
PGSEA Example Workflow Using Expression

Data from GEO

Karl Dykema

May 3, 2016

Laboratory of Computational Biology, Van Andel Research Institute

1 Get Your Data

To test for enrichment of gene sets using our package, you only need two basic
items: a gene expression data set and a list of gene sets. Your expression data
must either already be in ratio form, or include reference samples by which to
generate a ratio on the fly. As you will see later in this example, the ”reference”
argument will be used because the data is not already in the form of a ratio
(”experiment”/”reference”).

Online gene expression data repositories represent a great wealth of knowl-
edge and this example workflow will help guide your own analysis by using
simple Bioconductor tools to exploit data from such a source, like GEO. To
start off we must load the GEOquery library, and then download and parse the
data with the getGEO command.

> library(PGSEA)

> library(GEOquery)

> library(GSEABase)

> gse <- getGEO("GSE7023",GSEMatrix=TRUE)

> #load("gse.rda")

Next we process the raw data from GEO to generate the phenoData for the
ExpressionSet, an object that holds gene expression data within Bioconductor.
See the GEOquery vignette for more information.

> subtype <- gsub("\\.", "_",gsub("subtype: ", "", phenoData(gse[[1]])$"characteristics_ch1"))

> pheno <- new("AnnotatedDataFrame", data = data.frame(subtype), varMetadata = data.frame(labelDescription="subtype"))

> rownames(pheno@data) <- colnames(exprs(gse[[1]]))

> eset <- new("ExpressionSet", exprs = exprs(gse[[1]]), phenoData = pheno)

Next we must load the gene sets to be used, in this case we will use some
included example gene sets that we were able to curate from various publications.

1



This list of gene sets is by no means an extensive or comprehensive list; it is
merely included for example purposes. Information on the creation of each gene
set has not been included, but may be available upon request.

> data(VAIgsc)

> details(VAIgsc[[1]])

setName: CMYC.1 down

geneIds: 27, 101, ..., 377582 (total: 89)

geneIdType: EntrezId

collectionType: ExpressionSet

setIdentifier: 185b7a75-038d-4a5e-c498-d25297d24c9d

description:

organism:

pubMedIds: 16273092

urls:

contributor: Karl Dykema <karl.dykema@vai.org>

setVersion: 0.0.1

creationDate: Fri Sep 14 12:00:24 2007

2 Run PGSEA

Finally, we are to the point where we can run PGSEA.

> pg <- PGSEA(eset, VAIgsc, ref=which(subtype=="NO"))

The results come back in the form of a matrix. Here is a look at a portion of
it. A result of ”NA” means that the test did not pass the significance threshold.

> pg[5:8, 5:8]

GSM162152 GSM162153 GSM162154 GSM162155

HRAS.1 down NA NA NA NA

HRAS.1 up NA 3.707952 2.960228 NA

SRC.1 down NA NA NA NA

SRC.1 up NA NA NA NA

3 Visualize Results

Next we will want to create an attractive plot so that we can visually interpret
our results. Looking at the range of the results helps us pick a reasonable scale
for the color gradient.

> range(pg, finite=TRUE)

[1] -12.64043 17.62942

2



> smcPlot(pg, col=.rwb, scale=c(-15, 15))

G
S

M
16

21
48

G
S

M
16

21
49

G
S

M
16

21
50

G
S

M
16

21
51

G
S

M
16

21
52

G
S

M
16

21
53

G
S

M
16

21
54

G
S

M
16

21
55

G
S

M
16

21
56

G
S

M
16

21
57

G
S

M
16

21
58

G
S

M
16

21
59

G
S

M
16

21
60

G
S

M
16

21
61

G
S

M
16

21
62

G
S

M
16

21
63

G
S

M
16

21
64

G
S

M
16

21
65

G
S

M
16

21
66

G
S

M
16

21
67

G
S

M
16

21
68

G
S

M
16

21
69

G
S

M
16

21
70

G
S

M
16

21
71

G
S

M
16

21
72

G
S

M
16

21
73

G
S

M
16

21
74

G
S

M
16

21
75

G
S

M
16

21
76

G
S

M
16

21
77

G
S

M
16

21
78

G
S

M
16

21
79

G
S

M
16

21
80

G
S

M
16

21
81

G
S

M
16

21
82

G
S

M
16

21
83

G
S

M
16

21
84

G
S

M
16

21
85

G
S

M
16

21
86

G
S

M
16

21
87

G
S

M
16

21
88

G
S

M
16

21
89

G
S

M
16

21
90

G
S

M
16

21
91

G
S

M
16

21
92

G
S

M
16

21
93

G
S

M
16

21
94

GS
WND.1 DOWN
WND.1 UP
VEGF.1 down
VEGF.1 up
NFKB1.1 down
NFKB1.1 up
TNF.1 down
TNF.1 up
TNF.2 up
TNF.2 down
NFKB1.2 up
NFKB1.2 down
Chromosomal Instability
MET.3 up
HYPOXIA.1 DOWN
HYPOXIA.1 UP.small
HYPOXIA.1 UP.big
HYPEROXIA.2 DOWN
HYPEROXIA.2 UP
HYPEROXIA.1 DOWN
HYPEROXIA.1 UP
HGF.2 DOWN
HGF.2 UP
FH.1 DOWN
FH.1 UP
ES.M.1 DOWN
ES.M.1 UP
BRAF.1 down
BRAF.1 up
SRC.1 up
SRC.1 down
HRAS.1 up
HRAS.1 down
E2F3.1 up
E2F3.1 down
CMYC.1 up
CMYC.1 down

Next with the addition of a few different arguments we can make this plot
look much nicer.

> smcPlot(pg, factor(subtype), col=.rwb, scale=c(-15, 15), margins=c(1, 1, 6, 9), show.grid=TRUE, r.cex=.75)

3



P
1

P
1_

2A

P
2A

P
2B

GS
WND.1 DOWN
WND.1 UP
VEGF.1 down
VEGF.1 up
NFKB1.1 down
NFKB1.1 up
TNF.1 down
TNF.1 up
TNF.2 up
TNF.2 down
NFKB1.2 up
NFKB1.2 down
Chromosomal Instability
MET.3 up
HYPOXIA.1 DOWN
HYPOXIA.1 UP.small
HYPOXIA.1 UP.big
HYPEROXIA.2 DOWN
HYPEROXIA.2 UP
HYPEROXIA.1 DOWN
HYPEROXIA.1 UP
HGF.2 DOWN
HGF.2 UP
FH.1 DOWN
FH.1 UP
ES.M.1 DOWN
ES.M.1 UP
BRAF.1 down
BRAF.1 up
SRC.1 up
SRC.1 down
HRAS.1 up
HRAS.1 down
E2F3.1 up
E2F3.1 down
CMYC.1 up
CMYC.1 down

4 Analyze Your Results

One might visually attempt to determine significant differences between our
subtypes, but a computational approach is more robust. One simple way to
further mine these results is to return an unfiltered matrix from PGSEA and
then use a linear modeling approach. In this example we will highlight the
differences between Papillary RCC Type 2b and normal renal tissue.

> pgNF <- PGSEA(eset, VAIgsc, ref=which(subtype=="NO"), p.value=NA)

> library(limma)

> design <- model.matrix(~ -1+factor(subtype))

> colnames(design) <- names(table(subtype))

> fit <- lmFit(pgNF, design)

> contrast.matrix <- makeContrasts(P2B-NO , levels=design)

> fit <- contrasts.fit(fit, contrast.matrix)

> fit <- eBayes(fit)

> topTable(fit, n=10)[,c("logFC","t","adj.P.Val")]

logFC t adj.P.Val

Chromosomal Instability 9.107348 7.795340 2.179072e-08

FH.1 UP 5.111695 6.434137 1.176181e-06

ES.M.1 UP -3.417913 -6.169907 1.953786e-06

4



TNF.1 down -2.783328 -4.845456 1.165604e-04

CMYC.1 up 3.539790 4.818909 1.165604e-04

FH.1 DOWN -5.053123 -4.352914 4.470032e-04

TNF.2 up -2.179557 -3.578635 4.265204e-03

WND.1 UP 2.695910 3.473171 5.101648e-03

NFKB1.1 down -3.784797 -2.670381 3.858354e-02

HGF.2 UP 1.087091 2.660417 3.858354e-02

Now that we have figured out the significantly different gene sets, we can
grab the rownames from ”topTable” and insert it into our plotting function.

> smcPlot(pg[as.numeric(rownames(topTable(fit, n=10))),], factor(subtype,levels=c("P1","P2B")), col=.rwb, scale=c(-15, 15), margins=c(1, 1, 6, 19), show.grid=TRUE, r.cex=.75)

P
1

P
2B

GS

Biological interpretation of these results is tricky, and can only end up as
”good”as the gene sets and gene expression data used. We have some confidence
in most of these signatures, and in this case, a few of the results are worth of
note.

The ”FH.1” gene sets were created from gene expression data generated
from fumarate-hydratase (gene symbol: ”FH”) deficient uterine fibroids (PMID:
16319128). Using these signatures in PGSEA attempted to detect the same
pattern of altered expression as was seen in the fibroids. ”FH” is known to be
involved with aggressive renal papillary cancers (PMIDs: 17895761, 17392716,

5



17270241, etc.) so this result is expected. While the involvement of ”FH” and
renal cancer was already well-established, the association with ”c-MYC” was un-
reported, so it was an interesting research topic for us. For more information see:
”Detection of DNA copy number changes and oncogenic signaling abnormalities
from gene expression data reveals MYC activation in high-grade papillary renal
cell carcinoma.” (Cancer Res. 2007 Apr 1;67(7):3171-6. PMID: 17409424)

5 Using Large Databases of GeneSets with PGSEA

Instead of using our included example gene sets, one may wish to go another
route and use a large database such as ”GO”. We have included a helper function
to quickly generate gene sets from this database.

> gos <- go2smc()

> pg <- PGSEA(eset, gos, ref=which(subtype=="NO"))

> pgNF <- PGSEA(eset, gos, ref=which(subtype=="NO"), p.value=NA)

> #load("ABC.rda")

> design <- model.matrix(~ -1+factor(subtype))

> colnames(design) <- names(table(subtype))

> fit <- lmFit(pgNF, design)

> contrast.matrix <- makeContrasts(P2B-P1,levels=design)

> fit <- contrasts.fit(fit, contrast.matrix)

> fit <- eBayes(fit)

The linear model approach above will highlight the differences between sub-
types P2B and P1 for all go terms. Below, we plot the results and restrict the
subtypes shown to those two that we are currently interested in.

> smcPlot(pg[as.numeric(rownames(topTable(fit,n=30,resort.by="logFC"))),], factor(subtype,levels=c("P1","P2B")), col=.rwb, scale=c(-15, 15), margins=c(1, 1, 6, 19), show.grid=TRUE, r.cex=.75)

6



P
1

P
2B

GS

7


	Get Your Data
	Run PGSEA
	Visualize Results
	Analyze Your Results
	Using Large Databases of GeneSets with PGSEA

