GWAS-based Mendelian Randomization Path Analysis

Yuan-De Tan and Dajiang Liu tanyuande@gmail.com

May 3, 2016

Abstract

GMRP can perform analyses of Mendelian randomization (MR), correlation, path of causal variables onto disease of interest and SNP annotation analysis. MR includes SNP selection with given criteria and regression analysis of causal variables on the disease to generate beta values of causal variables on the disease. Using the beta vectors, GMRP performs correlation and path analyses to construct path diagrams of causal variables to the disease. GMRP consists of 8 R functions: chrp,fmerg,mktable,pathdiagram,pathdiagram2,path,snpposit,ucscannot and 5 datasets: beta.data,cad.data,lpd.data,SNP358.data,SNP368annot.data. chrp is used to separate string vector hg19 into two numeric vectors: chromosome number and SNP chromosome position. Function fmerg is used to merge two GWAS result datasets into one dataset. Function mktable performs SNP selection and creates a standard beta table for function path to do MR and path analyses. Function pathdiagram is used to create a path diagram of causal variables onto the disease or onto outcome. Function pathdiagram2 can merge two-level pathdiagrams into one nested pathdiagram where inner pathdiagram is a pathdiagram of causal variables contributing to outcome and the outside pathdiagram is a path diagram of causal variables including outcome onto the disease. The five datasets provide examples for running these functions. 1pd.data and cad.data provide an example to create a standard beta dataset for path function to do path analysis and SNP data for SNP annotation analysis by performing mktable and fmerg. beta.data are a standard beta dataset for path analysis. SNP358.data provide an example for snpposit to do SNP position annotation analysis and SNP368annot.data are for ucscannot to do SNP function annotation analysis.

Contents

1	Introduction	1
2	Loading Data	2
3	Preparation of Standard Beta Table	4
4	Two-way Scatter Plots for Beta Values of Disease and Undefined Causal Variables	6
5	MR and Path Analysis	7
6	Create Path Diagram	8
7	Create Two-level Nested Path Diagram	8
8	SNP Annotation Analysis	10
9	Session Info	15

1 Introduction

As an example of human disease, coronary artery disease (CAD) is one of the causes leading to death and infirmity worldwide [1]. Low-density lipoprotein cholesterol (LDL) and triglycerides (TG) are viewed as risk factors causing CAD. In epidemiological studies, plasma concentrations of increasing TG and LDL and deceasing HDL have been observed to be associated with risk for CAD [2, 3]. However, from observational studies, one could not directly infer that these cholesterol concentrations in plasma are risk factors causing CAD [4, 3, 5, 6]. A big limitation of

observational studies is to difficultly distinguish between causal and spurious associations due to confounding [7]. An efficient approach to overcome this limitation is *Mendelian Randomization* (*MR*) analysis [5, 8] where genetic variants are used as instrumental variables. For this reason, many investigators tried to use genetic variants to assess causality and estimate the causal effects on the diseases.

MR analysis can perfectly exclude confounding factors associated with disease. However, when we expand one causal variable to many, MR analysis becomes challenged and complicated because the genetic variant would have additional effects on the other risk factors, which violate assumption of no pleiotropy. An unknown genetic variant in MR analysis possibly provides a false instrument for causal effect assessment of risk factors on the disease. The reason is that if this genetic variant is in LD with another gene that is not used but has effect on the disease of study [5, 9]. It then violates the third assumption. These two problems can be addressed by using multiple instrumental variables. For this reason, Do $et\ al\ (2013)$ developed statistic approach to address this issue [4]. However, method of Do $et\ al\ [4]$ cannot disentangle correlation effects among the multiple undefined risk factors on the disease of study. The beta values obtained from regression analyses are not direct causal effects because their effects are entangled with correlations among these undefined risk factors.

The best way to address the entanglement of multiple causal effects is path analysis that was developed by Wright [12, 11]. This is because path analysis can dissect beta values into direct and indirect effects of causal variables on the disease. However, path analysis has not broadly been applied to diseases because diseases are usually binary variable. The method of Do [4] makes it possible to apply path analysis to disentangle causal effects of undefined risk factors on diseases. For doing so, we here provide **R package** *GMRP* (*GWAS*-based *MR* and *path analysis*) to solve the above issues.

This vignette is intended to give a rapid introduction to the commands used in implementing MR analysis, regression analysis, and path analysis, including SNP annotation and chromosomal position analysis by means of the GMRP package.

We assume that user has the GWAS result data from GWAS analysis or GWAS meta analysis of SNPs associated with risk or confounding factors and a disease of study. If all studied causal variables of GWAS data are separately saved in different sheet files, then files are assumed to have the same sheet format and they are required to be merged by using function fmerg into one sheet file without disease GWAS data. After a standard beta table is created with mktable, user can use function path to perform RM and path analyses. Using the result of path analysis, user can draw path plot(pathdiagram) with functions pathdiagram and pathdiagram2. These will be introduced in detail in the following examples.

We begin by loading the GMRP package.

> library(GMRP)

2 Loading Data

GMRP provides five data files: beta.data, cad.data, lpd.data, SNP358.data and SNP368annot.data where

1pd.data was a subset (1069 SNPs) of four GWAS result datasets for LDL, HDL, TG and TC. These GWAS result data sheets were downloaded from the website¹ where there are 120165 SNPs scattered on 23 chromosomes and 40 variables. Four GWAS result datasets for LDL, HDL, TG and TC were merged into one data sheet by using fmerg(fl1,fl2,ID1,ID2,A,B,method) where fl1 and fl2 are two GWAS result data sheets. ID1 and ID2 are key id in files fl1 and fl2, respectively, and required. A and B are postfix for fl1 and fl2. Default values are A=""" and B=""" or "n" means that the data with unmatched SNPs in file1 and file2 are not saved in the merged file; method="ALL" or "All" or "all" or "A" or "a" indicates that the data with all unmatched SNPs in file1 and file2 are saved in the unpaired way in the merged data file; if method="file1", then those with unmatched SNPs only from file1 are saved or if method="file2", fmerg will save the data with unmatched SNPs only from file2". Here is a simple example:

```
> data1 <- matrix(NA, 20, 4)
> data2 <- matrix(NA, 30, 7)
> SNPID1 <- paste("rs", seq(1:20), sep="")
> SNPID2 <- paste("rs", seq(1:30), sep="")
> data1[,1:4] <- c(round(runif(20), 4), round(runif(20), 4), round(runif(20), 4))</pre>
```

¹http://csg.sph.umich.edu//abecasis/public/lipids2013/

```
> data2[,1:4] <- c(round(runif(30), 4),round(runif(30), 4), round(runif(30), 4), round(runif(30), 4),
> data2[,5:7] <- c(round(seq(30)*runif(30), 4), round(seq(30)*runif(30), 4), seq(30))
> data1 <- cbind(SNPID1, as.data.frame(data1))
> data2 <- cbind(SNPID2, as.data.frame(data2))
> dim(data1)
> dim(data1)
> colnames(data1) <- c("SNP", "var1", "var2", "var3", "var4")
> colnames(data2) <- c("SNP", "var1", "var2", "var3", "var4", "V1", "V2", "V3")
> data1<-DataFrame(data1)
> data2<-DataFrame(data2)</pre>
```

> data12 <- fmerg(fl1=data1, fl2=data2, ID1="SNP", ID2="SNP", A=".dat1", B=".dat2", method="No")

User can take the following approach to merge all four lipid files into a data sheet: IDI HDI <- fmerg(fl1=IDI file fl2=HDI file)

User can take the following approach to merge all four lipid files into a data sheet: LDLHDL<-fmerg(fl1=LDLfile,fl2=HDLfile, ID1="SNP", ID2="SNP", A=".LDL", B=".HDL", method="No")

```
TGTC<-fmerg(fl1=TGfile,fl2=TCfile, ID1="SNP", ID2="SNP", A=".TG", B=".TC", method="No")
```

```
lpd<-fmerg(fl1=LDLHDL,fl2=TGTC,ID1="SNP",ID2="SNP",A="",B="",method="No")</pre>
```

cad.data was also a subset (1069 SNPs) of original GWAS meta-analyzed dataset that was downloaded from the website 2 and contains 2420360 SNPs and 12 variables.

beta.data that was created by using function mktable and fmerg from lpd.data and cad.data is a standard beta table for MR and path analyses.

SNP358.data contains 358 SNPs selected by mktable for SNP position annotation analysis.

SNP368annot.data is the data obtained from function analysis with *SNP* Annotation Tool and provides example of performing function ucscanno to draw a 3D pie and output the results of proportions of *SNP*s coming from gene function various elements.

- ■= data(cad.data) cad <- DataFrame(cad.data) head(cad)
- > data(lpd.data)
- > 1pd <- DataFrame(lpd.data)
- > head(lpd)

DataFrame with 6 rows and 40 columns

	SNP_hg18.H	IDL SNP_1	ng19.HDL	rsid.HDL	A1.HDL	A2.HDL	beta.HDL	se.HDL
	<characte< td=""><td>er> <cha< td=""><td>aracter> <</td><td><pre><character></character></pre></td><td><character></character></td><td><character></character></td><td><numeric></numeric></td><td><numeric></numeric></td></cha<></td></characte<>	er> <cha< td=""><td>aracter> <</td><td><pre><character></character></pre></td><td><character></character></td><td><character></character></td><td><numeric></numeric></td><td><numeric></numeric></td></cha<>	aracter> <	<pre><character></character></pre>	<character></character>	<character></character>	<numeric></numeric>	<numeric></numeric>
1	chr19:193793	316 chr19:1	19518316	rs1000237	a	t	0.0083	0.0051
2	chr4:882834	155 chr4:8	38064431	rs10023050	g	a	0.0174	0.0049
3	chr5:1563662	229 chr5:15	56433651	rs10036890	t	a	0.0044	0.0062
4	chr19:110851	.81 chr19:1	11224181	rs1003723	t	С	0.0051	0.0050
5	chr5:747534	09 chr5:7	74717653	rs10038723	t	С	0.0043	0.0059
6	chr11:1162270	36 chr11:11	16721826	rs10047459	t	С	0.0203	0.0070
	N.HDL P.value.HDL Freq.A1.1000G.EUR.HD				SNP_hg18	.LDL SNP_h	ng19.LDL	${\tt rsid.LDL}$
	<numeric> <</numeric>	numeric>		<numeric></numeric>	<charac< td=""><td>ter> <cha< td=""><td>aracter> <</td><td>character></td></cha<></td></charac<>	ter> <cha< td=""><td>aracter> <</td><td>character></td></cha<>	aracter> <	character>
1	92630.00	0.127300		0.3272	chr19:1937	9316 chr19:1	19518316	rs1000237
2	92768.00	0.001186		0.4222	chr4:8828	3455 chr4:8	38064431 1	rs10023050
3	92644.98	0.551000		0.8417	chr5:15636	6229 chr5:15	6433651 1	rs10036890
4	86071.10	0.337800		0.4578	chr19:1108	5181 chr19:1	11224181	rs1003723
5	92790.02	0.488600		0.2375	chr5:7475	3409 chr5:7	74717653 ı	rs10038723
6	76329.02	0.013370		0.8074	chr11:11622	7036 chr11:11	16721826	rs10047459
	A1.LDL	A2.LDL	beta.LDI	L se.LDL	N.LDL P	.value.LDL Fi	req.A1.1000	OG.EUR.LDL
	<character> <</character>	character>	<numeric< td=""><td><pre>> <numeric></numeric></pre></td><td><numeric></numeric></td><td><numeric></numeric></td><td></td><td><numeric></numeric></td></numeric<>	<pre>> <numeric></numeric></pre>	<numeric></numeric>	<numeric></numeric>		<numeric></numeric>
1	t	a	0.0373	0.0054	82988.90	2.755e-11		0.6728
2	a	g	0.0143	0.0052	83123.00	1.457e-02		0.5778
3	t	a	0.024	0.0066	83022.99	3.848e-04		0.8417
4	t	С	0.033	0.0053	77777.00	1.508e-09		0.4578
5	t	С	0.060	0.0063	83135.02	1.381e-19		0.2375
6	С	t	0.0056	0.0073	71581.06	5.302e-01		0.1926

²http://www.cardiogramplusc4d.org/downloads/

	SNP_hg18.TG	SNP_	hg19.TG	rsid.TG	A1.TG	A2.TG	beta.TG	se.TG
	<character></character>	<cha:< td=""><td>racter> <</td><td>character></td><td><character></character></td><td><character></character></td><td><numeric></numeric></td><td><numeric></numeric></td></cha:<>	racter> <	character>	<character></character>	<character></character>	<numeric></numeric>	<numeric></numeric>
1	chr19:19379316	chr19:1	9518316	rs1000237	t	a	0.0368	0.0049
2	chr4:88283455	chr4:8	8064431	rs10023050	a	g	0.0293	0.0048
3	chr5:156366229	chr5:15	6433651	rs10036890	t	a	0.0160	0.0060
4	chr19:11085181	chr19:1	1224181	rs1003723	t	С	0.0004	0.0048
5	chr5:74753409	chr5:7	4717653	rs10038723	t	С	0.0013	0.0058
6	chr11:116227036	chr11:11	6721826	rs10047459	С	t	0.0560	0.0066
	N.TG P.valu	e.TG Fre	q.A1.1000	G.EUR.TG	SNP_hg18.	TC SNP_hg	g19.TC	rsid.TC
	<numeric> <nume< td=""><td></td><td></td><td>numeric></td><td><characte< td=""><td>r> <chara< td=""><td>acter> <ch< td=""><td>aracter></td></ch<></td></chara<></td></characte<></td></nume<></numeric>			numeric>	<characte< td=""><td>r> <chara< td=""><td>acter> <ch< td=""><td>aracter></td></ch<></td></chara<></td></characte<>	r> <chara< td=""><td>acter> <ch< td=""><td>aracter></td></ch<></td></chara<>	acter> <ch< td=""><td>aracter></td></ch<>	aracter>
1	86629.00 2.116	e-12		0.6728	chr19:193793	16 chr19:19	518316 rs	s1000237
2	86765.00 2.449	e-09		0.5778	chr4:882834	55 chr4:880	064431 rs:	10023050
3	86658.99 6.558	e-03		0.8417	chr5:1563662	29 chr5:1564	133651 rs:	10036890
4	81143.90 8.068	e-01		0.4578	chr19:110851	81 chr19:112	224181 rs	s1003723
5	86781.02 9.066	e-01		0.2375	chr5:747534	09 chr5:747	717653 rs:	10038723
6	74837.95 1.523	e-14		0.1926 cl	hr11:1162270	36 chr11:1167	721826 rs:	10047459
	A1.TC	A2.TC	beta.TC	se.TC	N.TC P	.value.TC Fre	eq.A1.10000	G.EUR.TC
	<character> <cha< td=""><td>racter></td><td><numeric></numeric></td><td><numeric></numeric></td><td><numeric></numeric></td><td><numeric></numeric></td><td><1</td><td>numeric></td></cha<></character>	racter>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<1	numeric>
1	t	a	0.0374	0.0051	92528.90	1.557e-12		0.6728
2	a	g	0.0162	0.0049	92675.00	1.499e-03		0.5778
3	t	a	0.0351	0.0063	92553.21	3.974e-08		0.8417
4	t	С	0.0288	0.0051	85814.00	1.681e-08		0.4578
5	t	С	0.0515	0.0060	92698.92	4.354e-17		0.2375
6	С	t	0.0079	0.0069	80331.01	2.155e-01		0.1926

3 Preparation of Standard Beta Table

The standard beta table for MR and path analyses must have the standard format. It has columns: $chrn, posit, rsid, a1.x_1, a1.x_2, \cdots, a1.x_n, freq.x_1, freq.x_2, \cdots, freq.x_n, beta.x_1, beta.x_2, \cdots, beta.x_n, sd.x_1, sd.x_2, \cdots, sd.x_n, pv_j, N.x_1, N.x_2, \cdots, N.x_n, pc_j, hg.d, SNP.d, freq.d, beta.d, N.d, freq.case, pd_j where <math>x_1, x_2, \cdots, x_n$ are variables.

beta is vector of beta values of SNPs on variable vector $X = (x_1, x_2, \dots, x_n)$.

freq is vector of frequency of allele 1 with respect to variable vector $X = (x_1, x_2, \dots, x_n)$.

sd is vector of standard deviations of variable (x_1, x_2, \dots, x_n) specific to SNP. If sd does not specifically correspond to SNP, then $sd.x_i$ has the same value for all SNPs.

d denotes disease.

 ${\cal N}$ is sample size.

freq.case is frequency of disease.

chrn is vector of chromosome number.

posit is position vector of SNPs on chromosomes. Some time, chrn and posit are combined into string hg19 or hg18.

 pv_j is defined as *p-value*, pc_j and pd_j as proportions of sample size for *SNP* j to the maximum sample size in causal variables and in disease, respectively.

We use function mktable to choose SNPs and make a standard beta table for MR and path analyses. For convenience, we first assign lpd.data to lpd and cad.data to cad:

The standard beta table will be created via 15 steps:

Step1: calculate pvj

```
> pvalue.LDL <- lpd$P.value.LDL
> pvalue.HDL <-lpd$P.value.HDL
> pvalue.TG <- lpd$P.value.TG
> pvalue.TC <- lpd$P.value.TC</pre>
```

```
> pv <- cbind(pvalue.LDL, pvalue.HDL, pvalue.TG, pvalue.TC)
> pvj <- apply(pv, 1, min)
Step2: retrieve causal variables from data 1pd and construct a matrix for beta:
> beta.LDL <- lpd$beta.LDL
> beta.HDL <- lpd$beta.HDL
> beta.TG <- lpd$beta.TG
> beta.TC <- lpd$beta.TC
> beta <- cbind(beta.LDL, beta.HDL, beta.TG, beta.TC)
Step3: construct a matrix for allele1:
> a1.LDL <- lpd$A1.LDL</pre>
> a1.HDL <- lpd$A1.HDL
> a1.TG <- lpd$A1.TG
> a1.TC <- lpd$A1.TC
> alle1 <- cbind(a1.LDL, a1.HDL, a1.TG, a1.TC)
Step4: give sample sizes of causal variables and calculate pcj
> N.LDL <- lpd$N.LDL
> N.HDL <- lpd$N.HDL
> N.TG <- lpd$N.TG
> N.TC <- lpd$N.TC
> ss <- cbind(N.LDL, N.HDL, N.TG, N.TC)
> sm <- apply(ss,1,sum)
> pcj <- round(sm/max(sm), 6)</pre>
Step5: Construct matrix for frequency of allele1 in each causal variable in 1000G.EUR
> freq.LDL<-lpd$Freq.A1.1000G.EUR.LDL
> freq.HDL<-lpd$Freq.A1.1000G.EUR.HDL
> freq.TG<-lpd$Freq.A1.1000G.EUR.TG
> freq.TC<-lpd$Freq.A1.1000G.EUR.TC
> freq<-cbind(freq.LDL,freq.HDL,freq.TG,freq.TC)</pre>
Step6: construct matrix for sd of each causal variable (here sd is not specific to SNP j). The following sd values
for LDL, HDL, TG and TC were means of standard deviations of these lipoprotein concentrations in plasma over 63
studies from Willer et al [10].
> sd.LDL <- rep(37.42, length(pvj))
> sd.HDL <- rep(14.87, length(pvj))
> sd.TG <-rep(92.73, length(pvj))
> sd.TC <- rep(42.74, length(pvj))
> sd <- cbind(sd.LDL, sd.HDL, sd.TG, sd.TC)
Step7: SNPID and position:
> hg19 <- lpd$SNP_hg19.HDL
> rsid <- lpd$rsid.HDL
Step8: separate chromosome number and SNP position using chrp:
> chr<-chrp(hg=hg19)</pre>
Step9: get new data:
> newdata<-cbind(freq,beta,sd,pvj,ss,pcj)</pre>
> newdata<-cbind(chr,rsid,alle1,as.data.frame(newdata))
> dim(newdata)
Step10: retrieve data from cad and calculate pdj and frequency of coronary artery disease: freq.case in population:
> hg18.d <- cad$chr_pos_b36</pre>
> SNP.d <- cad$SNP #SNPID
> a1.d<- tolower(cad$reference_allele)</pre>
```

```
> N.d <- N.case+N.ctr
> freq.case <- N.case/N.d
Step11: combine these cad variables into new data sheet using cbind
> newcad <- cbind(freq.d, beta.d, N.case, N.ctr, freq.case)
> newcad <- cbind(hg18.d, SNP.d, a1.d, as.data.frame(newcad))
> dim(newcad)
Step12: give name vector of causal variables:
> varname <-c("CAD", "LDL", "HDL", "TG", "TC")
Step13: choose SNPs using parameters LG, Pv, Pc and Pd and create standard beta table using mktable(cdata,
ddata, rt, varname, LG, Pv, Pc, Pd) where
cdata is beta data of SNPs regressed on causal variables. Here cdata=newdata.
ddata is beta data of SNPs regressed on the disease (here CAD). Here ddata=newcad.
LG: a numeric parameter. LG is used to choose SNPs with given interval threshold for linkage disequilibrium (LD).
Default LG = 10.
Pv:a numeric parameter. Pv is used to choose SNPs with a given p-value cutoff. Default Pv = 5 \times 10^{-8}.
Pc: a numeric parameter. Pc is used to choose SNPs with a given cutoff for the proportion of sample size to
maximum sample size in causal variable data. Default Pc=0.979.
Pd: a numeric parameter. Pd is used to choose SNP with a given cutoff for the proportion of sample size to the
```

```
> mybeta <- mktable(cdata=newdata, ddata=newcad, rt="beta", varname=varname, LG=1, Pv=0.00000005, Pc=0.
> dim(mybeta)
> beta <- mybeta[,4:8]</pre>
                         # standard beta table for path analysis
```

- > snp <- mybeta[,1:3] # snp data for annotation analysis

maximum sample size in disease data. Default Pd = 0.979.

SNPs directly contributing to causal variables and disease.

> beta<-DataFrame(beta)</pre>

> freq.d <- cad\$ref_allele_frequency</pre>

> pvalue.d <- cad\$pvalue > beta.d <- cad\$log_odds > N.case <- cad\$N_case > N.ctr <- cad\$N_control

> head(beta)

> data(beta.data)

> beta.data<-DataFrame(beta.data)</pre>

Two-way Scatter Plots for Beta Values of Disease and Undefined Causal Variables

rt has two options: "beta" and "path". If rt="beta" or "Beta" or "B", then mktable return a beta coefficient matrix of SNPs regressed on causal variables and disease, if rt="path" or "Path" or "P" it returns a path coefficient matrix of

To roughly display relationship of the undefined causal variables to disease of study, we use simple R plot function to create two-way plots of beta of multiple SNP regressed on the undefined causal variable versus the disease.

```
> CAD <- beta.data$cad
> LDL <- beta.data$1d1
> HDL <- beta.data$hdl
> TG <- beta.data$tg
> TC <- beta.data$tc
> par(mfrow=c(2, 2), mar=c(5.1, 4.1, 4.1, 2.1), oma=c(0, 0, 0, 0))
> plot(LDL,CAD, pch=19, col="blue", xlab="beta of SNPs on LDL", ylab="beta of SNP on CAD", cex.lab=1.5,
```

- > abline(lm(CAD~LDL), col="red", lwd=2)
- > plot(HDL, CAD, pch=19,col="blue", xlab="beta of SNPs on HDL", ylab="beta of SNP on CAD", cex.lab=1.5,
- > abline(lm(CAD~HDL), col="red", lwd=2)
- > plot(TG, CAD, pch=19, col="blue", xlab="beta of SNPs on TG", ylab="beta of SNP on CAD",cex.lab=1.5, c
- > abline(lm(CAD~TG), col="red", lwd=2)
- > plot(TC,CAD, pch=19, col="blue", xlab="beta of SNPs on TC", ylab="beta of SNP on CAD", cex.lab=1.5, c
- > abline(lm(CAD~TC), col="red", lwd=2)

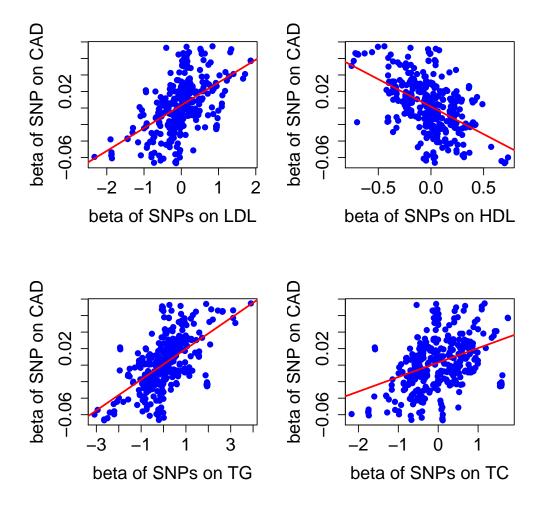


Figure 1: Scatter plots of lipid versus coronary artery disease (CAD) based on beta values of 368 SNPs regression analyses

5 MR and Path Analysis

After **standard beta table** was successfully created by mktable, user can use function path to perform RM analysis (regression analysis of causal variable beta values on the disease or outcome beta values), correlation among the undefined causal variables and disease and path analyses with model of

$$y \sim x_1 + x_2 + \dots + x_m$$

where y is disease or outcome variable, x_i is undefined causal variable i. Path analysis is based on RM analysis(regression coefficients of the causal beta on the disease beta). path will produce three tables: beta coefficients, sd values and t-test results of causal variables on disease or outcome, correlation matrix and path matrix(direct and indirect path coefficients)

```
> data(beta.data)
> mybeta <- DataFrame(beta.data)
> mod <- CAD~LDL+HDL+TG+TC
> pathvalue <- path(betav=mybeta, model=mod, outcome="CAD")</pre>
```

6 Create Path Diagram

Once user finished performance of path, user will have correlation matrix and direct path coefficients of undefined causal variable onto the disease. User is required to open a *csv* file saving results of path analysis and make table in **R Console** or copy correlation matrix without disease correlation coefficients to *excel* and copy direct path coefficients to the last column. Here is an example of making correlation and path table:

```
> mypath <- matrix(NA,3,4)
> mypath[1,] <- c(1.000000, -0.066678, 0.420036, 0.764638)
> mypath[2,] <- c(-0.066678, 1.000000, -0.559718, 0.496831)
> mypath[3,] <- c(0.420036, -0.559718, 1.000000, 0.414346)
> colnames(mypath) <- c("LDL", "HDL", "TG", "path")
> mypath
LDL HDL TG path
1 1.000000 -0.066678 0.420036 0.764638
2 -0.066678 1.000000 -0.559718 0.496831
3 0.420036 -0.559718 1.000000 0.414346
```

The last column is direct path coefficients, we use "path" to name this column. With this table (for example, mypath), user can use functionpathdiagram(pathdata, disease, R2, range) to create path diagram. Here

pathdata is path result data consisting of causal correlation matrix and direct path coefficient vectors.

disease is a string that specifies disease name. If the disease name is long or has multiple words, then we suggest an abbreviated name, for example, coronary artery disease are shorted as "CAD".

R2, a numeric parameter, is R-square obtained from path analysis.

range is range of specified columns for correlation matrix. For example, range = c(2:4) means the correlation coefficient begins with column 2 and end at column 4. For our current example, range = c(1:3).

```
> library(diagram)
```

```
> pathdiagram(pathdata=mypath, disease="CAD", R2=0.988243, range=c(1:3))
```

7 Create Two-level Nested Path Diagram

Consider one of the causal variables is outcome of the other causal variables, but we also concern if all variables are risk factors for the disease of study. In this case we want to construct two-level nested path diagram using function pathdiagram2(pathD,pathO,rangeD,rangeO,disease,R2D,R2O) where

pathD is a R object that is disease path result data consisting of correlation matrix of undefined causal variables to be identified in Mendelian randomization analysis and path coefficient vector of these variables directly causing the disease of study.

pathO is a R object that is outcome path result data consisting of correlation matrix of undefined causal variables and path coefficient vector of these variables directly contributing to outcome. This outcome variable may be one of risk factors or causal variables in disease path data. These variables in pathO are the same with those in pathO.

rangeD is numeric vector, specifies column range for correlation coefficient matrix in pathD, for example, rangeD = c(2:4) means the correlation coefficient begins with column 2 and end at column 4.

rangeO is numeric vector, specifies column range for correlation coefficient matrix in pathO, see example in rangeD.

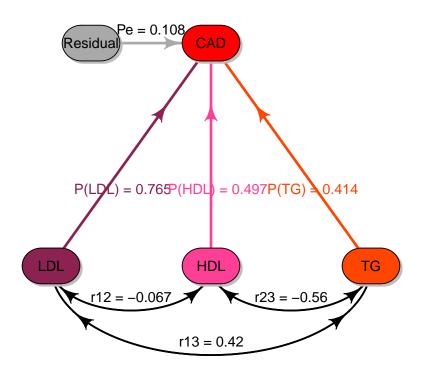


Figure 2: Path diagram demo. This path diagram shows the direct risk effects of causal variables *LDL*, *HDL* and *TG* on the disease *CAD* and their correlations.

disease is a string that specifies disease name. If the disease name is long or has multiple words, then we suggest an abbreviated name, for example, "coronary artery disease" can be shortened as "CAD".

Here is an example of pathD data:

```
> pathD<-matrix(NA,4,5)</pre>
> pathD[1,] <- c(1,
                            -0.070161, 0.399038, 0.907127, 1.210474)
> pathD[2,] <- c(-0.070161,
                                    1, -0.552106, 0.212201, 0.147933)
> pathD[3,] <- c(0.399038, -0.552106, 1, 0.44100, 0.64229)
> pathD[4,] <- c(0.907127, 0.212201, 0.441007, 1, -1.035677)
> colnames(pathD) <- c("LDL", "HDL", "TG", "TC", "path")</pre>
> pathD<-as.data.frame(pathD)</pre>
> pathD
        LDL
                  HDL
                             TG
                                       TC
                                               path
1 1.000000 -0.070161 0.399038 0.907127
                                           1.210474
2 -0.070161 1.000000 -0.552106 0.212201
                                          0.147933
3 0.399038 -0.552106 1.000000 0.441000 0.642290
4 0.907127 0.212201 0.441007 1.000000 -1.035677
```

Using pathD and mypath, we can perform function pathdiagram2 to create a two-level nested path diagram:

> pathdiagram2(pathD=pathD,pathO=mypath,rangeD=c(1:4),rangeO=c(1:3),disease="CAD", R2D=0.536535,R2O=0.9

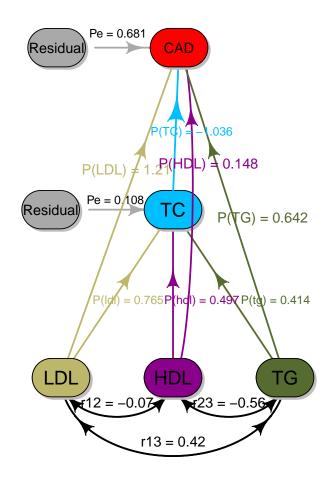


Figure 3: Demo of two-level nested *pathdiagram*. The outside *pathdiagram* shows the direct risk effects of undefined causal variables *LDL*, *HDL*, *TG* and *TC* on the disease *CAD*, the inner *pathdiagram* indicates the direct contributions of *LDL*, *HDL* and *TG* to *TC* and the correlation relationships among these variables.

Note that in the current version, *GMRP* can just create two-level nested path diagram, maybe in the later version, *GMRP* will create more complex path diagrams such as more than one inner path diagram andor multiple-disease path diagram using structure equations.

8 SNP Annotation Analysis

*SNP*s chosen will be annotated in function and chromosome position. Position annotation analysis will give position information of these selected *SNP*s on chromosomes including chromosome distribution and averaged intervals between *SNP*s. We use snpposit to perform *SNP* position annotation. This package provides 358 *SNP*s selected by mktable.

- > data(SNP358.data)
- > SNP358 <- DataFrame(SNP358.data)
- > head(SNP358)

```
3 rs10061689 5 74771387
4 rs10075465 5 74970975
5 rs10115928 9 107650843
6 rs10161126 12 110042348
```

head displays data format required by snpposit. User can create similar table for *SNP* position annotation analysis. To create chromosome position histogram, we need *graphics*:

> library(graphics)

With SNP data SNP358, we can perform SNP position annotation using function snpposit (SNP data, SNPhg19, LG, main, maxd) where

SNPdata is R object that may be hg19 that is a string vector(chr##.######) or two numeric vectors (chromosome number and *SNP* position).

SNPhg19 is a string parameter. It may be "hg19" or "chr". If *SNPhg19*="hg19",then *SNPdata* contains a string vector of hg19 or if *SNPhg19*="chr", then *SNPdata* consists of at lest two numeric columns: chr and posit. chr is chromosome number and posit is *SNP* physical position on chromosomes. Note that "chr" and "posit" are required column names in *SNPdata* if *SNPhg19* = "chr".

LG is a numeric parameter that gives maximum permissible distance between positions. Its default is 10.

main is a string which is title of graph. If no title is given, then man="". Its default is "A".

maxd is a numeric parameter that is maximum distance for truncating chromosome columns. If there are not big differences among 23 chromosomes, then maxd can be set to be larger than 2000kbp. Its default is 2000kbp.

```
> snpposit(SNPdata=SNP358,SNP_hg19="chr",LG=10,main="A",maxd=2000)
```

```
[1] 37 68 7 8 34 10 2 44 13 3 52 12 0 0 5 13 11 7 9
```

SNP function annotation analysis has two steps:

Step 1: copy *SNP ID*s selected to **Batch Query** box in *SNP* Annotation Tool. After setting parameters and running by clicking *run button*, SNP annotation result will be obtained after running for a while. Choose consequence sheet of *UCSC* and copy the results to excel sheet," *Predicted function*" column name is changed to "functionunit" name and save it as *csv* format.

Step2: input the csv file into R Console using R function read.csv. In GMRP package, we have provided data for SNP function annotation analysis.

- > data(SNP368annot.data)
- > SNP368<-DataFrame(SNP368annot.data)
- > SNP368[1:10,]

DataFrame with 10 rows and 6 columns

	SNP	Allele	Strand	Symbol	Gene	function_unit
	<factor></factor>	<factor></factor>	<pre><integer></integer></pre>	${\c ctor>}$	<factor></factor>	<factor></factor>
1	rs10056022	G A	1	POC5	uc003keg.4	3downstream
2	rs10056022	G A	1	POC5	uc003keh.4	3downstream
3	rs10056022	G A	1	ANKDD1B	uc010izt.4	3downstream
4	rs10056022	GIA	1	POC5	uc010izu.3	3downstream
5	rs10061689	G A	1	COL4A3BP	uc003kds.3	intronic
6	rs10061689	G A	1	COL4A3BP	uc003kdt.3	intronic
7	rs10061689	G A	1	COL4A3BP	uc003kdu.2	intronic
8	rs10061689	G A	1	COL4A3BP	uc011csu.2	intronic
9	rs10075465	CIG	1	POC5	uc003keg.4	intronic
10	rs10075465	CIG	1	POC5	uc003keh.4	intronic

We perform function ucscannot to summarize proportions of SNPs coming from gene various elements such as code region, introns, etc., and then create 3D pie with pie3D of plotrix.

> library(plotrix)

ucscannot has four parameters to be inputted: SNPn, A, B and C, a method and UCSC annotated data:

UCSCannot is annotation data obtained by performing SNP tools.

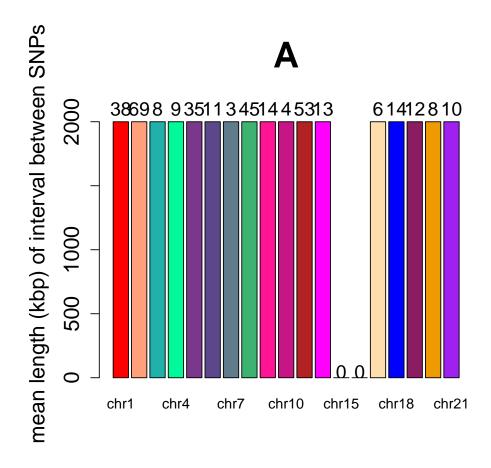


Figure 4: Chromosomal histogram of 358 selected SNPs. Averaged lengths of SNP intervals on chromosome mean that the SNPs on a chromosome have their averaged lengths of intervals between them. All averaged lengths over 2000kb on chromosomes were truncated, the SNPs on these chromosomes have at least more than 2000kbp averaged length of interval. Numbers above chr columns are numbers of SNP distributed on the chromosomes

SNPn is numeric parameter for number of SNPs contained in UCSCannot

A is numeric parameter for title size, default=2.5.

B is numeric parameter for label size, default=1.5.

C is numeric parameter for *labelrad* distance, default=0.1.

method is numeric parameter for choosing figure output methods. It has two options: method=1 has no legend but color and pie components are labeled with gene elements, method=2 has legend over pie. The default =1.

> ucscannot(UCSCannot=SNP368,SNPn=368)

genes exons introns TUR3 UTR5 intergenes upstream downstream [1,] 166 0.01234568 0.8138651 0.01424501 0.001899335 0.004748338 0.05508072 0.09781576

> ucscannot(UCSCannot=SNP368, SNPn=368, A=3, B=2, C=1.3, method=2)

genes exons introns TUR3 UTR5 intergenes upstream downstream [1,] 166 0.01234568 0.8138651 0.01424501 0.001899335 0.004748338 0.05508072 0.09781576

genes exons introns TUR3 UTR5 intergenes upstream downstream [1,] 166 0.01234568 0.8138651 0.01424501 0.001899335 0.004748338 0.05508072 0.09781576

tion of 368 SNPs within 16

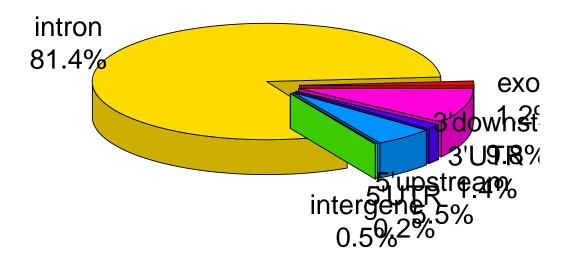


Figure 5: Distribution of the selected SNPs in gene function elements.

genes exons introns TUR3 UTR5 intergenes upstream downstream [1,] 166 0.01234568 0.8138651 0.01424501 0.001899335 0.004748338 0.05508072 0.09781576

tion of 368 SNPs within 16

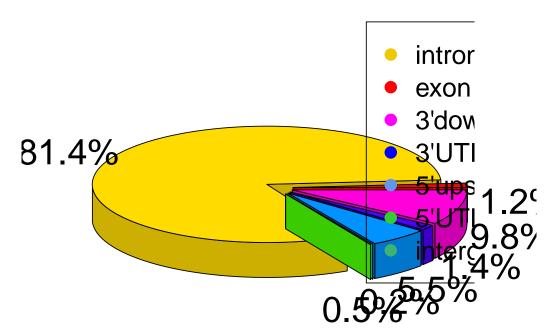


Figure 6: Distribution of the selected *SNP*s in gene function elements.

9 Session Info

> sessionInfo()

R version 3.3.0 (2016-05-03)

Platform: x86_64-pc-linux-gnu (64-bit) Running under: Ubuntu 14.04.4 LTS

locale:

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats4 parallel stats graphics grDevices utils datasets methods

[9] base

other attached packages:

[1] GMRP_1.0.0 GenomicRanges_1.24.0 GenomeInfoDb_1.8.0 IRanges_2.6.0 [5] S4Vectors_0.10.0 BiocGenerics_0.18.0 plotrix_3.6-1 diagram_1.6.3

[9] shape_1.4.2

loaded via a namespace (and not attached):

[1] zlibbioc_1.18.0 BiocStyle_2.0.0 XVector_0.12.0 tools_3.3.0

References

- [1] Murray, C.J. and Lopez, A.D. (1997) Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. *Lancet* **349**: 1436-1442.
- [2] Di Angelantonio, E., Sarwar, N., Perry, P., Kaptoge, S., Ray, K.K., Thompson, A., Wood, A.M., Lewington, S., Sattar, N., Packard, C.J. et al. (2009) Major lipids, apolipoproteins, and risk of vascular disease. *JAMA* **302**: 1993-2000.
- [3] Sarwar, N., Danesh, J., Eiriksdottir, G., Sigurdsson, G., Wareham, N., Bingham, S., Boekholdt, S.M., Khaw, K.T., and Gudnason, V. (2007) Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 Western prospective studies. *Circulation* 115: 450-458.
- [4] Do, R., Willer, C.J., Schmidt, E.M., Sengupta, S., Gao, C., Peloso, G.M., Gustafsson, S., Kanoni, S., Ganna, A., Chen, J. et al. (2013) Common variants associated with plasma triglycerides and risk for coronary artery disease. *Nat Genet* **45**: 1345-1352.
- [5] Sarwar, N., Danesh, J., Eiriksdottir, G., Sigurdsson, G., Wareham, N., Bingham, S., Boekholdt, S.M., Khaw, K.T., and Gudnason, V. (2007) Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 Western prospective studies. Circulation 115: 450-458
- [6] Voight, B.F. Peloso, G.M. Orho-Melander, M. Frikke-Schmidt, R. Barbalic, M. Jensen, M.K. Hindy, G. Holm, H. Ding, E.L. Johnson, T. et al. (2012) Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. *Lancet* 380: 572-580.
- [7] Pichler, I., Del Greco, M.F., Gogele, M., Lill, C.M., Bertram, L., Do, C.B., Eriksson, N., Foroud, T., Myers, R.H., Nalls, M. et al. (2013) Serum iron levels and the risk of Parkinson disease: a Mendelian randomization study. *PLoS Med* **10**: e1001462.
- [8] Smith, G.D. and Ebrahim, S. (2003) 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? *Int J Epidemiol* 32: 1-22.

- [9] Sheehan, N.A., Meng, S., and Didelez, V. (2010) Mendelian randomisation: a tool for assessing causality in observational epidemiology. Methods Mol Biol 713: 153-166.
- [10] Willer, C.J. Schmidt, E.M. Sengupta, S. Peloso, G.M. Gustafsson, S. Kanoni, S. Ganna, A. Chen, J., Buchkovich, M.L. Mora, S. et al (2013) Discovery and refinement of loci associated with lipid levels. *Nat Genet* 45: 1274-1283.
- [11] Wright, S. (1934) The method of path coefficients. Annals of Mathematical Statistics 5 (3): 161-215.
- [12] Wright, S. 1921 Correlation and causation. J.Agricultural Research 20: 557-585.