
GenoGAM: Genome-wide generalized additive models

Georg Stricker1, Julien Gagneur1

1 Technische Universität München, Department of Informatics, Garching, Germany

August 11, 2016

Abstract

Many genomic assays lead to noisy observations of a biological quantity of interest varying along the
genome. This is the case for ChIP-Seq, for which read counts reflect local protein occupancy of the ChIP-
ed protein. The GenoGAM package allows statistical analysis of genome-wide data with smooth functions
using generalized additive models. It provides methods for the statistical analysis of ChIP-Seq data including
inference of protein occupancy, and pointwise and region-wise differential analysis. Estimation of dispersion
and smoothing parameters is performed by cross-validation. Scaling of generalized additive model fitting to
whole chromosomes is achieved by parallelization over overlapping genomic intervals. This vignette explains
the use of the package for typical ChIP-Seq analysis tasks.

GenoGAM version: 1.0.3

If you use GenoGAM in published research, please cite:

Stricker, et al. Genome-wide generalized additive models
bioRxiv

1

GenoGAM: Genome-wide generalized additive models 2

Contents

1 Standard ChIP-Seq analysis 3
1.1 Goal of the analysis . 3
1.2 Registering a parallel backend . 3
1.3 Building a GenoGAM dataset . 4
1.4 Modeling with smooth functions: the design parameters . 5
1.5 Size factor estimation . 6
1.6 Model fitting . 6
1.7 Plotting results . 8
1.8 Statistical testing . 10

2 Other functionalities 11

3 Acknowledgments 11

4 Session Info 11

GenoGAM: Genome-wide generalized additive models 3

1 Standard ChIP-Seq analysis

This version of GenoGAM only supports smoothing and differential analysis of ChIP-Seq data.

1.1 Goal of the analysis

A small dataset is provided to illustrate the ChIP-Seq functionalities. This is a subset of the data published by
Thornton et al[1], who assayed histone H3 Lysine 4 trimethylation (H3K4me3) by ChIP-Seq comparing wild
type yeast versus a mutant with a truncated form of Set1, the yeast H3 Lysine 4 methylase. The goal of this
analysis is the identification of genomic positions that are significantly differentially methylated in the mutant
compared to the wild type strain.

To this end, we will build a GenoGAM model that models the logarithm of the expected ChIP-seq fragment
counts y as sums of smooth functions of the genomic position x. Specifically, we write (with simplified
notations) that:

log(E(y)) = f(x) + genotype× fmutant/wt(x) (1)

where genotype is 1 for data from the mutant samples, and 0 for the wild type. Here the function f(x) is
the reference level, i.e. the log-rate in the wild type strain. The function fmutant/wt(x) is the log-ratio of the
mutant over wild-type. We will then statistically test the null hypothesis fmutant/wt(x) = 0 at each position x.
In the following we show how to build the dataset, perform the fitting of the model and perform the testing.

1.2 Registering a parallel backend

The parallel backend is registered using the BiocParallel package. See the documentation in BiocParallel for
the correct use. Also note, that BiocParallel is just an interface to multiple parallel packages. For example in
order to use GenoGAMon a cluster, the BatchJobs package might be required. The parallel backend should
be registered before creating the GenoGAM class, as this setup will be used throughout the analysis.

library(GenoGAM)

On multicore machines by default the number of available cores - 2 are registered

BiocParallel::registered()[1]

$MulticoreParam

class: MulticoreParam

bpisup: FALSE; bpworkers: 4; bptasks: 0; bpjobname: BPJOB

bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE

bptimeout: 2592000; bpprogressbar: FALSE

bpRNGseed:

bplogdir: NA

bpresultdir: NA

cluster type: FORK

http://bioconductor.org/packages/BiocParallel
http://cran.fhcrc.org/web/packages/BatchJobs/index.html

GenoGAM: Genome-wide generalized additive models 4

For this small example we would like to assign less workers and activate the progress bar. Check BiocParallel
for other possible backends and more options for MulticoreParam

BiocParallel::register(BiocParallel::MulticoreParam(workers = 4, progressbar = TRUE))

If we check the current registered backend, we see that the number of workers has changed.

BiocParallel::registered()[1]

$MulticoreParam

class: MulticoreParam

bpisup: FALSE; bpworkers: 4; bptasks: 0; bpjobname: BPJOB

bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE

bptimeout: 2592000; bpprogressbar: TRUE

bpRNGseed:

bplogdir: NA

bpresultdir: NA

cluster type: FORK

1.3 Building a GenoGAM dataset

BAM files restricted to a region of chromosome XIV around the gene YNL176C are provided in the inst/extdata
folder of the GenoGAM package. This folder also contains a flat file describing the experimental design.

We start by loading the experimental design from the tab-separated text file experimentDesign.txt into a
data frame:

folder <- system.file("extdata/Set1", package='GenoGAM')

expDesign <- read.delim(

file.path(folder, "experimentDesign.txt")

)

expDesign

ID file paired genotype

1 wt_1 H3K4ME3_Full_length_Set1_Rep_1_YNL176C.bam FALSE 0

2 wt_2 H3K4ME3_Full_length_Set1_Rep_2_YNL176C.bam FALSE 0

3 mutant_1 H3K4ME3_aa762-1080_Set1_Rep_1_YNL176C.bam FALSE 1

4 mutant_2 H3K4ME3_aa762-1080_Set1_Rep_2_YNL176C.bam FALSE 1

Each row of the experiment design corresponds to the alignment files in BAM format of one ChIP sample. In
case of multiplexed sequencing, the BAM files must have been demultiplexed. The experiment design have
named columns. Three column names have a fixed meaning for GenoGAM and must be provided: ID, file,
and paired. The field ID stores a unique identifier for each alignment file. It is recommended to use short
and easy to understand identifiers because they are subsequently used for labelling data and plots. The field
file stores the BAM file name. The field paired values TRUE for paired-end sequencing data, and FALSE

for single-end sequencing data. Further named columns can be added at wish without naming and data type
constraints. Here the important one is the genotype column. Note that it is an indicator variable (i.e. valuing
0 or 1). It will allow us modeling the differential occupancy later on.

http://bioconductor.org/packages/BiocParallel

GenoGAM: Genome-wide generalized additive models 5

We will now count sequencing fragment centers per genomic position and sample and store these counts
into a GenoGAMDataSet. GenoGAM reduces ChIP-Seq data to fragment center counts rather than full base
coverage so that each fragment is counted only once. This reduces artificial correlation between adjacent
nucleotides. For single-end libraries, the fragment center is estimated by shifting the read end position by a
constant (Details in the help on the constructor function GenoGAMDataSet()).

bpk <- 20

chunkSize <- 1000

overhangSize <- 15*bpk

build the GenoGAMDataSet

ggd <- GenoGAMDataSet(

expDesign, directory = folder,

chunkSize = chunkSize, overhangSize = overhangSize,

design = ~ s(x) + s(x, by = genotype)

)

INFO [2016-08-11 22:50:47] Reading in data.

INFO [2016-08-11 22:50:50] Check if tile settings match the data.

INFO [2016-08-11 22:50:50] All checks passed.

INFO [2016-08-11 22:50:50] DONE

restricts the GenoGAM dataset to the positions of interest

(this step is only required for running this small example)

ggd <- subset(ggd, seqnames == "chrXIV" & pos >= 305000 & pos <= 308000)

A GenoGAMDataSet stores this count data into a structure that index genomic positions over tiles, defined
by chunkSize and overhangSize. A bit of background is required to understand these parameters. The
smoothing in GenoGAM is based on splines, which are piecewise polynomials. The knots are the positions
where the polynomials connect. In our experience, one knot every 20 to 50 bp is required for enough resolution
of the smooth fits in typical applications. The fitting of generalized additive models involves steps demanding
a number of operations proportional to the square of the number of knots, preventing fits along whole chromo-
somes. To make the fitting of GAMs genome-wide, GenoGAM performs fitting on small overlapping intervals
(tiles), and join the fit at the midpoint of the overlap of consecutive tiles. The parameters chunkSize and
overhangSize defines the tiles, where the chunk is the core part of a tile that does not overlap other tiles, and
the overhangs are the two overlapping parts. Overhangs of about 10 times the knot spacing gives reasonable
results.

The design parameter is explained in the next section.

Finally, the last line of code calls the function subset() to restrict the GenoGAMDataset to the positions
of interest. This line is necessary for running this small example but would not be present in a standard
genome-wide run of GenoGAM.

1.4 Modeling with smooth functions: the design parameters

GenoGAM models the logarithm of the rate of the count data as sums of smooth functions of the genomic
position, denoted x. The design parameter is an R formula which allows encoding how the smooth functions
depend on the experimental design. GenoGAMfollows formula convention of the R package mgcv. A smooth
function is denoted s(). For now, GenoGAM only supports smooth function that are cubic splines of the

GenoGAM: Genome-wide generalized additive models 6

genomic position x. The by variable allows selecting to which samples the smooth contributes to (see also the
documentation of gam.models in the mgcv). For now, GenoGAM only allows by variables to (value 0 or 1).
Here by setting ’s(x, by=genotype)’ we encode the term ”genotype× fmutant/wt(x)” in Equation 1.

Note: As for other generalized additive models packages (mgcv, gam), GenoGAM use the natural logarithm
as link function. This is different than other packages of the bioinformatics files such as DESeq2 which works
in base 2 logarithm.

1.5 Size factor estimation

Sequencing libraries typically vary in sequencing depth. Such variations is controlled for in GenoGAM by adding
a sample-specific constant to the right term of Equation 1. The estimation of these constants is performed
by the function computeSizeFactor() as follows:

ggd <- computeSizeFactors(ggd)

INFO [2016-08-11 22:50:50] Computing size factors

INFO [2016-08-11 22:50:50] DONE

sizeFactors(ggd)

wt_1 wt_2 mutant_1 mutant_2

-0.0198 0.2184 -0.5119 0.3237

Note: The size factors in GenoGAMare in the natural logarithm scale.

1.6 Model fitting

A GenoGAM model requires two further parameters to be fitted: the regularization parameter, λ, and the
dispersion parameter θ. The regularization parameters λ controls the amount of smoothing. The larger λ is,
the smoother the smooth functions are. The dispersion parameter θ controls how much the observed counts
deviate from their expected value modeled by Equation 1. The dispersion captures biological and technical
variation which one typically sees across replicate samples, but also errors of the model. In GenoGAM, the
dispersion is modeled by assuming the counts to follow a negative binomial distribution with mean µ = E(y)
whose logarithm is modeled by Equation 1 and with variance v = µ+ µ2/θ.

If not provided, the parameters λ and θ are obtained by cross-validation. This step is a bit time-consuming.
For sake of going through this example quickly, we provide the values manually:

fit model without parameters estimation

fit <- genogam(ggd,

lambda = 40954.1,

family = mgcv::nb(theta = 6.927986),

bpknots = bpk

)

INFO [2016-08-11 22:50:51] Check if tile settings match the data.

INFO [2016-08-11 22:50:51] All checks passed.

INFO [2016-08-11 22:50:51] Process data

INFO [2016-08-11 22:50:51] Fitting model

##

GenoGAM: Genome-wide generalized additive models 7

|

| | 0%

|

|================== | 25%

|

|=================================== | 50%

|

|== | 75%

|

|==| 100%

##

INFO [2016-08-11 22:51:00] DONE

fit

##

Family: negative binomial

Link function: log

##

Formula:

value ~ offset(offset) + s(x, bs = "ps", k = 80, m = 2) + s(x,

by = genotype, bs = "ps", k = 80, m = 2)

<environment: 0x198a51d8>

##

Experiment Design:

genotype

wt_1 0

wt_2 0

mutant_1 1

mutant_2 1

##

Global Estimates:

Lambda: 40954

Theta: 6.93

Coefficient of Variation: 0.38

##

Cross Validation: Not performed

K-folds: 10

Number of tiles: 4

Interval size: 20

##

Tile settings:

chunk size: 1000

tile size: 1600

overhang size: 300

number of tiles: 4

Remark on parameter estimation: To estimate the parameters λ and θ by cross-validation, call genogam()
without setting their values. This will perform 10 fold cross-validation on each tile with initial parameter values

GenoGAM: Genome-wide generalized additive models 8

and iterate until convergence, often for about 50 iterations. We recommend to do it for 20 to 40 different
regions representative of your data (of 1.5kb each). This means that estimation of the parameters will require
the equivalent of a GenoGAM fit with fixed λ and θ on 30 Mb (1.5kb x10x40x50). For a genome like yeast
(12Mb) the cross-validation thus can take more time than a genome-wide fit.

fit_CV <- genogam(ggd,bpknots = bpk)

Remark on parallel computing: GenoGAM run parallel computations on multicore architecture (using the
BiocParallel package). Computing time reduces almost linearly with the number of cores of the machine.

1.7 Plotting results

Count data and fits for a region of interest can be extracted using the function view(). Following the mgcv
and gam convention the names of the fit for the smooth function defined by the by variable follow the pattern
s(x):{by-variable}. Here, the smooth function of interest fmutant/wt(x) is thus named s(x):genotype.

extract count data into a data frame

df_data <- view(ggd)

head(df_data)

seqnames pos strand wt_1 wt_2 mutant_1 mutant_2

1 chrXIV 305000 * 0 0 0 0

2 chrXIV 305001 * 0 0 0 0

3 chrXIV 305002 * 0 1 0 0

4 chrXIV 305003 * 0 0 0 0

5 chrXIV 305004 * 0 0 0 0

6 chrXIV 305005 * 0 1 0 0

extract fit into a data frame

df_fit <- view(fit)

head(df_fit)

seqnames pos strand s(x) s(x):genotype se.s(x) se.s(x):genotype

1 chrXIV 305000 * -3.05 0.0833 0.309 0.402

2 chrXIV 305001 * -3.05 0.0858 0.307 0.400

3 chrXIV 305002 * -3.04 0.0883 0.305 0.398

4 chrXIV 305003 * -3.04 0.0907 0.304 0.396

5 chrXIV 305004 * -3.04 0.0932 0.302 0.394

6 chrXIV 305005 * -3.04 0.0956 0.300 0.392

The code below then plots the counts and the fitted smooth log-ratio of mutant over wild type together with
its 95% confidence band. In the count data, the peak of methylation in the two replicates of the wild type
(first two panels) in the region 306,500-307,000 seems attenuated in the two replicates of the mutant (3rd and
4th panel). There are relatively more counts for the mutant in the region 305,500-306,500. The GenoGAM
fit of the log-ratio (last panel, confidence band dotted) indicates that that these differences are significant.
This redistribution of the methylation mark from the promoter (wild type) into the gene body (mutant) was
reported by the authors of the study [1].

plot function for the count data

dataplot <- function(df, col, ...){
x <- df[["pos"]]

GenoGAM: Genome-wide generalized additive models 9

y <- df[[col]]

plot(0, type='n',

xlim=range(x),

ylab=col,

...

)

points(x, y, pch=19, col="#00000015", cex=0.5)

}

plot function for a fit with confidence band

fitplot <- function(df, smooth, ...){
x <- df[["pos"]]

y <- df[[smooth]]

se.y <- df[[paste0("se.",smooth)]]

plot(0, type='n',

xlim=range(x),

ylim=range(c(y - 1.96*se.y, y + 1.96*se.y)),

ylab=smooth,

...

)

lines(x, y)

lines(x, y+1.96*se.y, lty='dotted')

lines(x, y-1.96*se.y, lty='dotted')

abline(h=0)

}

plot

par(mfrow=c(5,1))

par(mar=c(1,4,1,1))

for(id in expDesign$ID)

dataplot(df_data, id, xlab="", main="", ylim=c(0,6))

par(mar=c(2,4,1,1))

fitplot(df_fit, 's(x):genotype', xlab="", main="")

GenoGAM: Genome-wide generalized additive models 10

1.8 Statistical testing

We test for each smooth and at each position x the null hypothesis that it values 0 by a call to computeSignificance().
False discovery rate can be computed using the Benjamini-Hochberg procedure with the R function p.adjust():

fit <- computeSignificance(fit)

df_fit <- view(fit)

df_fit[["fdr.s(x):genotype"]] <- p.adjust(df_fit[["pvalue.s(x):genotype"]], method="BH")

head(df_fit)

seqnames pos strand s(x) s(x):genotype se.s(x) se.s(x):genotype

1 chrXIV 305000 * -3.05 0.0833 0.309 0.402

2 chrXIV 305001 * -3.05 0.0858 0.307 0.400

3 chrXIV 305002 * -3.04 0.0883 0.305 0.398

4 chrXIV 305003 * -3.04 0.0907 0.304 0.396

5 chrXIV 305004 * -3.04 0.0932 0.302 0.394

6 chrXIV 305005 * -3.04 0.0956 0.300 0.392

pvalue.s(x) pvalue.s(x):genotype fdr.s(x):genotype

1 0.0665 0.836 0.851

2 0.0656 0.830 0.846

GenoGAM: Genome-wide generalized additive models 11

3 0.0647 0.825 0.841

4 0.0637 0.819 0.836

5 0.0628 0.813 0.831

6 0.0620 0.807 0.826

2 Other functionalities

Other functionalities demonstrated in the manuscript (peak calling and testing, methylation data, see BioRxiv:
http://dx.doi.org/10.1101/047464) will be gradually integrated into the package. Interested users should check
the developer version of GenoGAM for updates.

3 Acknowledgments

We thank Alexander Engelhardt, Hervé Pagès, and Martin Morgan for input in the development of GenoGAM.

4 Session Info

• R version 3.3.1 (2016-06-21), x86_64-pc-linux-gnu
• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C
• Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4, utils
• Other packages: Biobase 2.32.0, BiocGenerics 0.18.0, Biostrings 2.40.2, GenoGAM 1.0.3,

GenomeInfoDb 1.8.3, GenomicRanges 1.24.2, IRanges 2.6.1, Rsamtools 1.24.0, S4Vectors 0.10.2,
SummarizedExperiment 1.2.3, XVector 0.12.1, knitr 1.13
• Loaded via a namespace (and not attached): AnnotationDbi 1.34.4, BiocParallel 1.6.5, BiocStyle 2.0.3,

DBI 0.4-1, DESeq2 1.12.4, Formula 1.2-1, GenomicAlignments 1.8.4, Hmisc 3.17-4, Matrix 1.2-6,
RColorBrewer 1.1-2, RSQLite 1.0.0, Rcpp 0.12.6, ShortRead 1.30.0, XML 3.98-1.4, acepack 1.3-3.3,
annotate 1.50.0, bitops 1.0-6, chipseq 1.22.0, chron 2.3-47, cluster 2.0.4, codetools 0.2-14,
colorspace 1.2-6, data.table 1.9.6, digest 0.6.10, evaluate 0.9, foreign 0.8-66, formatR 1.4,
futile.logger 1.4.3, futile.options 1.0.0, genefilter 1.54.2, geneplotter 1.50.0, ggplot2 2.1.0, grid 3.3.1,
gridExtra 2.2.1, gtable 0.2.0, highr 0.6, hwriter 1.3.2, lambda.r 1.1.9, lattice 0.20-33,
latticeExtra 0.6-28, locfit 1.5-9.1, magrittr 1.5, mgcv 1.8-13, munsell 0.4.3, nlme 3.1-128, nnet 7.3-12,
plyr 1.8.4, reshape2 1.4.1, rpart 4.1-10, scales 0.4.0, splines 3.3.1, stringi 1.1.1, stringr 1.0.0,
survival 2.39-5, tools 3.3.1, xtable 1.8-2, zlibbioc 1.18.0

References

[1] J. Thornton, G.H.. Westfield, Y. Takahashi, M. Cook, X. Gao, Woodfin A.R., Lee J., A.M. Morgan,
J. Jackson, E.R. Smith, J. Couture, G. Skiniotis, and A. Shilatifard. Context dependency of Set1/
COMPASS-mediated histone H3 Lys4 trimethylation. Genes & Development, 28(2):115–120, 2014.
doi:10.1101/gad.232215.113.

http://dx.doi.org/10.1101/047464
http://bioconductor.org/packages/GenoGAM
http://dx.doi.org/10.1101/gad.232215.113

	1 Standard ChIP-Seq analysis
	1.1 Goal of the analysis
	1.2 Registering a parallel backend
	1.3 Building a GenoGAM dataset
	1.4 Modeling with smooth functions: the design parameters
	1.5 Size factor estimation
	1.6 Model fitting
	1.7 Plotting results
	1.8 Statistical testing

	2 Other functionalities
	3 Acknowledgments
	4 Session Info

