponding quantification types, which primarily differ in the way they deal
with redundancy, such as query bases that are contained in more than one query region. A fourth
quantification mode allows counting of alignments supporting exon-exon juctions:

� GRanges query: Overlapping alignments are counted separately for each coordinate region in the
query object. If multiple regions have identical names, their counts will be summed, counting
each alignment only once even if it overlaps more than one of these regions. Alignments may
however be counted more than once if they overlap multiple regions with different names. This
mode is for example used to quantify ChIP-seq alignments in promoter regions (see section 6.1 on
page 21), or gene expression levels in an RNA-seq experiment (using a ’query’ with exon regions
named by gene).

� GRangesList query: Alignments are counted and summed for each list element in the query
object if they overlap with any of the regions contained in the list element. The order of the
list elements defines a hierarchy for quantification: Alignment will only be counted for the first
element (the one with the lowest index in the query) that they overlap, but not for any potential
further list elements containing overlapping regions. This mode can be used to hierarchically
and uniquely count (assign) each alignment to a one of several groups of regions (the elements
in the query), for example to estimate the fractions of different classes of RNA in an RNA-seq
experiment (rRNA, tRNA, snRNA, snoRNA, mRNA, etc.)

� TxDb query: Used to extract regions from annotation and report alignment counts depending on
the value of the reportLevel argument. If reportLevel="exon", alignments overlapping each
exon in the query are counted. If reportLevel="gene", alignment counts for all exons of a gene
will be summed, counting each alignment only once even if it overlaps multiple annotated exons
of a gene. These are useful to calculate exon or gene expression levels in RNA-seq experiments
based on the annotation in a TxDb object. If reportLevel="promoter", the promoters function
from package GenomicFeatures is used with default arguments to extract promoter regions around
transcript start sites, e.g. to quantify alignments inf a ChIP-seq experiment.

� any of the above or NULL for reportLevel="junction": The query argument is ignored if
reportLevel is set to "junction", and qCount will count the number of alignments supporting
each exon-exon junction detected in any of the samples in proj. The arguments selectRead-

Position, shift, orientation, useRead and mask will have no effect in this quantification
mode.

7.8 qProfile

The qProfile function differs from qCount in that it returns alignments counts relative to their position
in the query region. Except for upstream and downstream, the arguments of qProfile and qCount

are the same. This section will describe these two additional arguments; more details on the other
arguments are available in section 7.7 and from the qProfile function documentation.

The regions to be profiled are anchored by the biological start position, which are aligned at position

http://bioconductor.org/packages/GenomicFeatures
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zero in the return value. The biological start position is defined as start(query) for regions on the
plus strand and end(query) for regions on the minus strand. The anchor positions are extended to the
left and right sides by the number of bases indicated in the upstream and downstream arguments.

� upstream indicates the number of bases upstream of the anchor position, which is on the left
side of the anchor point for regions on the plus strand and on the right side for regions on the
minus strand.

� downstream indicates the number of bases downstream of the anchor position, which is on the
left side of the anchor point for regions on the plus strand and on the left side for regions on the
minus strand.

Be aware that query regions with a ”*” strand are handled the same way as regions on the plus strand.

7.9 qMeth

qMeth is used exclusively for Bis-seq experiments. In contrast to qCount, which counts the number of
read alignments per query region, qMeth quantifies the number of C and T bases per cytosine in query
regions, in order to determine methylation status.

qMeth can be run in one of four modes, controlled by the mode argument:

� CpGcomb: Only C’s in CpG context are considered. It is assumed that methylation status of the
CpG base-pair on both strands is identical. Therefore, the total and methylated counts obtained
for the C at position i and the C on the opposite strand at position i+ 1 are summed.

� CpG: As with CpGcomb, only C’s in CpG context are quantified. However, counts from opposite
strand are not summed, resulting in separate output values for C’s on both strands.

� allC: All C’s contained in query regions are quantified, keeping C’s from either strand separate.
While this mode allows quantification of non-CpG methylation, it should be used with care, as
the large result could use up available memory. In that case, a possible work-around is to divide
the region of interest (e.g. the genome) into several regions (e.g. chromosomes) and call qMeth
separately for each region.

� var: In this mode, only alignments on the opposite strand from C’s are analysed in order to
collect evidence for sequence polymorphisms. Methylated C’s are hot-spots for C-to-T transi-
tions, which in a Bis-seq experiment cannot be discriminated from completely unmethylated C’s.
The information is however contained in alignments to the G from the opposite strand: Reads
containing a G are consistent with a non-mutated C, and reads with an A support the presence
of a sequence polymorphism. qMeth(..., mode="var") returns counts for total and matching
bases for all C’s on both strands. A low fraction of matching bases is an indication of a mutation
and can be used as a basis to identify mutated positions in the studied genome relative to the
reference genome. Such positions should not be included in the quantification of methylation.

When using qMeth in a allele-specific quantification (see also section 6.5), cytosines (or CpGs) that
overlap a sequence polymorphism will not be quantified.
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8 Session information

The output in this vignette was produced under:

� R version 3.3.0 (2016-05-03), x86_64-pc-linux-gnu
� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

� Base packages: base, datasets, grDevices, graphics, grid, methods, parallel, stats, stats4, utils
� Other packages: AnnotationDbi 1.34.0, BSgenome 1.40.0, Biobase 2.32.0, BiocGenerics 0.18.0,

Biostrings 2.40.0, GenomeInfoDb 1.8.0, GenomicFeatures 1.24.0, GenomicRanges 1.24.0,
Gviz 1.16.0, IRanges 2.6.0, QuasR 1.12.0, Rbowtie 1.12.0, Rsamtools 1.24.0, S4Vectors 0.10.0,
XVector 0.12.0, rtracklayer 1.32.0

� Loaded via a namespace (and not attached): AnnotationHub 2.4.0, BiocInstaller 1.22.0,
BiocParallel 1.6.0, BiocStyle 2.0.0, DBI 0.4, Formula 1.2-1, GenomicAlignments 1.8.0,
GenomicFiles 1.8.0, Hmisc 3.17-4, Matrix 1.2-6, R6 2.1.2, RColorBrewer 1.1-2, RCurl 1.95-4.8,
RSQLite 1.0.0, Rcpp 0.12.4.5, ShortRead 1.30.0, SummarizedExperiment 1.2.0,
VariantAnnotation 1.18.0, XML 3.98-1.4, acepack 1.3-3.3, biomaRt 2.28.0, biovizBase 1.20.0,
bitops 1.0-6, chron 2.3-47, cluster 2.0.4, colorspace 1.2-6, data.table 1.9.6, dichromat 2.0-0,
digest 0.6.9, ensembldb 1.4.0, foreign 0.8-66, ggplot2 2.1.0, gridExtra 2.2.1, gtable 0.2.0,
htmltools 0.3.5, httpuv 1.3.3, httr 1.1.0, hwriter 1.3.2, interactiveDisplayBase 1.10.0,
lattice 0.20-33, latticeExtra 0.6-28, matrixStats 0.50.2, mime 0.4, munsell 0.4.3, nnet 7.3-12,
plyr 1.8.3, rpart 4.1-10, scales 0.4.0, shiny 0.13.2, splines 3.3.0, survival 2.39-2, tools 3.3.0,
xtable 1.8-2, zlibbioc 1.18.0
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