LPE test for microarray data with a small number of replicates

Nitin Jain nitin.jain@pfizer.com, Michael O Connell moconnell@insightful.com, and Jae K. Lee jaeklee@virginia.edu

May 3, 2016

Contents

1 Introduction 1
1.1 Mouse Immune Response Study dataset 2
2 Analyzing data set using LPE library 2
2.1 Check installed version of $L P E$ 2
2.2 Load the library 2
2.3 Load the data set 2
2.4 Normalization of data 3
2.5 Obtain baseline error distribution 4
2.6 Calculate z-statistics for each gene 4
2.7 FDR correction 5
3 Discussion 6

1 Introduction

The LPE package describes local-pooled-error (LPE) test for identifying significant differentially expressed genes in microarray experiments. Local pooled error test is especially useful when the number of replicates is low (2-3) [1]. LPE estimation is based on pooling errors within genes and between replicate arrays for genes in which expression values are similar. This is motivated by the observation that errors between duplicates vary as a function of the average gene expression intensity and by the fact that many gene expression studies are implemented with a limited number of replicated arrays [3].

LPE library is primarily used for analyzing data between two conditions. To use it for paired data, see LPEP library. For using LPE in multiple conditions, use HEM library.

1.1 Mouse Immune Response Study dataset

Step by step analysis is presented in Section 1.1 using data from a 6 -chip (Affymetrix munie GeneChip, MG-U74Av2) oligonucleotide microarray study of a mouse immune response study. Three replicates of Affymetrix oligonucleotide chips per condition (Naive and Activated) were used. Mouse immune response study was conducted by Dr. Klaus Ley, Univeristy of Virginia.

Details of methodology and application of Local Pooled Error (LPE) test can be obtained from the LPE paper, published in Bioinformatics [1], and detailed description of Rankinvariant resampling based FDR method can be obtained from FDR paper, published in BMC Bioinformatics [2].

2 Analyzing data set using LPE library

2.1 Check installed version of $L P E$

First, make sure that the version of LPE library you are using is at least 1.6.0
> packageDescription("LPE")
If you have an older version, download the latest version from Bioconductor.

2.2 Load the library

First, set the seed to 0 (to have reproducible results as shown below):
$>$ set.seed (0)
Load the LPE library:
> library (LPE)

2.3 Load the data set

Load the data set 'Ley' (built in LPE package), check its dimensions and see the dataset. For illustration purposes, we will use only a small subset of Ley data (1000 rows) in the subsequent examples. Replicates of Naive condition are named as c1, c2, c3 and those of Activated condition are named as $\mathrm{t} 1, \mathrm{t} 2$ and t 3 respectively.

```
> data(Ley)
> dim(Ley)
[1] 12488 7
> head(Ley)
```

	ID	c1	c2	c3	t1	t2	t3
1	AFFX-MurIL2_at	16.0	14.1	19.3	2782.7	2861.3	2540.2
2	AFFX-MurIL10_at	22.7	6.9	28.2	18.6	12.7	7.5
3 AFFX-MurIL4_at	33.9	17.1	23.9	24.9	25.2	24.9	
4	AFFX-MurFAS_at	151.0	133.6	134.1	160.6	188.2	156.4
5	AFFX-BioB-5_at	246.9	182.9	273.6	178.0	184.8	146.6
6	AFFX-BioB-M_at	644.8	398.8	577.3	364.9	355.7	349.7

2.4 Normalization of data

Do the pre-processing (or normalization) of the data. Since the data obtained here is in MAS5 format, we will use data.type=MAS5. (Note that LPE does not require users to normalize the gene-expression data using the preprocess function. Users can very well use other methods, such as RMA or any other method of their choice.)

The preprocess function does IQR normalization (so that inter-quartile ranges on all chips are set to their widest range), thresholding (making the intensity values lower than 1.0 to 1.0), \log based 2 transformation and LOWESS normalization (if LOWESS is set to TRUE). Note that this preprocess is a simple constant-scale and location-normalization step.

```
> Ley.normalized <- Ley.subset
> Ley.normalized[,2:7] <- preprocess(Ley.subset[,2:7], data.type = "MAS5")
> Ley.normalized[1:3,]
```

| | | ID | c1 | c2 | c3 | t1 | t2 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |\quad t3

Remove the Affymetrix control spots (whose ID begins with 'AFFX'):

```
> Ley.final <- Ley.normalized[substring(Ley.normalized$ID,1,4) !="AFFX",]
> dim(Ley.final)
```

[1] 9347
> Ley.final[1:3,]

	ID	c1	c2	c3	t1	t2	t3
67	92539_at	12.245451	12.410680	12.570798	12.048521	12.255754	11.981926
68	92540_f_at	9.194694	9.262375	8.920783	11.356672	11.504808	11.415221
69	92541_at	6.488617	6.337949	6.379552	5.153805	5.388064	5.982039

2.5 Obtain baseline error distribution

Calculate the baseline error distribution of Naive condition, which returns a data.frame of A vs M for selected number of bins ($=1 / q$), where $q=$ quantile.

```
> var.Naive <- baseOlig.error(Ley.final[,2:4],q=0.01)
> dim(var.Naive)
```

```
[1] 934 2
```

> var.Naive[1:3,]

	A	var.M
67	12.410680	0.01618317
68	9.194694	0.07100961
69	6.379552	0.24239947

Similarly calculate the base-line distribution of Activated condition:

```
> var.Activated <- baseOlig.error(Ley.final[,5:7], q=0.01)
> dim(var.Activated)
[1] 934 2
> var.Activated[1:3,]
    A var.M
67 12.048521 0.01405070
68 11.415221 0.01563467
69 5.388064 0.36761319
```


2.6 Calculate z-statistics for each gene

Calculate the lpe variance estimates as described above. The function lpe takes the first two arguments as the replicated data, next two arguments as the baseline distribution of the replicates calculated from the base0lig.error function, and Gene IDs as probe.set.name.

```
> lpe.val <- data.frame(lpe(Ley.final[,5:7], Ley.final[,2:4],
+ var.Activated, var.Naive,
+ probe.set.name=Ley.final$ID)
+ )
> lpe.val <- round(lpe.val, digits=2)
> dim (lpe.val)
[1] 934 13
```

```
> lpe.val[1:3,]
    x.t1 x.t2 x.t3 median.1 std.dev.1 y.c1 y.c2 y.c3 median.2
92539_at 12.05 12.26 11.98 12.05 0.12 12.25 12.41 12.57 12.41
92540_f_at 11.36 11.50 11.42 11.42 0.13 9.19 9.26 8.92 
92541_at 
    std.dev.2 median.diff pooled.std.dev z.stats
92539_at 0.13 0.0.36 0.13 -2.88
92540_f_at 0.27 2.22 0.21 10.43
92541_at 
```


2.7 FDR correction

Various FDR correction methods are supported in LPE: BH (Benjamini-Hochberg), BY (BenjaminiYekutieli), mix.all (does FDR adjustment similar to that of SAM) or resamp (Rank invariant resampling based FDR correction - recommended method). For the sake of completion, there is an option "Bonferroni" to get Bonferroni adjusted p-values also. Note that BH and BY methods are adopted from multtest package.

```
> fdr.BH <- fdr.adjust(lpe.val, adjp="BH")
> dim(fdr.BH)
```

[1] 9342
> round(fdr.BH[1:4,],2)
FDR z.real
93086_at $0 \quad 28.47$
94224_s_at 020.46
92830_s_at 020.02
94063_at 019.03

Resampling based FDR adjustment takes a while to run, and returns the critical z-values and corresponding FDR. Users can decide from the table that which z.critical values to select (from the lpe results, here in lpe.val) to obtain the target fdr.

```
> fdr.resamp <- fdr.adjust(lpe.val, adjp="resamp", iterations=2)
iteration number 1 is in progress
iteration number 1 finished
iteration number 2 is in progress
iteration number 2 finished
Computing FDR...
```

fdr.resamp		
	target.fdr	z.critical
$[1]$,	0.001	3.58
$[2]$,	0.010	2.92
$[3]$,	0.020	2.37
$[4]$,	0.030	2.10
$[5]$,	0.040	1.97
$[6]$,	0.050	1.77
$[7]$,	0.060	1.68
$[8]$,	0.070	1.61
$[9]$,	0.080	1.53
$[10]$,	0.090	1.47
$[11]$,	0.100	1.40
$[12]$,	0.150	1.07
$[13]$,	0.200	0.87
$[14]$,	0.500	0.00

Note that above table may differ slightly due to generation of 'NULL distribution' by resampling. For each target.fdr, we can note critical z-value, above which all genes are considered significant. For example, in the above table, to obtain all the genes with FDR less than or equal to 5%, identify the z.critical corresponding to $5 \%,(=1.77$), and subselect all the genes obtained from LPE-method (section 2.6) for which absolute value of \mathbf{z}.statistics is greater than 1.77.

Finally, here is an example of Bonferroni correction (sorted in order of significance):

```
> Bonferroni.adjp <- fdr.adjust(lpe.val, adjp="Bonferroni")
> head(Bonferroni.adjp)
```

FDR z.real
93086_at $\quad 1.161547 \mathrm{e}-183 \quad 28.47$
94224_s_at 3.310302e-87 20.46
92830_s_at $1.298127 e-83 \quad 20.02$
94063_at 7.768063e-79 19.03
94304_at $1.626826 e-64 \quad 17.97$
92642_at $5.485022 \mathrm{e}-54 \quad 16.24$

3 Discussion

Using our LPE approach, the sensitivity of detecting subtle expression changes can be dramatically increased and differential gene expression patterns can be identified with both small false-positive and small false-negative error rates. This is because, in contrast to the individual gene's error variance, the local pooled error variance can be estimated very accurately.

Acknowledgments. We wish to acknowledge the following colleagues: P. Aboyoun, J. Betcher, D Clarkson, J. Gibson, A. Hoering, S. Kaluzny, L. Kannapel, D. Kinsey, P. McKinnis, D. Stanford, S. Vega and H. Yan.

References

[1] Jain et. al. Local-pooled-error test for identifying differentially expressed genes with a small number of replicated microarrays, Bioinformatics, 2003, Vol 19, No. 15, pp: 1945-1951.
[2] Jain et. al. Rank-invariant resampling based estimation of false discovery rate for analysis of small sample microarray data, BMC Bioinformatics, 2005, Vol 6, 187.
[3] Chen et. al. Ratio-based decisions and the quantitative analysis of cDNA microarray images, Biomedical Optics, 1997, Vol 2, pp: 364-374.

