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calculateHeavyLabels Calculate heavy labeled peptides

Description

A function to calculate heavy labeled peptides for proteins stored in a Proteins object.

Usage

calculateHeavyLabels(proteins, peptides, maxN = 20L, nN = 4L, nC = 3L,
endsWith = c("K", "R", "G"), ...)

Arguments

proteins A Proteins object.

peptides A named character vector containing the peptides of interest. The names must
match the UniProt accession numbers of the proteins in object.

maxN An integer, maximal length of the heavy labeled peptide.

nN An integer, minimal number of amino acids at the N terminus.

nC An integer, minimal number of amino acids at the C terminus.

endsWith A character vector containing the allowed amino acids at the end of the result-
ing sequence (every peptide that doesn’t end with one of these amino acids has
to be one amino acid shorter as maxN).

... Additional parameters passed to .addOverhangs.

Details

The digestion efficiency with enzymes like trypsin is below 100%. That’s why spiked-in peptides
for labeled quantitation have to follow the same digestion rules as the peptides of interest. Therefore
it is necessary to extend the peptides of interest by a few amino acids on the N- and C-terminus.
These extensions should not be a cleavage point of the used enzym. This methods provides an easy
interface to find the sequences for heavy labeled peptides that could be used as spike-ins for the
peptides of interest. Please see the references for a more detailed discussion.

TODO: There should be a function to find the best labels for a given protein automatically.
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Value

A data.frame with 6 columns:

• ProteinThe Protein accession number.

• PeptideThe peptide of interest.

• N_overhangThe added sequence of the N-terminus.

• C_overhangThe added sequence of the C-terminus.

• spikeTideResultA short description of the used creation rule.

• spikeTideThe heavy labeled peptide that represents the peptide of interest best.

Author(s)

Sebastian Gibb <mail@sebastiangibb.de> and Pavel Shliaha

References

The complete description of the issue: https://github.com/sgibb/cleaver/issues/5

Kito, Keiji, et al. A synthetic protein approach toward accurate mass spectrometric quantification
of component stoichiometry of multiprotein complexes. Journal of proteome research 6.2 (2007):
792-800. http://dx.doi.org/10.1021/pr060447s

Examples

## example protein database
data(p, package = "Pbase")

## digest proteins into peptides
cleavedProteins <- cleave(p)

## find spike-ins for the peptides of interest
calculateHeavyLabels(cleavedProteins,

peptides = c(A4UGR9 = "MEGFHIK",
A4UGR9 = "QGNMYTLSK",
A6H8Y1 = "GSTASNPQR"))

etrid2grl From a transcript identifier to GRanges object

Description

This function takes on or more Ensembl transcript identifiers, queries Biomart and constructs a
GRangesList object as would Gviz::BiomartGeneRegionTrack for a genomic region (in fact,
currently most of the code has been taken from Gviz::.fetchBMData and GViz::.chrName is
used to validate chromosome names).

https://github.com/sgibb/cleaver/issues/5
http://dx.doi.org/10.1021/pr060447s
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Usage

etrid2grl(etrid, ens, use.names = FALSE)

Arguments

etrid A vector of Ensembl transcript identifiers.

ens A instance of class Mart from biomaRt. If missing, useMart("ensembl", "hsapiens_gene_ensembl")
is used.

use.names If set to TRUE and etrid has names, then the latter are used to name the output.

Value

A GRangesList object of length length(etrid).

Author(s)

Laurent Gatto

Examples

id <- c("ENST00000612959", "ENST00000317091")
grl1 <- etrid2grl(id[1])
grl1
grl <- etrid2grl(id)
stopifnot(all.equal(id, names(grl)))

isReverse Are all the ranges on the same strand

Description

Are all the ranges on the same strand

Usage

isReverse(gr)

isForward(gr)

Arguments

gr A GRanges object.

Value

A logical if all the ranges in the gr object are on the "-" (or "+" for codeisForward) strand.
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Author(s)

Laurent Gatto

mapToGenome-methods Map range coordinates between proteins and genome space

Description

Map range coordinates between peptide features along proteins and genome (reference) space.

Usage

## S4 method for signature 'Proteins,GRangesList'
mapToGenome(x, genome, drop.empty.ranges = TRUE, ...)
## S4 method for signature 'Proteins,GRangesList'
pmapToGenome(x, genome, drop.empty.ranges = TRUE, ...)

Arguments

x Proteins object containing peptides pranges to be mapped.

genome A GRangesList object used to map between x and the result. The ranges are
typically created by the etrid2grl function.

drop.empty.ranges

TRUE (default) or FALSE. Should empty ranges be dropped?

... Additional parameters passed to inner functions. Currently ignored.

Details

• mapToGenome maps the pranges(x) to the ranges of genome. Unless x and genome are of
length 1, both must be named and items of x are matched to items of genome using their
respective names. Names that do not co-occur in x and genome are ignored. If we have
seqnames(x): "A", "B" and "C"

and
names(genome): "C", "A", "a", "z", "A" and "A".
the names of the output will be
"A", "A", "A" and "C".
The output is ordered by (1) seqnames(x) and (2) the order of the elements in genome.
In case less than length(x) are mapped, as for p["B"] above, a message informs the user.

• pmapToGenome is the element-wise (aka ’parallel’) version of mapToGenome. The i-th pranges(x)
is mapped to the i-th range in genome. x and genome must have the same length and do not
need to be named (names are ignored).

Value

A named GRangesList object, with names matching names(genome). For pmapToGenome, the
return value will have the same length as the inputs.



6 p

Author(s)

Laurent Gatto

See Also

• See ?mapToAlignments in the GenomicAlignments package for mapping coordinates be-
tween reads (local) and genome (reference) space using a CIGAR alignment.

• See ?mapToTranscripts in the GenomicRanges package for mapping coordinates between
features in the transcriptome and genome space.

• The proteinCoding function to remove non-protein coding ranges before mapping peptides
to their genomic coordinates.

• The mapping vignette for examples and visualisations.

See plotAsAnnotationTrack and plotAsAnnotationTrack for more details about the two plot-
ting functions.

Examples

data(p)

grl <- etrid2grl(acols(p)$ENST)
pcgrl <- proteinCoding(grl)

plotAsGeneRegionTrack(grl[[1]],
pcgrl[[1]])

mp <- mapToGenome(p[4], pcgrl[4])

plotAsAnnotationTrack(mp[[1]], pcgrl[[4]])

pmapToGenome(p, pcgrl)

p Data accompanying the Pbase package

Description

A small example Proteins test instance. This object is likely to change on a regular basis. It will be
described more thoroughly when it becomes stable. The MSMS spectra that were searched against
the database are available in the pms MSnExp object.

Usage

data(p)
data(pms)
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See Also

The Pbase-data vignette.

Examples

data(p)
p
data(pms)
pms

plotAsAnnotationTrack Plot gene region and annotation tracks

Description

These functions convert ranges of peptides or exons to AnnotationTrack or GeneRegionTrack
objects from the Gviz package and produces the corresponding plot. The genome argument controls
whether additional ideogram and axis tracks are to be plotted. plotAsAnnotationTrack plots
peptides that span multiple exons in red and connects them with a grey line. See pmapToGenome for
example code.

Usage

plotAsAnnotationTrack(x, ..., genome = "hg38", plot = TRUE)

plotAsGeneRegionTrack(..., genome = "hg38", plot = TRUE)

Arguments

x A Granges object containing peptides genomics coordinates, typically gener-
ated by pmapToGenome. These ranges are converted to a AnnotationTrack.

... One or more GRanges instances, typically resulting from calling etrid2grl,
or, a single GRangesList. These ranges are converted to GeneRegionTrack
instances.

genome A character of length 1, giving the name of the genome. Default is "hg38". If
NULL, no chromosome and axis tracks are displayed.

plot A logical defining if the figure should be plotted. Default is TRUE.

Value

Used for its plotting side effects. Invisible returns a list of tracks.

Author(s)

Laurent Gatto
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Pparams-class Class "Pparams"

Description

Pbase parametrisation infrastructure.

Objects from the Class

New Pbase parameters can be generated with the Pparams() constructor. Pparams instances con-
trol various aspects of Pbase functions, as described in the Slots section below. If no parameters are
passed to the respective functions, default values from Pparams() are used.

Slots

DbFormat: The format of the protein sequence fasta database used to generate the Proteins object.
Currently only "UniProt" is supported. "RefSeq" will be added as well as a mechanism to
support arbitrary and custom fasta header.

IdFormat: The format of the identification data files used to add pfeatures to Protein instances.
Currently, mzIdentML is supported.

IdReader: Package to be used to load the identification data. Currently one of mzR (via the
openIDfile and psms functions) or mzID (via the mzID and flatten functions). Differences
between these two architectures include the metadata available in the Proteins’ pfeatures,
speed and stability (mzR is much faster but less mature and currently susceptible to crashes).

verbose: A logical defining if the various functions display messages (default) or remain silent.

Methods

show signature(object = "Pparams"): ...

Author(s)

Laurent Gatto <lg390@cam.ac.uk>

Examples

Pparams()
Pparams(IdReader = "mzID")

try(Pparams(IdReader = "mzid"))
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proteinCoding-methods Only keep protein coding ranges

Description

Removed all the ranges that are not protein coding. Typically used on the output of etrid2grl
before mapToGenome.

Methods

signature(object="GRanges", mcol="character", coding="character") Removes all the
ranges that are not annotated as protein coding ranges, i.e. ranges whose mcols()$mcol is
different from coding. The default values are mcols()feature and "protein_coding". The
method return the GRanges trimmed from all non-matching ranges.

signature(object="GRangesList", mcol="character", coding="character") As above but
for GRanges in a GrangesList.

Proteins-class The Proteins Class for Proteomics Data And Meta-Data

Description

The Proteins class encapsulates data and meta-data for proteomics experiments. The class stores
the protein sequences as well as specific subsets of interest, typically peptides, as ranges. The
Proteins instances, the sequence and peptide slots are described by their respective metadata at-
tributes.

Objects from the Class

Objects can be created using its constructor Proteins. The constructor either takes a fasta file
name as first argument or, alternatively a named uniprotIds argument with valid UniProt accession
numbers (not yet implemented).

Details

An instance of class Proteins is characterised by one or multiple protein sequences that can be
accessed as AAStringSet with the aa accessor. Sequence-specific annotation, such as accession
numbers, protein and gene names, ... is available with the ametadata or acols methods. General
metadata such as the data of creation of the instance are stored as a list returned by the metadata
accessor, which would typically contain a created character that documents when the object was
created, a reference genome descriptor, a UniProtRelease with the release data of the UniProt
database and possibly others.

Each sequence of a Proteins instance can also be characterised by a set of specific ranges describ-
ing peptides of interest. These peptide features can be extracted as an AAStringSetList, where
each protein sequence contains 0 or more peptide features. These peptides features are encode as
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ranges along the original proteins sequences (a list of IRanges) that can be extracted with the
pranges function. These peptide features have their own metadata describing for example pep-
tide identification scores, number of missed cleavages, ... available with the pmetadata or pcols
methods.

See also the Pbase-data vignette.

Developement notes

Since version 0.2.0, addIdentificationData supports multiple identification file names to be
added to a Proteins instance (argument renamed filenames) using either mzID or mzR. Added
new Pparams parametrisation infrastructure.

See news(package = "Pbase") for a description of all changes.

Other possible metadata fields: Uniprot.sw, biomaRt instances.

Slots

metadata: Object of class "list" containing global metadata, accessed with metadata.

aa: Object of class "AAStringSet" storing the protein sequences, accessed with aa.

pranges: Object of class "CompressedIRangesList" containg protein feature ranges such as the-
oretical (obtain by in silico cleavage) or observed peptides. Accessed as an IRangesList with
pranges or and AAStringSetList with pfeatures.

.__classVersion__: Object of class "Versions" documenting the class verions. Intended for
developer use and debugging.

Extends

Class "Versioned", directly.

Methods

aa signature(x = "Proteins"): Returns an AAStringSet instance representing the sequences
of the proteins.

pfeatures signature(x = "Proteins"): ...

pranges signature(x = "Proteins"): ...

metadata signature(x = "Proteins"): Returns a list of global metadata of the instance
x, including data of instance creation or, if created from a set of UnitProt identifiers (see
constructors above), the UniProt version and UnitProt.WS version number.

ametadata signature(x = "Proteins"): Returns a DataFrame of protein metadata.

acols signature(x = "Proteins"): See ametadata.

pmetadata signature(x = "Proteins"): Returns a list of feature metadata.

pcols signature(x = "Proteins"): See pmetadata.

avarLabels signature(x = "Proteins"): Returns the names of the sequences metadata.

pvarLabels signature(x = "Proteins"): Returns the names of the peptide feature metadata.

seqnames signature(x = "Proteins"): Returns the protein sequence names defined as UniProt
accession numbers.
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length signature(x = "Proteins"): Returns the number of proteins.

[ signature(x = "Proteins", i = "ANY", j = "missing"): Creates a subset of the Proteins
insance.

[[ signature(x = "Proteins", i = "ANY", j = "missing"): Returns an AAString instance
representing the sequence of the selected protein.

pfilter signature(x = "Proteins", mass = "numeric", len = "numeric", ...): ...

cleave signature(x = "Proteins", enzym = "character", missedCleavages = "numeric"):
Cleaves all proteins using the enzym rule while allowing missedCleavages missing cleavages.
Please see cleave for details.

addIdentificationData signature(object = "Proteins",id = "character", rmEmptyRanges = "logical", par =
"Pparams"): Adds identification data from an IdentMzMl file (id) to the Proteins object. If
rmEmptyRanges is TRUE proteins without any identification data are removed. See Pparams
for further settings.

addPeptideFragments signature(object = "Proteins",filenames = "character", rmEmptyRanges = "logical", par =
"Pparams"): Adds identification data from a fasta file (filenames) to the Proteins object.
Please note that both fasta files (the origin of the Proteins object and the ones given in
filenames) must share the same Uniprot accession numbers. If rmEmptyRanges is TRUE
proteins without any identification data are removed. See Pparams for further settings.

plot signature(x = "Proteins", y = "missing"): Plots all proteins and associated peptides
using the Gviz/Pviz infrastructure.

show signature(object = "Proteins"): Displays object summary as text.

Functions

rmEmptyRanges signature(x = "Proteins"): removes proteins with empty peptide ranges.

proteotypic signature(x = "Proteins"): returns a modified Proteins object. pcols(x) gains a
"Proteotypic" logical column, indicating of the peptide is proteotypic or now.

proteinCoverage signature(pattern = "Proteins"): calulates the coverage of proteins. pcols(x)
gains a "Coverage" numeric column.

isCleaver signature(x = "Proteins", missedCleavages = "numeric"): Tests whether a
Protein object was cleaved already.

Author(s)

Laurent Gatto <lg390@cam.ac.uk> and Sebastian Gibb <mail@sebastiangibb.de>

References

Definition of the UniProt fasta comment format: http://www.uniprot.org/help/fasta-headers

See Also

calculateHeavyLabels

http://www.uniprot.org/help/fasta-headers
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Examples

## Create a Protein object reading all proteins from a fasta file.
fastaFiles <- list.files(system.file("extdata", package = "Pbase"),

pattern = "fasta", full.names = TRUE)
p <- Proteins(fastaFiles)
p
metadata(p)

## Adding custom metadata
metadata(p, "Comment") <- "I love R"
metadata(p)

## Plotting
plot(p[1:5], from = 1, to = 30)

## Cleaving
pp <- cleave(p[1:100])
pp <- proteotypic(pp)
pp
pcols(pp[1:2])

plot(pp[1:2], from = 20, to = 30)

## Protein coverage
pp <- proteinCoverage(pp)
avarLabels(pp)
acols(pp)$Coverage
pp

## Add indentification data
idfile <- system.file("extdata/Thermo_Hela_PRTC_selected.mzid",

package = "Pbase")
p <- addIdentificationData(p, idfile)
pranges(p)
pfeatures(p)

plot(p[1])
plot(p[1], # the first protein has 36 peptides

fill = c(rep("orange", 13), rep("steelblue", 13)))
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