OncoSimulR: forward genetic simulation in asexual populations with
arbitrary epistatic interactions and a focus on modeling tumor
progression.

Ramon Diaz-Uriarte
Dept. Biochemistry, Universidad Auténoma de Madrid
Instituto de Investigaciones Biomédicas “Alberto Sols” (UAM-CSIC)
Madrid, Spain*
http://ligarto.org/rdiaz

2016-04-14 (Rev: 7bsdlad)

Contents

1 Introduction

OncoSimulR was originally developed to simulate tumor progression using several models of tumor progres-
sion with emphasis on allowing users to set restrictions in the accumulation of mutations as specified, for
example, by Oncogenetic Trees (OT; [?, ?]) or Conjunctive Bayesian Networks (CBN; [?, ?, ?]), with the
possibility of adding passenger mutations to the simulations and several types of sampling.

Since then, OncoSimulR has been vastly extended to allow you to specify other types of restrictions in
the accumulation of genes, as in the “semimonotone” model of Farahani and Lagergren [?] and the XOR
models of Korsunsky and collaborators [?]. Moreover, different fitness effects related to the order in which
mutations appear can also be incorporated, involving arbitrary numbers of genes. This is different from
“restrictions in the accumulation of mutations”. With order effects, shown empirically in a recent cancer
paper by Ortmann and collaborators [?], the effect of having both mutations “A” and “B" differs depending
on whether “A” appeared before or after "B". More generally, now OncoSimulR also allows you to specify
arbitrary epistatic interactions between arbitrary collections of genes and to model, for example, synthetic
mortality or synthetic viability (again, involving an arbitrary number of genes, some of which might also
depend on other genes, or show order effects with other genes). Moreover, it is possible to specify the
above interactions in terms of modules, not genes. This idea is discussed in, for example, [?, ?]: the
restrictions encoded in, say, CBNs or OT can be considered to apply not to genes, but to modules, where
each module is a set of genes (and the intersection between modules is the empty set) that performs a
specific biological function. Modules, then, play the role of a “union operation” over the set of genes in a
module. In addition, arbitrary numbers of genes without interactions (and with fitness effects coming from
any distribution you might want) are also possible.

The models so far implemented are all continuous time models, which are simulated using the BNB
algorithm of Mather et al. [?]. The core of the code is implemented in C++, providing for fast execution.
Finally, to help with simulation studies, code to simulate random graphs of the kind often seen in CBN,
OTs, etc, is also available.

*ramon.diaz@iib.uam.es, rdiaz02@gmail.com

http://ligarto.org/rdiaz

OncoSimulR: genetic simulation with arbitrary epistasis 2

1.1 Key features of OncoSimulR

As mentioned above, OncoSimulR is now a very general package for forward genetic simulation, with
applicability well beyond tumor progression. This is a summary of some of the key features:

e You can specify arbitrary interactions between genes, with arbitrary fitness effects, with explicit
support for:

— Restrictions in the accumulations of mutations, as specified by Oncogenetic Trees (OTs), Con-
junctive Bayesian Networks (CBNs), semimonotone progression networks, and XOR relation-
ships.

— Epistatic interactions, including, but not limited to, synthetic viability and synthetic lethality.

— Order effects.

e You can add passenger mutations.

e More generally, you can add arbitrary numbers of non-interacting genes with arbitrary fitness effects.

e You can allow for deviations from the OT, CBN, semimonotone, and XOR models, specifying a
penalty for such deviations (the s;, parameter).

e You can conduct multiple simulations, and sample from them with different temporal schemes and
using both whole tumor or single cell sampling.

e Right now, three different models are available, two that lead to exponential growth, one of them
loosely based on Bozic et al. [?], and another that leads to logistic-like growth, based on McFarland
et al. [?].

e Code in C++ is available (though not yet callable from R) for using several other models, including
the one from Beerenwinkel and collaborators [?7].

e You can use very large numbers of genes (e.g., see an example of 50000 in section 77).

e Simulations are generally very fast as | use C4++ to implement the BNB algorithm.

e You can obtain the true sequence of events and the phylogenetic relationships between clones.

Further details about the motivation for wanting to simulate data this way in the context of tumor progres-
sion can be found in [?], where additional comments about model parameters and caveats are discussed.
Are there similar programs? The Java program by [?] offers somewhat similar functionality to the previous
version of OncoSimulR, but it is restricted to at most four drivers (whereas v.1 of OncoSimulR allowed for
up to 64), you cannot use arbitrary CBNs or OTs (or XORs or semimonotone graphs) to specify restrictions,
there is no allowance for passengers, and a single type of model (a discrete time Galton-Watson process)
is implemented. The current functionality of OncoSimulR goes well beyond the the previous version (and,
thus, also the TPT of [?]) allowing you to specify all types of fitness effects in other general forward genetic
simulators such as FFPopSim [?], and some that, to our knowledge (e.g., order effects) are not available
from any genetics simulator.

1.2 Steps in using OncoSimulR

Using this package will often involve the following steps:

1. Specify the fitness effects: sections ?? and 77.
2. Simulate cancer progression: section ??. You can simulate for a single subject or for a set of subjects.
You will need to:

e Decide on a model. This basically amounts to choosing a model with exponential growth (“Exp"
or “Bozic") or a model with gompertz-like growth (“McFL"). If exponential growth, you can
choose whether the the effects of mutations operate on the death rate (“Bozic”) or the birth
rate (“Exp”)".

1t is of course possible to do this with the gompertz-like models, but there probably is little reason to do it. McFarland et
al. [?] discuss this has little effect on their results, for example. In addition, decreasing the death rate will more easily lead to
numerical problems as shown in section ??

OncoSimulR: genetic simulation with arbitrary epistasis 3

e Specify the other parameters of the simulation (when to stop, mutation rate, etc).
Of course, at least for initial playing around, you can use the defaults.
3. Sample from the simulated data: section ??, and do something with those simulated data (e.g., fit
an OT model to them). What you do with the data, however, is outside the scope of this package.

Before anything else, let us load the package. We also explicitly load graph and igraph for the vignette
to work (you do not need that for your usual interactive work). And | set the default color for vertices in
igraph.

library(OncoSimulR)

library(graph)

Loading required package: BiocGenerics
Loading required package: parallel

##
Attaching package: ’BiocGenerics’

The following objects are masked from ’package:parallel’:

##

clusterdpply, clusterApplyLB, clusterCall, clusterEvall{], clusterEzport,
clusterMap, pardpply, parCapply, parLapply, parLapplylLB, parRapply,

parSapply, parSapplyLB

The following objects are masked from ’package:stats’:
##
IQR, mad, xtabs

The following objects are masked from ’package:base’:

##

Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame,
cbind, colnames, do.call, duplicated, eval, evalq, get, grep, grepl,

tntersect, is.unsorted, lapply, lengths, mapply, match, mget, order, paste,
pmaz, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff,

sort, table, tapply, union, unique, unsplit

library(igraph)

##

Attaching package: ’igraph’

The following objects are masked from ’package:graph’:
##
degree, edges, intersection, union

The following objects are masked from ’package:BiocGenerics’:
##
normalize, unton

The following objects are masked from ’package:stats’:
##
decompose, spectrum

The following object is masked from ’package:base’:
##
Union

igraph_options(vertex.color = "SkyBlue2")

http://bioconductor.org/packages/graph
http://cran.fhcrc.org/web/packages/igraph/index.html

OncoSimulR: genetic simulation with arbitrary epistasis

To be explicit, what version are we running?

packageVersion("OncoSimulR")

[1] '2.2.2!

1.3 Two quick examples

Following the above we will run two examples. First a model with a few genes and epistasis:

1. Fitness effects: here we specify a

epistatic model with modules.

sa <- 0.1

sb <- -0.2

sab <- 0.25

sac <- -0.1

sbc <- 0.25

sv2 <- allFitnessEffects(epistasis = c("-A : B" = sb,
"A : -B" = sa,
"A : C" = sac,
"A:B" = sab,

"-A:B:C" = sbc),
geneToModule = c(

U & Uil G,
llBll = Ilbll,
"C" o= "c"))
evalAllGenotypes(sv2, order = FALSE, addwt = TRUE)
Genotype Fitness
1 WT 1.000
2 al 1.100
3 a2 1.100
4 b 0.800
5 © 1.000
6 al, a2 1.100
7 al, b 1.250
8 al, c 0.990
9 a2, b 1.250
10 a2, c 0.990
11 B, @ 1.000
12 al, a2, b 1.250
13 al, a2, c 0.990
14 al, b, c 1.125
15 a2, b, c 1.125
16 al, a2, b, c 1.125

2. Simulate the data. Here we use the "McFL" model and set explicitly
parameters for mutation rate, final and initial sizes, etc.
RNGkind ("Mersenne-Twister")

set.seed(983)

epl <- oncoSimulIndiv(sv2, model = "McFL",
mu = 5e-6,
sampleEvery = 0.02,

OncoSimulR: genetic simulation with arbitrary epistasis

keepEvery = 0.5,
initSize = 2000,
finalTime = 3000,
onlyCancer = FALSE)

3. We will not analyze those data any further. We will only plot them.
For the sake of a small plot, we thin the data.
par (mfrow = c(2, 1))
plot(epl, show = "drivers", xlim = c(0, 1500),
thinData = TRUE, thinData.keep = 0.5)
Increase ylim and legend.ncols to avoid overlap of
legend with rest of figure
plot(epl, show = "genotypes", ylim = c(0, 4500), legend.ncols = 4,
xlim = c¢(0, 1500),
thinData = TRUE, thinData.keep = 0.5)

OncoSimulR: genetic simulation with arbitrary epistasis

Number.of drivers
— 0
S _ 1
Lo —_— D
K9]
©
o _
°© o |
) Kol
o]
€
=)
p _
m p—
‘_| p—
| | | |
0 500 1000 1500
Time units
o Genotypes
S 4= wWT al,a2 = al,c b
~ al al, b a2 c
o 38 _
3 3
‘B o
0 S _|
g <
=)
p
o
o _|
o
—
O p—
| | | |
0 500 1000 1500

Time units

OncoSimulR: genetic simulation with arbitrary epistasis

As a second example, we will use a model where we specify restrictions in the order of accumulation
of mutations using the pancreatic cancer poset in Gerstung et al. [?] (see more details in section ?7?):

pancr <- allFitnessEffects(
data.frame(parent = c("Root", rep("KRAS", 4),

"SMAD4", "CDNK2A",
"TP53", "TP53", "MLL3"),

child = c("KRAS","SMADA", "CDNK2A",
"TP53", "MLL3",
rep("PXDN", 3), rep("TGFBR2", 2)),

s =0.1,

sh = -0.9,

typeDep = "MN"))

plot (pancr)

OncoSimulR: genetic simulation with arbitrary epistasis

2. Simulate from it.
set.seed(1) ## Fiz the seed, so we can repeat it
ep2 <- oncoSimulIndiv(pancr, model = "McFL",
mu = le-6,
sampleEvery = 0.02,
keepEvery = 1,
initSize = 1000,
finalTime = 10000,
onlyCancer = FALSE)

3. What genotypes and drivers we get? And play with limits
to show only parts of the data. We also thin them.
par (mfrow = c(2, 1))
par(cex = 0.7)
plot(ep2, show = "genotypes", xlim = c(2000, 4000),
ylim = c(0, 2400),
thinData = TRUE, thinData.keep = 0.5)
plot(ep2, show = "drivers", addtot = TRUE,
thinData = TRUE, thinData.keep = 0.5)

OncoSimulR: genetic simulation with arbitrary epistasis

Number of cells

Number of cells

1000 1500 2000

500

500

50 100

10

WT

KRAS
KRAS, MLL3

CDNK2A, KRAS, MLL3

KRAS, MLL3, PXDN

KRAS, MLL3, PXDN, SMAD4
KRAS, MLL3, SMAD4

KRAS, MLL3, SMAD4, TGFBR2
KRAS, MLL3, SMAD4, TP53

Genotypes

GFBR?2

KRAS, MLL3, TP53
KRAS, PXDN
KRAS, SMAD4
KRAS, TGFBR2
KRAS, TP53

MLL3

PXDN

SMAD4

TP53

2000

2500

I I I
3000 3500 4000

Time units

Number of drivers

w0

4000 6000 8000

Time units

OncoSimulR: genetic simulation with arbitrary epistasis 10

1.4 Versions

In this vignette and the documentation | often refer to version 1 (v.1) and version 2 of OncoSimulR. Version
1 is the version available up to, and including, BioConductor v. 3.1. Version 2 of OncoSimulR is available
starting from BioConductor 3.2 (and, of course, available too from development versions of BioC). So, if
you are using the current stable or development version of BioConductor, or you grab the sources from
github (https://github.com/rdiaz02/OncoSimul) you are using what we call version 2.

2 Specifying fitness effects

2.1 Introduction to the specification of fitness effects

With OncoSimulR you can specify different types of effects on fitness:

e A special type of epistatic effect that is particularly amenable to be represented as a graph. In this
graph, having, say, “B" be a child of "A" means that B can only accumulate if A is already present.
This is what OT [?, ?], CBN [?, 7, ?], progression networks [?], and other similar models [?] mean.
Details are provided in section ??. Note that this is not an order effect (discussed below): the fitness
of a genotype from this DAGs is a function of whether or not the restrictions in the graph are satisfied,
not the historical sequence of how they were satisfied.

o Effects where the order in which mutations are acquired matters, as illustrated in section ??. There
is, in fact, empirical evidence of these effects [?]. For instance, the fitness of genotype “A, B" would
differ depending on whether A or B was acquired first.

e General epistatic effects (e.g., section 7?), including synthetic viability (e.g., section ??) and synthetic
lethality/mortality (e.g., section ?7?).

e Genes that have independent effects on fitness (section ?77?).

Modules (see section ??) allow you to specify any of the above effects (except those for genes without
interactions, as it would not make sense there) in terms of modules (sets of genes), not individual genes.
We will introduce them right after ??, and continue using them thereafter.

2.1.1 How to specify fitness effects effects

A guiding design principle of OncoSimulR is to try to make the specification of those effects as simple as
possible but also as flexible as possible.

Conceptually, the simplest way is to specify the mapping of all genotypes to fitness explicitly. This can be
done with OncoSimulR (e.g., see sections ??, ?? and ?? or the example in ??), but this only makes sense
for subsets of the genes or for very small genotypes, as you probably do not want to be explicit about the
mapping of 2¥ genotypes to fitness when k is larger than, say, four or five, and definitely not when k& is 10.

An alternative general approach followed in many genetic simulators is to specify how particular combina-
tions of alleles modify the wildtype genotype or the genotype that contains the individual effects of the
interacting genes (e.g., see equation 1 in the supplementary material for FFPopSim). For example, if we
specify that “A" contributes 0.04, “B" contributes 0.03, and "A:B" contributes 0.1, that means that the
fitness of the “A, B" genotype is that of the wildtype (1, by default), plus (actually, times —see section
??) the effects of A, plus (times) the effects of B, plus (times) the effects of “A:B”.

As we will see in the examples (e.g., see sections 7?7, ??, 7?) OncoSimulR makes it simple to be explicit
about the mapping of specific genotypes, while also using the “how this specific effects modifies previous
effects” logic, leading to a flexible specification. This also means that in many cases the same fitness
effects can be specified in several different ways.

https://github.com/rdiaz02/OncoSimul

OncoSimulR: genetic simulation with arbitrary epistasis 11

2.2 Numeric values of fitness effects

We evaluate fitness using the usual (e.g. [?, ?, ?, ?]) multiplicative model: fitness is [[(1 + s;) where s;
is the fitness effect of gene (or gene interaction) 7. In all models except Bozic, this fitness refers to the
growth rate (the death rate being fixed to 1%). The original model of McFarland [?] has a slightly different
parameterization, but you can go easily from one to the other (see section ?77?).

For the Bozic model, however, the birth rate is set to 1, and the death rate then becomes [[(1 — s;).

2.2.1 McFarland parameterization

In the original McFarland model [?], the effects of drivers contribute to the numerator of the birth rate,
((llj;Z; where D and P are, respectively,
the total number of drivers and passengers in a genotype, and here the fitness effects of all drivers is the
same (s) and that of all passengers the same too (s;,). However, we can map from this ratio to the usual
product of terms by using a different value of s,, that we will call sy, = —s,/(1+ s;,) (see [?], his eq. 2.1
in p. 9). This reparameterization applies to v.2. In v.1 we use the same parameterization as in the original

one in McFarland [?].

and those of the (deleterious) passengers to the denominator as:

2.2.2 No viability of clones and types of models

For all models where fitness affects directly the birth rate (for now, all except Bozic), if you specify that
some event (say, mutating gene A) has s4 < —1, if that event happens then birth rate becomes zero which
is taken to indicate that the clone is not even viable and thus disappears immediately without any chance
for mutation®.

Models based on Bozic, however, have a birth rate of 1* and mutations affect the death rate. In this case,
a death rate larger than birth rate, per se, does not signal immediate extinction and, moreover, even for
death rates that are a few times larger than birth rates, the clone could mutate before becoming extinct®.
How do we signal immediate extinction or no viability in this case? You can set the value of s = —o0.

In general, if you want to identify some mutations or some combinations of mutations as leading to
immediate extinction, no viability, of the affected clone, set it to —oo as this would work even if we later
change how birth rates of 0 are handled. Most examples below evaluate fitness by its effects on the birth
rate. You can see one where we do it both ways in Section 77,

2You can change this if you really want to.

3This is a shortcut that we take because we think that it is what you mean. Note, however, that technically a clone with
birth rate of 0 might have a non-zero probability of mutating before becoming extinct because in the continuous time model
we use mutation is not linked to reproduction. In the present code, we are not allowing for any mutation when birth rate is
0. There are other options, but none which | find really better. An alternative implementation makes a clone immediately
extinct if and only if any of the s; = —co. However, we still need to handle the case with s; < —1 as a special case. We either
make it identical to the case with any s; = —oo or for any s; > —oo we set (1 +s;) = max(0,1+ s;) (i.e., if s; < —1 then
(1 4 s;) = 0), to avoid obtaining negative birth rates (that make no sense) and the problem of multiplying an even number
of negative numbers. | think only the second would make sense as an alternative.

*In the C++ code there is a different model, not directly callable from R for now, called “bozic2" that is slightly different.
These comments apply to the model that is right now callable from R

SWe said “a few times”. For a clone of population size 1 —which is the size at which all clones start from mutation—, if
death rate is, say, 90 but birth rate is 1, the probability of mutating before becoming extinct is very, very close to zero for all
reasonable values of mutation rate

OncoSimulR: genetic simulation with arbitrary epistasis 12

2.3 Genes without interactions

This is a imple scenario. Each gene, ¢, has a fitness effect s; if mutated. The s; can come from any
distribution you want. As an example let's use three genes. We know there are no order effects, but we
will also see what happens if we examine genotypes as ordered.

ail <- evalAllGenotypes(allFitnessEffects(
noIntGenes = c(0.05, -.2, .1)), order = FALSE)

We can easily verify the first results:
ail

Genotype Fitness

1 1 1.050
2 2 0.800
3 3 1.100
4 1, 2 0.840
5 1, 3 1.155
6 2, 3 0.880
7 1, 2, 3 0.924
all(ail[, "Fitness"] ==c((1 + .05), (1 - .2), (1 + .1),
(1 + .05) = (1 - .2),
(1 + .05) = (1 + .1),
(1 -.2) = (1 + .1),
(1 + .05) « (1 - .2) x (1 + .1)))
[1] TRUE

And we can see that considering the order of mutations (see section ??) makes no difference:

(ai2 <- evalAllGenotypes(allFitnessEffects(
noIntGenes = c(0.05, -.2, .1)), order = TRUE,
addwt = TRUE))

Genotype Fitness
1 WT 1.000
2 1 1.050
3 2 0.800
4 3 1.100
5 1>2 0.840
6 1 >3 1.155
7 2>1 0.840
8 2 >3 0.880
9 3>1 1.155
10 3>2 0.880
111 >2 >3 0.924
12 1 >3 > 2 0.924
13 2 >1 >3 0.924
14 2 >3 > 1 0.924
156 3 > 1 >2 0.924
16 3 > 2 >1 0.924

(The meaning of the notation in the output table is as follows: “WT" denotes the wild-type, or non-
mutated clone. The notation x > y means that a mutation in “x” happened before a mutation in "y".

OncoSimulR: genetic simulation with arbitrary epistasis 13

A genotype x > y _ z means that a mutation in “x" happened before a mutation in “y"; there is also a

mutation in “z", but that is a gene for which order does not matter).

And what if | want genes without interactions but | want modules (see section ??)? Go to section ?7?.

2.4 Restrictions in the order of mutations as extended posets
2.4.1 AND, OR, XOR relationships

The literature on oncogenetic trees, CBNs, etc, has used graphs as a way of showing the restrictions in the
order in which mutations can accumulate. The meaning of “convergent arrows” in these graphs, however,
differs. In Figure 1 of [?] we are shown a simple diagram that illustrates the three basic different meanings
of convergent arrows using two parental nodes. We will illustrate it here with three. Suppose we focus on

node “g” in the following figure (we will create it shortly)

data(examplesFitnessEffects)
plot (examplesFitnessEffects[["cbn1"]1])

e In relationships of the type used in Conjunctive Bayesian Networks (CBN) [?, e.g.], we are modeling
an AND relationship, also called CMPN by [?] or monotone relationship by [?]. If the relationship
in the graph is fully respected, then “c", "d", and "e" are already
mutated.

e Semimonotone relationships sensu [?] or DMPN sensu [?] are OR relationships:
one or more of “c”, “d", or “e" are already mutated.
e XMPN relationships ([?]) are XOR relationships: “g" will be present only if exactly one of “c”, “d”,

or “e" is present.

g” will only appear if all of

g” will appear if

Note that oncogenetic trees ([?, ?]) need not deal with the above distinctions, since the DAGs are trees:
no node has more than one incoming connection or more than one parent®.

60Ts and CBNs have some other technical differences about the underlying model they assume, such as the exponential
waiting time in CBNs. We will not discuss them here.

OncoSimulR: genetic simulation with arbitrary epistasis 14

To have a flexible way of specifying all of these restrictions, we will want to be able to say what kind of
dependency each child node has on its parents.

2.4.2 Fitness effects

Those DAGs specify dependencies and, as explained in [?], it is simple to map them to a simple evolutionary
model: any set of mutations that does not conform to the restrictions encoded in the graph will have a
fitness of 0. However, we might not want to require absolute compliance with the DAG. This means we
might want to allow deviations from the DAG with a corresponding penalization that is, however, not
identical to setting fitness to 0 (again, see [?]). This we can do by being explicit about the fitness effects
of these deviations from the restrictions encoded in the DAG. We will use below a column of s for the
fitness effect when the restrictions are satisfied and a column of sh when they are not. (See also ?? for
the details about the meaning of the fitness effects).

That way of specifying fitness effects makes it also trivial to use the model in Hjelm et al. [?] where all
mutations might be allowed to occur, but the presence of some mutations increases the probability of
occurrence of other mutations. For example, the values of sh could be all small positive ones (or for mildly
deleterious effects, small negative numbers), while the values of s are much larger positive numbers.

2.4.3 Extended posets

In version 1 of this package we used posets in the sense of [?, ?], as explained in section ?? and in the help
for poset. Here, we continue using two columns, that specify parents and children, but we add columns for
the specific values of fitness effects (both s and sh —i.e., fitness effects for what happens when restrictions
are and are not satisfied) and for the type of dependency as explained in section ?7?.

We can now illustrate the specification of different fitness effects.

2.4.4 A first conjunction (AND) example

cs <- data.frame(parent = c(rep("Root", 4), "a", "b", "d", "e", "c"),
child = C(Ilall np" ngn P nen nen rep("g“ 3))
s = 0.1,
sh = -0.9,
typeDep = "MN")

cbnl <- allFitnessEffects(cs)

(We skip one letter, just to show that names need not be consecutive or have any particular order.)

We can get a graphical representation using the default “graphNEL”
plot(cbnl)

OncoSimulR: genetic simulation with arbitrary epistasis 15

ot

¥
®

or one using “igraph”:

plot(cbnl, "igraph")

Since this is a tree, the reingold.tilford layout is probably the best here, so you might want to use that:

library(igraph)
plot(cbnl, "igraph", layout = layout.reingold.tilford)

OncoSimulR: genetic simulation with arbitrary epistasis 16

7

@
Y
@

And what is the fitness of all genotypes?
gfs <- evalAllGenotypes(cbnl, order = FALSE)

gfs[1:15,]

Hit Genotype Fitness
1 a 1.10
2 b 1.10
3 € 0.10
4 d 1.10
5 e 1.10
6 g 0.10
7 a, b 1.21
8 a, c 0.11
9 a, d 1.21
10 a, e 1.21
11 a, g 0.11
12 o, @ 0.11
13 b, d 1.21
14 b, e 1.21
15 b, g 0.11

You can verify that for each genotype, if a mutation is present without all of its dependencies present, you
get a (1 —0.9) multiplier, and you get a (14 0.1) multiplier for all the rest with its direct parents satisfied.

For example, genotypes “a”, or “b", or “d", or “e” have fitness (1 + 0.1), genotype “a, b, ¢’ has fitness
(14 0.1)3, but genotype “a, ¢ has fitness (14 0.1)(1 — 0.9) = 0.11.

OncoSimulR: genetic simulation with arbitrary epistasis 17

2.4.5 A second conjunction example

Let's try a first attempt at a somewhat more complex example, where the fitness consequences of different
genes differ.

cl <- data.frame(parent = c(rep("Root", 4), "a", "b", "d", "e", "c"),
child = c("a", "b", "d", "e", "c", "c", rep('"g", 3)),
s = c(0.01, 0.02, 0.03, 0.04, 0.1, 0.1, rep(0.2, 3)),
sh = c(rep(0, 4), c(-.1, -.2), c(-.05, -.06, -.07)),
typeDep = "MN")

try(fcl <- allFitnessEffects(cl))

That is an error because the “sh” varies within a child, and we do not allow that for a poset-type specifi-
cation, as it is ambiguous. If you need arbitrary fitness values for arbitrary combinations of genotypes, you
can specify them using epistatic effects as in section ?? and order effects as in section ?7.

Why do we need to specify as many “s” and “sh” as there are rows (or a single one, that gets expanded
to those many) when the “s" and “sh” are properties of the child node, not of the edges? Because, for

ease, we use a data.frame.

We fix the error in our specification. Notice that the “sh” is not set to —1 in these examples. If you want
strict compliance with the poset restrictions, you should set sh = —1 or, better yet, sh = —oo (see section
??), but having an sh > —1 will lead to fitnesses that are > 0 and, thus, is a way of modeling small
deviations from the poset (see discussion in [?]).

Note that for those nodes that depend only on “Root” the type of dependency is irrelevant.

cl <- data.frame(parent = c(rep("Root", 4), "a", "b", "d4d", "e", "c"),
child = c("a", "b", "d", "e", "c", "c", rep("g", 3)),
s = ¢(0.01, 0.02, 0.03, 0.04, 0.1, 0.1, rep(0.2, 3)),
sh = c(rep(0, 4), c(-.9, -.9), rep(-.95, 3)),
typeDep = "MN")

cbn2 <- allFitnessEffects(cl)

We could get graphical representations but the figures would be the same as in the example in section 77,
since the structure has not changed, only the numeric values.

What is the fitness of all possible genotypes? Here, order of events per se does not matter, beyond that
considered in the poset. In other words, the fitness of genotype “a, b, ¢ is the same no matter how we

got to “a, b, ¢’. What matters is whether or not the genes on which each of “a”, "b”, and “c" depend
are present or not (I only show the first 10 genotypes)

gcbn2 <- evalAllGenotypes(cbn2, order = FALSE)
gcbn2[1:10,]

#i# Genotype Fitness

1 a 1.0100
2 b 1.0200
3 c 0.1000
4 d 1.0300
5 e 1.0400
6 g 0.0500
B 7 a, b 1.0302
8 a, ¢ 0.1010

-

OncoSimulR: genetic simulation with arbitrary epistasis 18

9 a, d 1.0403
10 a, e 1.0504

Of course, if we were to look at genotypes but taking into account order of occurrence of mutations, we

would see no differences

gcbn2o0 <- evalAllGenotypes(cbn2, order = TRUE, max = 1956)
gcbn2o0[1:10,]

Ht Genotype Fitness

1 a 1.0100
2 b 1.0200
3 c 0.1000
4 d 1.0300
5 e 1.0400
6 g 0.0500
7 a>b 1.0302
8 a>c 0.1010
9 a>d 1.0403
10 a>e 1.0504

(The max = 1956 is there so that we show all the genotypes, even if they are more than 256, the default.)

You can check the output and verify things are as they should. For instance:

all.equal(
gcbn2[c(1:21, 22, 28, 41, 44, 56, 63) , "Fitness"],
c(1.01, 1.02, 0.1, 1.03, 1.04, 0.05,
1.01 * ¢(1.02, 0.1, 1.03, 1.04, 0.05),

1.02 * ¢(0.10, 1.03, 1.04, 0.05),
0.1 *x ¢(1.03, 1.04, 0.05),
1.03 * c(1.04, 0.05),
1.04 * 0.05,
1.01 x 1.02 *x 1.1,
1.01 * 0.1 x 0.05,
1.03 * 1.04 x 0.05,
1.01 * 1.02 * 1.1 * 0.05,
1.03 * 1.04 x 1.2 x 0.1,
1.010 * 1.02 * 1.03 * 1.04 * 1.1 % 1.2
))
[1] TRUE

A particular one that is important to understand is

gcbn2[56,]

Hit Genotype Fitness
56 c, d, e, g 0.128544

all.equal(gcbn2[56, "Fitness"], 1.03 * 1.04 * 1.2 * 0.10)

[1] TRUE

where “g" is taken as if its dependencies are satisfied (as “c”, "d", and “e” are present) even when the

dependencies of “c” are not satisfied (and that is why the term for “c" is 0.9).

OncoSimulR: genetic simulation with arbitrary epistasis

2.4.6 A semimonotone or “OR” example

We will reuse the above example, changing the type of relationship:

sl <- data.frame(parent = c(rep("Root", 4), "a", "b", "d4d", "e", "c"),
Chlld = C(Ilall’ Ilbll, "d", ||e||’ IICII’ "C", rep("g“, 3)) s
s = ¢(0.01, 0.02, 0.03, 0.04, 0.1, 0.1, rep(0.2, 3)),
sh = c(rep(0, 4), c(-.9, -.9), rep(-.95, 3)),
typeDep = "SM")

smnl <- allFitnessEffects(sl)

It looks like this (where edges are shown in blue to denote the semimonotone relationship):

ot

Y
®

plot(smni)

gsmnl <- evalAllGenotypes(smnl, order = FALSE)

19

Having just one parental dependency satisfied is now enough, in contrast to what happened before. For

instance:

gcbn2[c(8, 12, 22),]

#i#t Genotype Fitness
8 a, c 0.10100
12 b, ¢ 0.10200
22 a, b, c 1.13322

gsmnl[c(8, 12, 22),]

Ht Genotype Fitness
8 a, ¢ 1.11100
12 b, ¢ 1.12200
22 a, b, ¢ 1.13322

gcbn2[c(20:21, 28), 1]

#i#t Genotype Fitness
20 d, g 0.05150
21 e, g 0.05200

OncoSimulR: genetic simulation with arbitrary epistasis 20

28 a, c, g 0.00505
gsmnl[c(20:21, 28),]

#i# Genotype Fitness
20 d, g 1.2360
21 e, g 1.2480
28 a, c, g 1.3332

2.4.7 An “XMPN” or “XOR” example

Again, we reuse the example above, changing the type of relationship:

x1 <- data.frame(parent = c(rep("Root", 4), "a", "b", "d", "e", "c"),
child = c("a", "b", "4d", "e", "c", "c", rep("g", 3)),
s = ¢(0.01, 0.02, 0.03, 0.04, 0.1, 0.1, rep(0.2, 3)),
sh = c(rep(0, 4), c(-.9, -.9), rep(-.95, 3)),
typeDep = "XMPN")

xorl <- allFitnessEffects(x1)

It looks like this (edges in red to denote the “XOR" relationship):

oot

Y
®

plot (xor1l)

gxorl <- evalAllGenotypes(xorl, order = FALSE)

Whenever “c” is present with both “a” and "b", the fitness component for “c” will be (1 —0.1). Similarly

for “g" (if more than one of "d", “e", or "c" is present, it will show as (1 — 0.05)). For example:

gxorl[c(22, 41),]

#i# Genotype Fitness
22 a, b, c 0.10302
41 d, e, g 0.05356

c(1.01 x 1.02 * 0.1, 1.03 * 1.04 * 0.05)
[1] 0.10302 0.05356

OncoSimulR: genetic simulation with arbitrary epistasis 21

However, having just both “a” and “b" is identical to the case with CBN and the monotone relationship

(see sections 7?7 and ?7). If you want the joint presence of “a” and “b" to result in different fitness than

the product of the individual terms, without considering the presence of “c”, you can specify that using
general epistatic effects (section ?7?).

We also see a very different pattern compared to CBN (section ??) here:
gxorl1[28,]

H# Genotype Fitness
28 a, c, g 1.3332

1.01 « 1.1 % 1.2

[1] 1.3332

as exactly one of the dependencies for both “c” and “g" are satisfied.

But
gxorl[44,]

Genotype Fitness
44 a, b, c, g 0.123624

1.01 * 1.02 *x 0.1 x 1.2

[1] 0.123624

is the result of a 0.1 for “c” (and a 1.2 for “g" that has exactly one of its dependencies satisfied).

2.4.8 Posets: the three types of relationships

p3 <- data.frame(parent = c(rep("Root", 4), "a", "b", "d", "e", "c", "f"),
child = c("a", "b", "d", "e", "c", "c", "f", "fu, nguw ugn)
s = c(0.01, 0.02, 0.03, 0.04, 0.1, 0.1, 0.2, 0.2, 0.3, 0.3),
sh = c(rep(0, 4), c(-.9, -.9), c(-.95, -.95), c(-.99, -.99)),
typeDep = c(rep("--", 4),
"XMPN", "XMPN", "MN", "MN", "SM", "SM"))
fp3 <- allFitnessEffects(p3)

This is how it looks like:
plot (£p3)

OncoSimulR: genetic simulation with arbitrary epistasis

S

®)

plot (fp3, "igraph", layout.reingold.tilford)

We can also use “igraph”:

Koot

(| R ¢, P E—

Q

22

OncoSimulR: genetic simulation with arbitrary epistasis 23

gfp3 <- evalAllGenotypes(fp3, order = FALSE)

Let's look at a few:

gfp3[c(9, 24, 29, 59, 60, 66, 119, 120, 126, 127),]

#i# Genotype Fitness
9 a, ¢ 1.1110000
24 d, £ 0.0515000
29 a, b, ¢ 0.1030200
59 c, £, g 0.0065000
60 d, e, £ 1.2854400
66 a, b, ¢, £ 0.0051510
119 c, d, e, £, g 0.1671072
120 a, b, ¢, d, e, £ 0.1324260
126 b, c, d, e, f, g 1.8749428
127 a, b, ¢, d, e, £, g 0.1721538

c(1.01 *x 1.1, 1.03 * .05, 1.01 * 1.02 * 0.1, 0.1 * 0.05 * 1.3,
1.03 * 1.04 x 1.2, 1.01 *x 1.02 * 0.1 * 0.05,

.1 % 1.03 x 1.04 x 1.2 % 1.3,

.01 * 1.02 x 0.1 *x 1.03 *x 1.04 * 1.2,

.02 x 1.1 x 1.03 * 1.04 x 1.2 x 1.3,

.01 % 1.02 * 1.03 *x 1.04 * 0.1 * 1.2 x 1.3)

= = = O

[1] 1.1110000 0.0515000 0.1030200 0.0065000 1.2854400 0.0051510
[7] 0.1671072 0.1324260 1.8749428 0.1721538

As before, looking at the order of mutations makes no difference (look at the test directory to see a test
that verifies this assertion).

2.5 Modules

As already mentioned, we can think in all the effects of fitness in terms not of individual genes but, rather,
modules. This idea is discussed in, for example, [?, ?]: the restrictions encoded in, say, the DAGs can be
considered to apply not to genes, but to modules, where each module is a set of genes (and the intersection
between modules is the empty set). Modules, then, play the role of a “union operation” over sets of genes.
Of course, if we can use modules for the restrictions in the DAGs we should also be able to use them for
epistasis and order effects, as we will see later (e.g., ?7).

2.5.1 What does a module provide

Modules can provide very compact ways of specifying relationships when you want to, well, model the
existence of modules. For simplicity suppose there is a module, “A”, made of genes “al” and “a2”, and a
module “B”, made of a single gene “bl". Module “B" can mutate if module “A” is mutated, but mutating
both “al” and “a2” provides no additional fitness advantage compared to mutating only a single one of
them. We can specify this as:

s <- 0.2

sboth <- (1/(1 + s)) - 1

m0 <- allFitnessEffects(data.frame(
parent = c("Root", "Root", "al", "a2"),
ehililsl 5 @i, Tepl, T, TR,

OncoSimulR: genetic simulation with arbitrary epistasis 24

s = s,
sh = -1,
typeDep = "OR"),
epistasis = c("al:a2" = sboth))
evalAllGenotypes(mO, order = FALSE, addwt = TRUE)

#H#t Genotype Fitness

1 WT 1.00
2 al 1.20
3 a2 1.20
4 b 0.00
5 al, a2 1.20
6 al, b 1.44
7 a2, b 1.44
8 al, a2, b 1.44

Note that we need to add an epistasis term, with value “sboth” to capture the idea of “mutating both
“al” and “a2" provides no additional fitness advantage compared to mutating only a single one of them”;
see details in section ?7.

Now, specify it using modules:

s <- 0.2

ml <- allFitnessEffects(data.frame(
parent = c("Root", "A"),
child = c("A", "B"),

s = s,
sh = -1,
typeDep = "OR"),
geneToModule = c("Root" = "Root",
NAY = a1, a2",
"B" = "bi"))
evalAllGenotypes(ml, order = FALSE, addwt = TRUE)
#Ht Genotype Fitness
1 WT 1.00
2 al 1.20
3 a2 1.20
4 b1l 0.00
5 al, a2 1.20
6 al, bl 1.44
7 a2, bl 1.44
8 al, a2, bl 1.44

This captures the ideas directly. The typing savings here are small, but they can be large with modules
with many genes.

2.5.2 Specifying modules

How do you specify modules? The general procedure is simple: you pass a vector that makes explicit the
mapping from modules to sets of genes. We just saw an example. There are several additional examples
such as 7?7, 77, 77.

It is important to note that, once you specify modules, we expect all of the relationships (except those that

OncoSimulR: genetic simulation with arbitrary epistasis 25

involve the non interacting genes) to be specified as modules. Thus, all elements of the epistasis, posets
(the DAGs) and order effects components should be specified in terms of modules. But you can, of course,
specify a module as containing a single gene (and a single gene with the same name as the module).

What about the “Root” node? If you use a “restriction table”, that restriction table (that DAG) must
have a node named “Root” and in the mapping of genes to module there must be a first entry that has
a module and gene named “Root”, as we saw above with geneToModule = c("Root" = "Root",

We force you to do this to be explicit about the “Root” node. This is not needed (thought it does not
hurt) with other fitness specifications. For instance, if we have a model with two modules, one of them
with two genes (see details in section ??) we do not need to pass a “Root” as in

fnme <- allFitnessEffects(epistasis = c("A" = 0.1,
"B" = 0.2),
geneToModule = c("A" = "al, a2",
"B" = "bi"))
evalAllGenotypes(fnme, order = FALSE, addwt = TRUE)
Genotype Fitness
1 WT 1.00
2 al 1.10
3 a2 1.10
4 bl 1.20
5 al, a2 1.10
6 al, bl 1.32
7 a2, bl 1.32
8 al, a2, bl 1.32

but it is also OK to have a "Root” in the geneToModule:

fome2 <- allFitnessEffects(epistasis = c("A" = 0.1,
"B" = 0.2),
geneToModule = c(

"Root" = "Root",

AW = "al, a2v,

"B" = "bi"))
evalAllGenotypes(fnme, order = FALSE, addwt = TRUE)
Genotype Fitness
1 WT 1.00
2 al 1.10
3 a2 1.10
4 bl 1.20
5 al, a2 1.10
6 al, bl 1.32
7 a2, bl 17,32
8 al, a2, bl 1.32

2.5.3 Modules and posets again: the three types of relationships and modules

We use the same specification of poset, but add modules. To keep it manageable, we only add a few genes
for some modules, and have some modules with a single gene. Beware that the number of genotypes is
starting to grow quite fast, though. We capitalize to differentiate modules (capital letters) from genes
(lowercase with a number), but this is not needed.

OncoSimulR: genetic simulation with arbitrary epistasis 26

p4 <- data.frame(parent = c(rep("Root", 4), "A", "B", "D", "E", "C", "F"),
child = c("A", "B", "D", "E", "C", "C", "F", "E", "G", "G"),
s = c(0.01, 0.02, 0.03, 0.04, 0.1, 0.1, 0.2, 0.2, 0.3, 0.3),
sh = c(rep(0, 4), c(-.9, -.9), c(-.95, -.95), c(-.99, -.99)),
typeDep = c(rep("--", 4),
"XMPN", "XMPN", "MN", "MN", "SM", "SM"))
fp4m <- allFitnessEffects(p4,

geneToModule = c("Root" = "Root", "A" = "al",
"B" = llbl’ b2ll’ "CII = "Clll,
IIDII = lldl’ d2||, IIEII = Ilelll,
"F' = "f1, £2", "G" = "gl"))

By default, plotting shows the modules:
plot (fp4m)

S

Y
©

O

but we can show the gene names instead of the module names:

/@@

plot(fp4m, expandModules = TRUE)

or

OncoSimulR: genetic simulation with arbitrary epistasis

plot (fp4m, "igraph", layout = layout.reingold.tilford,
expandModules = TRUE)

(®

cl

We obtain the fitness of all genotypes in the usual way:

gfp4 <- evalAllGenotypes(fp4m, order = FALSE, max = 1024)

Let's look at a few of those:
gfp4lc(12, 20, 21, 40, 41, 46, 50, 55, 64, 92, 155, 157, 163, 372, 632, 828), 1]

Genotype Fitness

27

OncoSimulR: genetic simulation with arbitrary epistasis 28

12 al, b2 1.030200

20 bl, b2 1.020000

21 bl, c1 1.122000

40 cl, g1 0.130000

41 dl, d2 1.030000

46 d2, el 1.071200

50 el, f1 0.052000

55 £2, g1 0.065000

64 al, b2, c1 0.103020

92 bl, b2, c1 1.122000

155 cl, £2, g1 0.006500

157 di, d2, £f1 0.051500

163 di, £1, £2 0.051500

372 dl, d2, el, £f2 1.285440

632 dil, d2, el, f1, £2 1.285440

828 b2, cl1, di, el, £f2, gl 1.874943

c(1.01 * 1.02, 1.02, 1.02 = 1.1, 0.1 % 1.3, 1.03,
1.03 * 1.04, 1.04 *x 0.05, 0.05 * 1.3,
1.010 * 1.02 * 0.1, 1.02 * 1.1, 0.1 x 0.05 * 1.3,
1.03 * 0.05, 1.03 *x 0.05, 1.03 * 1.04 * 1.2, 1.03 *x 1.04 *x 1.2,
1.02 * 1.1 * 1.03 * 1.04 * 1.2 * 1.3)

[1] 1.030200 1.020000 1.122000 0.130000 1.030000 1.071200 0.052000
[8] 0.065000 0.103020 1.122000 0.006500 0.051500 0.051500 1.285440
[15] 1.285440 1.874943

2.6 Order effects

As explained in the introduction (??), by order effects we mean a phenomenon such as the one shown
empirically by [?]: the fitness of a double mutant “A”, "B" is different depending on whether “A” was
acquired before “B" or “B" before “A". This, of course, can be generalized to more than two genes.

Note that these order effects are different from the order restrictions discussed in section ??. In there we
might say that acquiring “B" depends or is facilitated by having “A" mutated (and, unless we allowed for
multiple mutations, having “A” mutated means having “A” mutated before “B"). However, once you have
the genotype “A, B”, its fitness does not depend on the order in which “A" and “B" appeared.

2.6.1 Order effects: three-gene orders

Consider this case, where three specific three-gene orders and two two-gene orders (one of them a subset
of one of the three) lead to different fitness compared to the wild-type. We add also modules, to show its
usage (but just limit ourselves to using one gene per module here).

Order effects are specified using a x > y, that means that that order effect is satisfied when module x is
mutated before module y.

03 <- allFitnessEffects(orderEffects = c(

"F >D>M' = -0.3,
"D >F >M' = 0.4,
"D >M>F" = 0.2,
"D o> M" = 0.1

>

OncoSimulR: genetic simulation with arbitrary epistasis 29

"M > D" = 0.5),
geneToModule =
c("M" = "m",
Ut = U0
GO = Ty)

(ag <- evalAllGenotypes(o3, addwt = TRUE))
Genotype Fitness
1 WT 1.00
2 d 1.00
3 £ 1.00
4 m 1.00
5 d > f 1.00
6 d>m 1.10
7 f>d 1.00
8 f>m 1.00
9 m > d 1.50
10 m > f 1.00
11 d > f >m 1.54
12 d >m > £ 1.32
13 £ >d >m 0.77
14 £ >m > d 1.50
15 m > d > £ 1.50
16 m > £ > d 1.50

(The meaning of the notation in the output table is as follows: “WT" denotes the wild-type, or non-
mutated clone. The notation x > y means that a mutation in “x” happened before a mutation in "y".
A genotype x > y _ z means that a mutation in “X” happened before a mutation in “y”; there is also a

mutation in “Z", but that is a gene for which order does not matter).

The values for the first nine genotypes come directly from the fitness specifications. The 10th genotype
matches D > F' > M (= (14 0.4)) but also D > M ((1 +0.1)). The 11th matches D > M > F' and
D > M. The 12th matches F' > D > M but also D > M. Etc.

2.6.2 Order effects and modules with multiple genes

Consider the following case:

ofel <- allFitnessEffects(orderEffects = c("F > D" = -0.3, "D > F" = 0.4),
geneToModule =
C(HFH - "fl, f2”,
"D" = "d1, d2"))

ag <- evalAllGenotypes(ofel)

There are four genes, d1,d2, f1, f2, where each d belongs to module D and each f belongs to module F'.
What to expect for cases such as d1 > f1 or f1 > d1 is clear, as shown in
ag[5:16,]

#i# Genotype Fitness

OncoSimulR: genetic simulation with arbitrary epistasis 30

5 dl > d2 1.0
6 di > f1 1.4
7 di > f2 1.4
8 d2 > di 1.0
9 d2 > f1 1.4
10 d2 > f2 1.4
11 £1 > di 0.7
12 f1 > 42 0.7
13 f1 > f2 1.0
14 £2 > di 0.7
156 £2 > 42 0.7
16 £2 > f1 1.0

Likewise, cases such as d1 > d2 > f1l or f2 > f1 > dl are clear, because in terms of modules they map to
D > F or F > D: the observed order of mutation d1 > d2 > f1 means that module D was mutated first
and module F' was mutated second. Similar for d1 > f1 > f2 or f1 > dl > d2: those map to D > F
and F' > D. We can see the fitness of those four case in:

aglc(17, 39, 19, 29),]

Genotype Fitness
17 d1 > d2 > f1 1.4
39 f2 > f1 > d1 0.7
19 d1 > f1 > d2 1.4
29 f1 > d1 > d2 0.7

and they correspond to the values of those order effects, where ¥ > D = (1—0.3) and D > F' = (1+0.4):
aglc(17, 39, 19, 29), "Fitness"] == c(1.4, 0.7, 1.4, 0.7)

[1] TRUE TRUE TRUE TRUE

What if we match several patterns? For example, d1 > f1 > d2 > f2 and d1 > f1 > f2 > d2? The first
maps to D > F' > D > F and the second to D > F > D. But since we are concerned with which one
happened first and which happened second we should expect those two to correspond to the same fitness,
that of pattern D > F', as is the case:

aglc(43, 44),]

Genotype Fitness
43 d1 > f1 > d2 > f2 1.4
44 d1 > f1 > £2 > d2 1.4

aglc(43, 44), "Fitness"] == c(1.4, 1.4)

[1] TRUE TRUE

More generally, that applies to all the patterns that start with one of the “d" genes:
all(agl[41:52, "Fitness"] == 1.4)

[1] TRUE

Similar arguments apply to the opposite pattern, F' > D, which apply to all the possible gene mutation
orders that start with one of the “f" genes. For example:

all(ag[53:64, "Fitness"] == 0.7)

[1] TRUE

OncoSimulR: genetic simulation with arbitrary epistasis 31

2.6.3 Order and modules with 325 genotypes

We can of course have more than two genes per module. This just repeats the above, with five genes
(there are 325 genotypes, and that is why we pass the “max” argument to evalAllGenotypes, to allow
for more than the default 256).

ofe2 <- allFitnessEffects(orderEffects = c("F > D" = -0.3, "D > F" = 0.4),
geneToModule =
c("F" = "f1, f2, £3",
np" = "dl, d2"))

ag2 <- evalAllGenotypes(ofe2, max = 325)

We can verify that any combination that starts with a “d” gene and then contains at least one “f" gene
will have a fitness of 14 0.4. And any combination that starts with an “f" gene and contains at least one
“d" genes will have a fitness of 1 — 0.3. All other genotypes have a fitness of 1:

all(ag2[grep(""d.*f.*x", ag2[, 1]), "Fitness"] == 1.4)
[1] TRUE

all(ag2[grep(""f.*d.*x", ag2[, 1]1), "Fitness"] == 0.7)

[1] TRUE

oe <- c(grep(""f.*xd.*", ag2[, 11), grep(""d.*f.x", ag2[, 11))
all(agQ[—oe’ "Fitness"] — 1)

[1] TRUE

2.6.4 Order effects and genes without interactions

We will now look at both order effects and interactions. To make things more interesting, we name genes
so that the ordered names do split nicely between those with and those without order effects (this, thus,
also serves as a test of messy orders of names).

foil <- allFitnessEffects(
orderEffects = c("D>B" = -0.2, "B > D" = 0.3),
noIntGenes = c("A" = 0.05, "C" = -.2, "E" = .1))

You can get a verbose view of what the gene names and modules are (and their automatically created

numeric codes) by:

foill[c("geneModule", "long.geneNoInt")]

$geneModule
Gene Module GeneNumID ModuleNumID

1 Root Root 0 0
2 B B 1 1
3 D D 2 2
##

$long.geneNoInt

Gene GeneNumID s

A A 3 0.05

C © 4 -0.20

E E 5 0.10

OncoSimulR: genetic simulation with arbitrary epistasis 32

We can get the fitness of all genotypes (we set max = 325 because that is the number of possible
genotypes):

agoil <- evalAllGenotypes(foil, max = 325)

head(agoil)

Genotype Fitness
1 B 1.00
2 D 1.00
3 A 1.05
4 C 0.80
5 Iz 1.10
6 B>D 1.30
Now:

rn <- l:nrow(agoil)
names(rn) <- agoill, 1]
agoil [rn[LETTERS[1:5]], "Fitness"] == c(1.05, 1, 0.8, 1, 1.1)

[1] TRUE TRUE TRUE TRUE TRUE

According to the fitness effects we have specified, we also know that any genotype with only two mutations,
one of which is either “A”, “C" or “E” and the other is “B” or “D"” will have the fitness corresponding to
“A", “C" or “E", respectively:

agoil[grep("~A > [BD]$", names(rn)), "Fitness"] == 1.05
[1] TRUE TRUE

agoil[grep("~C > [BD]$", names(rn)), "Fitness"] == 0.8

[1] TRUE TRUE

agoil[grep(""E > [BD]$", names(rn)), "Fitness"] == 1.1

[1] TRUE TRUE

agoil[grep("~[BD] > A$", names(rn)), "Fitness"] == 1.05
[1] TRUE TRUE

agoil[grep("~[BD] > C$", names(rn)), "Fitness"] == 0.8

[1] TRUE TRUE

agoil[grep("~[BD] > E$", names(rn)), "Fitness"] == 1.1

[1] TRUE TRUE
We will not be playing many additional games with regular expressions, but let us check those that start
with “D" and have all the other mutations, which occupy rows 230 to 253; fitness should be equal (within

numerical error, because of floating point arithmetic) to the order effect of having “D" before “B" times
the other effects (1 — 0.3) % 1.05 % 0.8 x 1.1 = 0.7392

all.equal(agoil[230:253, "Fitness"] , rep((1 - 0.2) * 1.05 *x 0.8 * 1.1, 24))
[1] TRUE

and that will also be the value of any genotype with the five mutations where “D" comes before “B" such
as those in rows 260 to 265, 277, or 322 and 323, but it will be equal to (1+0.3)*1.05%0.8%1.1 = 1.2012

OncoSimulR: genetic simulation with arbitrary epistasis 33

in those where “B"” comes before “D"”. Analogous arguments apply to four, three, and two mutation
genotypes.

2.7 Synthetic viability

Synthetic viability and synthetic lethality (e.g., [?, ?]) are just special cases of epistasis (section ??) but
we deal with them here separately.

2.7.1 A simple synthetic viability example

A simple and extreme example of synthetic viability is shown in the following table, where the joint mutant
has fitness larger than the wild type, but each single mutant is lethal.

A B Fitness

wt wt 1
wt M 0
M wt 0

M M (1+s)

where “wt” denotes wild type and “M" denotes mutant.

We can specify this (setting s = 0.2) as (I play around with spaces, to show there is a certain flexibility
with them):
s <- 0.2
sv <- allFitnessEffects(epistasis = c("-A : B" -1,
"A : -B" = -1,
"A:B" = s))

Now, let's look at all the genotypes (we use “addwt” to also get the wt, which by decree has fitness of 1),
and disregard order:

(asv <- evalAllGenotypes(sv, order = FALSE, addwt = TRUE))

Genotype Fitness

1 WT 1.0
2 A 0.0
3 B 0.0
4 A, B 1.2

Asking the program to consider the order of mutations of course makes no difference:

evalAllGenotypes(sv, order = TRUE, addwt = TRUE)

Genotype Fitness

1 WT 1.0
2 A 0.0
3 B 0.0
4 A>B 1.2
5 B>A 1.2

Another example of synthetic viability is shown in section ?7.

Of course, if multiple simultaneous mutations are not possible in the simulations, it is not possible to go
from the wildtype to the double mutant in this model where the single mutants are not viable.

OncoSimulR: genetic simulation with arbitrary epistasis 34

2.7.2 Synthetic viability using Bozic model

If we were to use the above specification with Bozic's models, we might not get what we think we should
get:

evalAllGenotypes(sv, order = FALSE, addwt = TRUE, model = "Bozic")

Genotype Death_rate

1 WT 1.0
2 A 2.0
3 B 2.0
4 A, B 0.8

What gives here? The simulation code would alert you of this (see section ??) in this particular case
because there are “-1", which might indicate that this is not what you want. The problem is that you
probably want the Death rate to be infinity (the birth rate was 0, so no clone viability, when we used birth
rates —section ?77?).

Let us say so explicitly:

s <- 0.2
svB <- allFitnessEffects(epistasis = c("-A : B" = -Inf,

"A : -B" = -Inf,

"A:B" = 8))
evalAllGenotypes(svB, order = FALSE, addwt = TRUE, model = "Bozic")

Genotype Death_rate

1 WT 1.0
2 A Inf
3 B Inf
4 A, B 0.8

Likewise, values of s larger than one have no effect beyond setting s = 1 (a single term of (1 — 1) will drive
the product to 0, and as we cannot allow negative death rates negative values are set to 0):
g X= i
svBl <- allFitnessEffects(epistasis = c("-A : B" = -Inf,
"A : -B" = -Inf,
"A:B" = s))

evalAllGenotypes(svBl, order = FALSE, addwt = TRUE, model = "Bozic")

Genotype Death_rate

1 WT 1

2 A Inf

3 B Inf

4 A, B 0

s <- 3

svB3 <- allFitnessEffects(epistasis = c("-A : B" = -Inf,
"A : -B" = -Inf,
"A:B" = 8))

evalAllGenotypes(svB3, order = FALSE, addwt = TRUE, model = "Bozic")

Genotype Death_rate
1 WT 1

OncoSimulR: genetic simulation with arbitrary epistasis 35

2 A Inf
3 B Inf
4 A, B 0

Of course, death rates of 0.0 are likely to lead to trouble down the road, when we actually conduct
simulations (see section ?7?).

2.7.3 Synthetic viability, non-zero fitness, and modules

This is a slightly more elaborate case, where there is one module and the single mutants have different
fitness between themselves, which is non-zero. Without the modules, this is the same as in Misra et al.
[?], Figure 1b, which we go over in section ?7?.

A B Fitness
wt wt 1

wt M 1+ s
M wt 1-+s,
M M 1+4+sg

where s4, s < 0 but sy > 0.

sa <- -0.1
sb <- -0.2
sab <- 0.25
sv2 <- allFitnessEffects(epistasis = c("-A : B" = sb,
"A : -B" = sa,
"A:B" = sab),
geneToModule = c(
"A" = "al, a2",
"BN = wb))

evalAllGenotypes(sv2, order = FALSE, addwt = TRUE)

#i# Genotype Fitness

1 WT 1.00
2 al 0.90
3 a2 0.90
4 b 0.80
5 al, a2 0.90
6 al, b 1.25
7 a2, b 1.25
8 al, a2, b 1.25

And if we look at order, of course it makes no difference:

evalAllGenotypes(sv2, order = TRUE, addwt = TRUE)

Hit Genotype Fitness
1 WT 1.00
2 al 0.90
3 a2 0.90
4 b 0.80
5 al > a2 0.90
6 al > b 1.25
#H 7 a2 > al 0.90

OncoSimulR: genetic simulation with arbitrary epistasis

8 a2 > b 1.25
9 b > al 1.25
10 b > a2 1.25
11 al > a2 > b 1.25
12 al > b > a2 1.25
13 a2 > al > b 1.25
14 a2 > b > al 1.25
15 b > al > a2 1.25
16 b > a2 > al 1.25

2.8 Synthetic mortality or synthetic lethality

In contrast to section ??, here the joint mutant has decreased viability:

A B Fitness
wt wt 1

wt M 1+g
M wt 1+s,
M M 1454

where s4, sp > 0 but s, < 0.

sa <- 0.1

sb <- 0.2

sab <- -0.8

sml <- allFitnessEffects(epistasis = c("-A : B" = sb,
"A : -B" = sa,
"A:B" = sab))

evalAllGenotypes(sml, order = FALSE, addwt = TRUE)

Genotype Fitness

1 WT 1.0
2 A 1.1
3 B 1.2
4 A, B 0.2

And if we look at order, of course it makes no difference:

evalAllGenotypes(sml, order = TRUE, addwt = TRUE)

Genotype Fitness

1 WT 1.0
2 A 1.1
3 B 1.2
4 A>B 0.2
5 B>A 0.2
2.9 Epistasis

2.9.1 Epistasis: two alternative specifications

We want the following mapping of genotypes to fitness:

OncoSimulR: genetic simulation with arbitrary epistasis 37

A B Fitness
wt wt 1

wt M 1+ s
M wt 1-+s,
M M 1454

Suppose that the actual numerical values are s, = 0.2, s, = 0.3, 545 = 0.7.

We specify the above as follows:

sa <- 0.2
sb <- 0.3
sab <- 0.7

e2 <- allFitnessEffects(epistasis =
c("A: -B" = sa,
"-A:B" = sb,
"A : B" = sab))
evalAllGenotypes(e2, order = FALSE, addwt = TRUE)

Genotype Fitness

1 WT 1.0

2 A 1.2

3 B 1.3

4 A, B 1.7

That uses the "-" specification, so we explicitly exclude some patterns: with “A:-B" we say “A when there
is no B".

But we can also use a specification where we do not use the That requires a different numerical
value of the interaction, because now, as we are rewriting the interaction term as genotype “A is mutant,
B is mutant” the double mutant will incorporate the effects of “A mutant”, “B mutant” and “both
A and B mutants”. We can define a new sy that satisfies (1 + sg) = (1 + sa)(1 + sp)(1 + s2) so
(14 s2) = (14 54)/((1 4 s4)(1 + sp)) and therefore specify as:

s2 <- ((1 + sab)/((1 + sa) * (1 + sb))) - 1

e3 <- allFitnessEffects(epistasis
c("A" sa,
"B" = sb,
"A : B" = s2))
evalAllGenotypes(e3, order = FALSE, addwt = TRUE)

Genotype Fitness

1 WT 1.0
2 A 1.2
3 B 1553
4 A, B 1.7

Note that this is the way you would specify effects with FFPopsim [?]. Whether this specification or the
previous one with “-" is simpler will depend on the model. For synthetic mortality and viability, | think
the one using “-" is simpler to map genotype tables to fitness effects. See also section ?? and ?? and the
example in section ?77.

Finally, note that we can also specify some of these effects by combining the graph and the epistasis, as
shown in section ?? or 77.

OncoSimulR: genetic simulation with arbitrary epistasis

2.9.2 Epistasis with three genes and two alternative specifications

Suppose we have

A B C Fitness
M wt wt 1+ s,
wt M wt 14 s
wt wt M 1+ s¢
M M wt 1+ sgp
wt M M 1+ spe
M wt M (1+4+s,)(1+sc)
M M M 1+ Sape

38

where missing rows have a fitness of 1 (they have been deleted for conciseness). Note that the mutant for
exactly A and C has a fitness that is the product of the individual terms (so there is no epistasis in that

case).

sa <- 0.1

sb <- 0.15
sc <- 0.2

sab <- 0.3

sbc <- -0.25

sabc <- 0.4

sac <- (1 + sa) * (1 + sc) - 1

E3A <- allFitnessEffects(epistasis =

evalAllGenotypes(E3A, order

##
##
##
##
##
##
##
##

~N O Ok WwN e

Genotype Fitness

A,

b
b

A
A,
B
B

b

A

QO QQwWwaQw

1.
o i3
.20
.30
.32
.75
.40

O R B =

10

c("A:-B:-C" = sa,
"-A:B:-C" = sb,
"-A:-B:C" = sc,

"A:B:-C" = sab,

"-A:B:C" = sbc,

"A:-B:C" = sac,

"A : B : C" = sabc)
)

FALSE, addwt = FALSE)

We needed to pass the s,. coefficient explicitly, even if it that term was just the product. We can try to
avoid using the “-", however (but we will need to do other calculations). For simplicity, | use capital “S”

in what follows where the letters differ from the previous specification:

sa <- 0.1
sb <- 0.15
sc <- 0.2

OncoSimulR: genetic simulation with arbitrary epistasis

sab <- 0.3
Sab <- ((1 + sab)/((1 + sa) * (1 + sb))) - 1
Sbc <- ((1 + sbe)/((1 + sb) * (1 + sc))) -1

Sabc <- ((1 + sabc)/((1 + sa) * (1

E3B <- allFitnessEffects(epistasis

evalAllGenotypes(E3B, order

##
##
##
##
##
##
##
##

~N o ok WwN e

Genotype Fitness

A,

H
H

A
A,
B
B

b

A

QO QwaQw

1.
.15
.20
.30
.32
.75
.40

B O R B B

10

c("A"
ngo
nn
"A:
"B:

"A

FALS

The above two are, of course, identical:

all(evalAllGenotypes(E3A, order
evalAllGenotypes(E3B, order

[1] TRUE

+ sb) * (1 + sc) * (1 + Sab) * (1 + Sbc))

= sa,
= sb,

= 96,
B" = Sab,
C" = Sbc,

B : C" = Sabc)

)

E, addwt = FALSE)

FALSE, addwt
FALSE, addwt

FALSE) ==
FALSE))

39

) -1

We avoid specifying the “A:C", as it just follows from the individual "A” and "C" terms, but given a
specified genotype table, we need to do a little bit of addition and multiplication to get the coefficients.

2.9.3 Why can we specify some effects with a “-”?

Let's suppose we want to specify the synthetic viability example seen before:

A B Fitness
wt wt 1
wt M 0
M wt 0
M M (1+5)

where “wt"” denotes wild type and “M" denotes mutant.

If you want to directly map the above table to the fitness table for the program, to specify the genotype
“Ais wt, B is a mutant” you can specify it as ‘‘-A,B’’, not just as ‘‘B’’. Why? Because just the
presence of a “B" is also compatible with genotype “A is mutant and B is mutant”. If you use “-" you are
explicitly saying what should not be there so that -A,B is NOT compatible with A, B. Otherwise, you need
to carefully add coefficients. Depending on what you are trying to model, different specifications might be
simpler. See the examples in section ?? and ??. You have both options.

OncoSimulR: genetic simulation with arbitrary epistasis

2.9.4 Epistasis: modules

There is nothing conceptually new, but we will show an example here:

sa <- 0.2
sb <- 0.3
sab <- 0.7

em <- allFitnessEffects(epistasis =
c("A: -B" = sa,

"-A:B" = sb,
"A : B" = sab),
geneToModule = c("A" = "al, a2",
"B" = "bl, b2"))
evalAllGenotypes(em, order = FALSE, addwt = TRUE)
Genotype Fitness
1 WT 1.0
2 al 1.2
3 a2 1.2
4 bl 1.3
5 b2 1.8
6 al, a2 1.2
7 al, b1l 1.7
8 al, b2 1.7
9 a2, bl 1.7
10 a2, b2 1.7
11 bl, b2 1.3
12 al, a2, bl 1.7
13 al, a2, b2 1.7
14 al, bl, b2 1.7
15 a2, bl, b2 1.7
16 al, a2, bl, b2 1.7

Of course, we can do the same thing without using the “-", as in section 77:

s2 <- ((1 + sab)/((1 + sa) * (1 + sb))) - 1

em2 <- allFitnessEffects(epistasis =

c("A" = sa,
"B" = sb,
"A : B" = s2),
geneToModule = c("A" = "al, a2",
"B" = "b1l, b2")
)
evalAllGenotypes(em2, order = FALSE, addwt = TRUE)
#i#t Genotype Fitness
1 WT 1.0
2 al 1.2
3 a2 1.2
##t 4 bl 1.3
5 b2 1.3
6 al, a2 1.2

40

OncoSimulR: genetic simulation with arbitrary epistasis 41

7 al, bl 1.7
8 al, b2 1.7
9 a2, bl 1.7
10 a2, b2 1.7
11 bl, b2 1.3
12 al, a2, bl 1.7
13 al, a2, b2 1.7
14 al, bl, b2 1.7
15 a2, bl, b2 1.7
16 al, a2, bl, b2 1.7

2.10 | do not want epistasis, but | want modules!

Sometimes you might want something like having several modules, say “A” and “B", each with a number
of genes, but with “A” and “B" showing no interaction.

It is a terminological issue whether we should allow noIntGenes (no interaction genes), as explained in
section ?? to actually be modules. The reasoning for not allowing them is that the situation depicted above
(several genes in module A, for example) actually is one of interaction: the members of “A” are combined
using an “OR" operator (i.e., the fitness consequences of having one or more genes of A mutated are the
same), not just simply multiplying their fitness; similarly for “B”. This is why no interaction genes also
mean no modules allowed.

So how do you get what you want in this case? Enter the names of the modules in the epistasis
component but have no term for :. Let's see an example:

fnme <- allFitnessEffects(epistasis = c("A" = 0.1,

||B|| = 02)’
geneToModule = c("A" = "al, a2",
"B" = “bl, b2, an))

evalAllGenotypes(fnme, order = FALSE, addwt = TRUE)

H# Genotype Fitness
1 WT 1.00
2 al 1.10
3 a2 1.10
4 bl 1.20
5 b2 1.20
6 b3 1.20
7 al, a2 1.10
8 al, bl 1.32
9 al, b2 1.32
10 al, b3 1.32
11 a2, bl 1.32
12 a2, b2 1.32
13 a2, b3 1.32
14 bl, b2 1.20
15 bl, b3 1.20
16 b2, b3 1.20
17 al, a2, bl 1.32
18 al, a2, b2 1.32

OncoSimulR: genetic simulation with arbitrary epistasis

19 al, a2, b3 1.32
20 al, bl, b2 1.32
21 al, bl, b3 1,82
22 al, b2, b3 1.32
23 a2, bl, b2 1.32
24 a2, bl, b3 1.32
25 a2, b2, b3 1.32
26 bl, b2, b3 1.20
27 al, a2, bl, b2 1.32
28 al, a2, b1, b3 1.32
29 al, a2, b2, b3 1.32
30 al, bl, b2, b3 1,82
31 a2, bl, b2, b3 1.32
32 al, a2, bl, b2, b3 1,82

In previous versions these was possible using the longer, still accepted way of specifying a :

of 0, but this is no longer needed:

fnme <- allFitnessEffects(epistasis = c("A" = 0.1,
"B" = 0.2,
"A : B" =0.0),
geneToModule = c("A" = "al, a2",
"B" = “bl, b2, b3"))

evalAllGenotypes(fnme, order = FALSE, addwt = TRUE)

#i#t Genotype Fitness
1 WT 1.00
2 al 1.10
3 a2 1.10
4 bl 1.20
5 b2 1.20
6 b3 1.20
7 al, a2 1.10
8 al, bl 1.32
9 al, b2 1.32
10 al, b3 1.32
11 a2, bl 1.32
12 a2, b2 1.32
13 a2, b3 1.32
14 bl, b2 1.20
15 bl, b3 1.20
16 b2, b3 1.20
17 al, a2, bl 1.32
18 al, a2, b2 1.32
19 al, a2, b3 1.32
20 al, bl, b2 1.32
21 al, bl, b3 1.32
22 al, b2, b3 1.32
23 a2, bl, b2 1.32
24 a2, bl, b3 1.32
25 a2, b2, b3 1.32

42

with a value

OncoSimulR: genetic simulation with arbitrary epistasis 43

26 bl, b2, b3 1.20
27 al, a2, bl, b2 1.32
28 al, a2, b1, b3 1,82
29 al, a2, b2, b3 1.32
30 al, bl, b2, b3 1.32
31 a2, bl, b2, b3 1.32
32 al, a2, bl, b2, b3 1.32

This can, of course, be extended to more modules.

2.11 Poset, epistasis, synthetic mortality and viability, order effects and genes without
interactions, with some modules

We will now put together a complex example. We will use the poset from section ?7? but will also add:

e Order effects that involve genes in the poset. In this case, if C happens before F, fitness decreases
by 1 — 0.1. If it happens the other way around, there is no effect on fitness beyond their individual
contributions.

e Order effects that involve two new modules, “H"” and “I" (with genes “h1, h2" and “i1", respectively),
so that if H happens before | fitness increases by 1 + 0.12.

e Synthetic mortality between modules “I" (already present in the epistatic interaction) and “J" (with
genes “j1" and “j2"): the joint presence of these modules leads to cell death (fitness of 0).

e Synthetic viability between modules “K” and “M" (with genes “k1"”, "k2" and “ml", respectively),
so that their joint presence is viable but adds nothing to fitness (i.e., mutation of both has fitness
1), whereas each single mutant has a fitness of 1 — 0.5.

e A set of 5 driver genes (nl,...,n5) with fitness that comes from an exponential distribution with

rate of 10.

As we are specifying many different things, we will start by writing each set of effects separately:

p4 <- data.frame(parent = c(rep("Root", 4), "A", "B", "D", "E", "C", "F"),
child = c("A", "B", "D", "E", "C", "C", "F", "F", "G", "G"),
s = c(0.01, 0.02, 0.03, 0.04, 0.1, 0.1, 0.2, 0.2, 0.3, 0.3),
sh = c(rep(0, 4), c(-.9, -.9), c(-.95, -.95), c(-.99, -.99)),
typeDep = c(rep("--", 4),
"XMPN", "XMPN", "MN", "MN", "SM", "SM"))

oe <- c("C > F" = -0.1, "H > I" = 0.12)
sm <- c("I:J" = -1)
sv <- c("-K:M" = -.5, "K:-M" = -.5)

epist <- c(sm, sv)

modules <- c("Root" = "Root", "A" = "al",
"B" = "bl, b2", "C" = "c1",
"D" = "d1, d2", "E" = "el",
"F" = "f1, f2", "G" = "gl",
"H" = "h1, h2", "I" = "i1",
"Jvo= "j1, j2", "K" = "ki, k2", "M" = "mi")

set.seed (1)
noint <- rexp(5, 10)
names (noint) <- pasteO("n", 1:5)

OncoSimulR: genetic simulation with arbitrary epistasis 44

fea <- allFitnessEffects(zrT = p4, epistasis = epist, orderEffects = oe,
noIntGenes = noint, geneToModule = modules)

How does it look?

ORO
O ¢
@\9

plot(fea, "igraph")

OncoSimulR: genetic simulation with arbitrary epistasis

We can, if we want, expand the modules using a “graphNEL" graph
plot(fea, expandModules = TRUE)

45

OncoSimulR: genetic simulation with arbitrary epistasis

hl, h2

I8

plot(fea, "igraph", expandModules = TRUE)

or an ‘“igraph” one

k1, k2

ml

46

OncoSimulR: genetic simulation with arbitrary epistasis 47

. ()

@

We will not evaluate the fitness of all genotypes, since the number of all ordered genotypes is > 7 * 1022,
We will look at some specific genotypes:

evalGenotype("k1 > il > h2", fea)

[1] 0.5

evalGenotype("kl > hl > i1", fea)

[1] 0.56

evalGenotype("k2 > m1 > hl > il", fea)

[1] 1.12

evalGenotype("k2 > m1 > hl > il > c1 > n3 > £2", fea)

[1] 0.005113436

OncoSimulR: genetic simulation with arbitrary epistasis 48

Finally, let's generate some ordered genotypes randomly:

randomGenotype <- function(fe, ns = NULL) {
gn <- setdiff (c(fe$geneModule$Gene,
fe$long.geneNoInt$Gene), "Root")
if(is.null(ns)) ns <- sample(length(gn), 1)
return(paste(sample(gn, ns), collapse = " > "))

}

set.seed(2) ## for reproducibility

evalGenotype (randomGenotype(fea), fea, echo = TRUE, verbose = TRUE)

Genotype: k2 > il > c1 > nl > ml
Individual s terms are : 0.0755182
Fitness: 0.1075518

[1] 0.1075518

0.9

Genotype: k2 > 141 > c1 > nl > ml

Individual s terms are : 0.0755182 -0.9

Fitness: 0.107552

evalGenotype (randomGenotype(fea), fea, echo = TRUE, verbose = TRUE)

Genotype: n2 > hl > h2

Individual s terms are : 0.118164
Fitness: 1.118164

[1] 1.118164

Genotype: n2 > hl > h2

Individual s terms are : 0.118164

Faitness: 1.11816

evalGenotype (randomGenotype(fea), fea, echo = TRUE, verbose = TRUE)

Genotype: d2 > k2 > cl1 > f2 > n4d > ml > n3 > f1 > bl > gl > nb5 > hl > j2

Individual s terms are : 0.0145707 0.0139795 0.0436069 0.02 0.1 0.03 -0.95 0.3 -0.1
Fitness: 0.07258291

[1] 0.07258291

Genotype: d2 > k2 > cl1 > f2 > n4 > ml > n3 > f1 > bl > g1 > nb > hl > 52

Individual s terms are : 0.0145707 0.0139795 0.0436069 0.02 0.1 0.03 -0.95 0.3 -0.1
Fitness: 0.0725829

evalGenotype (randomGenotype(fea), fea, echo = TRUE, verbose = TRUE)

Genotype: h2 > cl1 > f1 > n2 > b2 > al > nl > il

Individual s terms are : 0.0755182 0.118164 0.01 0.02 -0.9 -0.95 -0.1 0.12
Fitness: 0.006244181

[1] 0.006244181

Genotype: h2 > cl > f1 > n2 > b2 > al > nl > i1

Individual s terms are : 0.0755182 0.118164 0.01 0.02 -0.9 -0.95 -0.1 0.12
Faitness: 0.00624418

evalGenotype (randomGenotype(fea), fea, echo = TRUE, verbose = TRUE)

Genotype: h2 > j1 >ml > d2 > il > b2 > k2 > dl > bl > n3 >nl > gl > hl > cl >kl > el >
Individual s terms are : 0.0755182 0.0145707 0.0436069 0.01 0.02 -0.9 0.03 0.04 0.2 0.3 -1

OncoSimulR: genetic simulation with arbitrary epistasis 49

Fitness: O
[1] O

Genotype: h2 > 71 > mi > d2 > 21 > b2 > k2 > d1 > bl > n3 > nl > g1 > hl > cl1 > k1 > el >
Individual s terms are : 0.0755182 0.0145707 0.0436069 0.01 0.02 -0.9 0.03 0.04 0.2 0.3 -1
Fitness: O

evalGenotype (randomGenotype(fea), fea, echo = TRUE, verbose = TRUE)

Genotype: nl > ml > n3 > il > j1 > nb > ki

Individual s terms are : 0.0755182 0.0145707 0.0436069 -1
Fitness: O

[1] O

Genotype: nl > ml > n3 > 11 > 51 > n5 > ki

Individual s terms are : 0.0755182 0.0145707 0.0436069 -1

Fatness: O

evalGenotype (randomGenotype(fea), fea, echo = TRUE, verbose = TRUE)

Genotype: d2 > nl > gl > f1 > f2 > c1 > bl > dl > k1 > al > b2 > il > nd > h2 > n2

Individual s terms are : 0.0755182 0.118164 0.0139795 0.01 0.02 -0.9 0.03 -0.95 0.3 -0.5
Fitness: 0.004205278

[1] 0.004205278

Genotype: d2 > nl > g1 > f1 > f2 > c1 > b1 > dl > ki > al > b2 > i1 > nd > h2 > n2

Individual s terms are : 0.0755182 0.118164 0.0139795 0.01 0.02 -0.9 0.03 -0.95 0.3 -0.5
Faitness: 0.00420528

evalGenotype (randomGenotype(fea), fea, echo = TRUE, verbose = TRUE)

Genotype: jl1 > f1 > j2 > al >nd4 > cl > n3 > k1 > dl > hil

Individual s terms are : 0.0145707 0.0139795 0.01 0.1 0.03 -0.95 -0.5
Fitness: 0.02943085

[1] 0.02943085

Genotype: j1 > f1 > g2 > al > ng > cl > n3 > k1 > dl > hl

Individual s terms are : 0.0145707 0.0139795 0.01 0.1 0.03 -0.95 -0.5
Fitness: 0.0294308

evalGenotype (randomGenotype(fea), fea, echo = TRUE, verbose = TRUE)

Genotype: nb > f2 > f1 > h2 > n4d > c1 > n3 > bl

Individual s terms are : 0.0145707 0.0139795 0.0436069 0.02 0.1 -0.95
Fitness: 0.06022978

[1] 0.06022978

Genotype: nb > f2 > f1 > h2 > n4g > c1 > n3 > bl

Individual s terms are : 0.0145707 0.0139795 0.0436069 0.02 0.1 -0.95
Fitness: 0.0602298

evalGenotype (randomGenotype(fea), fea, echo = TRUE, verbose = TRUE)

Genotype: hl > dl > f2

Individual s terms are : 0.03 -0.95
Fitness: 0.0515

[1] 0.0515

Genotype: hl1 > dl > f2
Individual s terms are : 0.03 -0.95
Fitness: 0.0515

OncoSimulR: genetic simulation with arbitrary epistasis 50

2.12 Homozygosity, heterozygosity, oncogenes, tumor suppressors

We are using what is conceptually a single linear chromosome. However, you can use it to model scenarios
where the numbers of copies affected matter, by properly duplicating the genes.

Suppose we have a tumor suppressor gene, G, with two copies, one from Mom and one from Dad. We can
have a table like:

Gy Gp Fitness

wt wt 1
wt M 1
M wt 1

M M (1+5s)

where s > 0, meaning that you need two hits, one in each copy, to trigger the clonal expansion.

What about oncogenes? A simple model is that one single hit leads to clonal expansion and additional hits
lead to no additional changes, as in this table for gene O, where again the M or D subscript denotes the
copy from Mom or from Dad:

Oy Op Fitness
wt wt 1
wt M (1+s)
M wt (1+59)
M M (1+5s)

If you have multiple copies you can proceed similarly. As you can see, these are nothing but special cases
of synthetic mortality (?7?), synthetic viability (??) and epistasis (?7).

3 Specifying fitness effects: some examples from the literature

3.1 Bauer et al

In the model of Bauer and collaborators [?, p. 54] “For cells without the primary driver mutation, each
secondary driver mutation leads to a change in the cell’s fitness by sp. For cells with the primary driver
mutation, the fitness advantage obtained with each secondary driver mutation is spp.”

The proliferation probability is given as (1 + s,)® when there are k secondary drivers mutated and no

+
primary diver. If the primary driver is mutated, then the expression is 1129 (1+Spp)*. They set apoptosis
D
+
as 1 — proliferation. So, ignoring constants such as 1/2, and setting P = ig? we can prepare a table
D
as (for a largest k of 5 in this example, but can make it arbitrarily large):
K <- b
sd <- 0.1
sdp <- 0.15
sp <- 0.05

bauer <- data.frame(parent = c("Root", rep("p", K)),
child = c("p", pasteO("s", 1:K)),
s = c(sd, rep(sdp, K)),
sh = c(0, rep(sp, K)),
typeDep = "MN")

fbauer <- allFitnessEffects(bauer)

OncoSimulR: genetic simulation with arbitrary epistasis

Note that what we specify as “typeDep” is irrelevant (MN, SMN, or XMPN make no difference).

The fitness effects figure looks like this:
plot (fbauer)

ONOBOMONO

(b1l <- evalAllGenotypes(fbauer, order = FALSE))[1:10,]

Genotype Fitness

1 p 1.100
2 sl 1.050
3 s2 1.050
4 s3 1.050
5 s4 1.050
6 sb 1.050
#H 7 p, s1 1.265
8 p, s2 1.265
9 p, s3 1.265
10 p, s4 1.265

Order makes no difference

(b2 <- evalAllGenotypes(fbauer, order = TRUE, max = 2000))[1:15,]

Genotype Fitness

1 p 1.1000
2 sl 1.0500
3 s2 1.0500
4 s3 1.0500
5 s4 1.0500
6 s5 1.0500
#H T p > sl 1.2650
8 p > s2 1.2650
9 p > s3 1.2650
10 p > s4 1.2650
11 p > sb 1.2650
12 sl > p 1.2650
13 s1 > s2 1.1025
14 s1 > s3 1.1025

OncoSimulR: genetic simulation with arbitrary epistasis 52

15 s1 > s4 1.1025

And the number of levels is the right one: 11
length(table(b1$Fitness))

[1] 11
length(table (b2$Fitness))

[1] 11

Can we use modules in this module? Sure, as in any other.

3.2 Misra et al., 2014

Figure 1 of Misra et al. [?] presents three scenarios which are different types of epistasis.

3.2.1 Example 1l.a

Fitness

wt

In that figure it is evident that the fitness effect of “A” and "B" are the same. There are two different
models depending on whether “AB" is just the product of both, or there is epistasis. In the first case
probably the simplest is:
s <- 0.1
mlal <- allFitnessEffects(data.frame(parent = c("Root", "Root"),

child = c("A", "B"),

s = s,

sh = 0,

typeDep = "MN"))
evalAllGenotypes(mlal, order = FALSE, addwt = TRUE)

OncoSimulR: genetic simulation with arbitrary epistasis 53

Genotype Fitness

1 WT 1.00
2 A 1.10
3 B 1.10
4 A, B 1.21

If the double mutant shows epistasis, as we saw before (section ??) we have a range of options. For
example:

s <- 0.1

sab <- 0.3

mla2 <- allFitnessEffects(epistasis = c("A:-B" = s,
"-A:B" = s,
"A:B" = sab))

evalAllGenotypes(mla2, order = FALSE, addwt = TRUE)

Genotype Fitness

1 WT 1.0
2 A 1.1
3 B 1.1
4 A, B 1.3

But we could also modify the graph dependency structure, and we have to change the value of the
coefficient, since that is what multiplies each of the terms for “A” and “B": (1+s4p) = (1+5)?(1+54B3)

sab3 <- ((1 + sab)/((1 + 8)"2)) -1
mla3 <- allFitnessEffects(data.frame(parent = c("Root", "Root"),

child = c("A", "B"),

s = s,

sh = 0,

typeDep = "MN"),

epistasis = c("A:B" = sab3))

evalAllGenotypes(mla3, order = FALSE, addwt = TRUE)

Genotype Fitness

1 WT 1.0
2 A 1.1
3 B 1.1
4 A, B 1.3

And, obviously

FALSE, addwt
FALSE, addwt

TRUE) ,
TRUE))

all.equal(evalAllGenotypes(mla2, order
evalAllGenotypes(mla3, order

[1] TRUE

3.2.2 Example 1.b

This is a specific case of synthetic viability (see also section 77):

OncoSimulR: genetic simulation with arbitrary epistasis 54

AB

wit

Fitness

Here, S4,S5 <0, Sp <0, Sap >0 and (1+ Sap)(1+S4)(1+ Sp) > 1.
As before, we can specify this in several different ways. The simplest is to specify all genotypes:

sa <- -0.6

sb <- -0.7

sab <- 0.3

mlbl <- allFitnessEffects(epistasis = c("A:-B" = sa,
"-A:B" = sb,
"A:B" = sab))

evalAllGenotypes(mlbl, order = FALSE, addwt = TRUE)

Genotype Fitness

1 WT 1.0
2 A 0.4
3 B 0.3
4 A, B 1.3

We could also use a tree and modify the “sab” for the epistasis, as before (?7?).

3.2.3 Example 1.c

The final case, in figure 1.c of Misra et al., is just epistasis, where a mutation in one of the genes is
deleterious (possibly only mildly), in the other is beneficial, and the double mutation has fitness larger than
any of the other two.

OncoSimulR: genetic simulation with arbitrary epistasis 55

Fitness

Here we have that s4 >0, sg <0, (1 +s45)(1+s4)(1+sp) > (1 +s4B) so sap > 118312

As before, we can specify this in several different ways. The simplest is to specify all genotypes:

sa <- 0.2

sb <- -0.3

sab <- 0.5

mlcl <- allFitnessEffects(epistasis = c("A:-B" = sa,
"-A:B" = sb,
"A:B" = sab))

evalAllGenotypes(mlcl, order = FALSE, addwt = TRUE)

Genotype Fitness

1 WT 1.0
2 A 1.2
3 B 0.7
4 A, B 1.5

We could also use a tree and modify the “sab” for the epistasis, as before (?7?).

3.3 Ochs and Desai, 2015

In [?] the authors present a model shown graphically as (the actual numerical values are arbitrarily set by
me):

OncoSimulR:

1.20
1.15
1.10
1.05
1.00
0.95

genetic simulation with arbitrary epistasis

56

In their model, s, > 0, s, > 54, 8; < 0, we can only arrive at v from %, and the mutants “ui” and “uv”

can never appear as their fitness is 0, or —00, SO Sy; = Sy = —1 (or —00).

We can specify this combining a graph and epistasis specifications:

su <- 0.1
si <- -0.05
fvi <- 1.2

sv <- (fvi/(1 + si)) - 1

sui <- suv <- -1

od <- allFitnessEffects(
data.frame(parent = c("Root",

epistasis

llu: ill
llu:vll

child = c("u", "i",

s = c(su, si, sv),
sh = -1,
typeDep = "MN"),
c(
sui,
suv))

A figure showing that model is

plot (od)

"Root" ,
ny

Ilill) s

OncoSimulR: genetic simulation with arbitrary epistasis

o}

O
O

And the fitness of all genotype is
evalAllGenotypes(od, order = FALSE, addwt = TRUE)

Genotype Fitness

1 WT 1.00
#i#t 2 i 0.95
3 u 1.10
##t 4 v 0.00
5 i, u 0.00
6 i, v 1.20
7 u, v 0.00
8 i, u, v 0.00

3.4 Weissman et al., 2009

In their figure 1a, Weisman et al. [?] present this model (actual numeric values are set arbitrarily)

3.4.1 Figure l.a

OncoSimulR: genetic simulation with arbitrary epistasis 58

1.20
1.15
1.10
1.05
1.00 —
0.95 —

wit 1

N

where the “1" and “2" refer to the total number of mutations in two different loci. This is, therefore, very
similar to the example in section ??. Here we have, in their notation, §; < 0, fitness of single A" or single
“B" = 14681, Sap >0, (1+ Sap)(1+61) > 1.

3.4.2 Figure 1.b

In their figure 1b they show

1.20
1.15
1.10
1.05 —
1.00 —
0.95

wit 1 2

w

Where, as before, 1, 2, 3, denote the total number of mutations over three different loci and §; < O,
82 < 0, fitness of single mutant is (1+67), of double mutant is (14 d2) so that (1+682) = (14 31)(1+ s2)
and of triple mutant is (1 + 63), so that (14 d3) = (1 4+ 61)3(1 + s2)3(1 + s3).

We can specify this combining a graph with epistasis:

dl <- -0.05
d2 <- -0.08
d3 <- 0.2

s2 <- ((1 +d2)/(1 +d1)"2) -1

OncoSimulR: genetic simulation with arbitrary epistasis

s3 <- ((1 +d3)/((1 +d1)"3 * (1 +5s2)73)) - 1

w <- allFitnessEffects(
data.frame(parent
Chlld = C(IIAII, an, IICII)’

c("Root", "Root", "Root"),

typeDep = "MN"),

s = di,

sh = -1,
epistasis = c(
"A:B" = 52,
"A:C" = 82,
"B:C" = 52,

"A:B:C" = 83))

The model can be shown graphically as:

plot (w)

And fitness of all genotypes is:

evalAllGenotypes(w, order = FALSE, addwt = TRUE)

##
##
##
##
##
##
#H#t
##
##

0 N O O W N -

Genotype Fitness

WT

QOO QW QW=

-

1.

_ O O O O O O

00
.95
.95
.95
.92
.92
.92
.20

59

OncoSimulR: genetic simulation with arbitrary epistasis 60

Alternatively, we can directly specify what each genotype adds to the fitness, given the included genotype.
This is basically replacing the graph by giving each of “A”, “B”, and “C" directly:

wb <- allFitnessEffects(
epistasis = c(

A = dl,
"B" = di,
et = di,
"A:B" = 52,
"A:C" = 52,
"B:C" = s2,

"A:B:C" = s3))

evalAllGenotypes(wb, order = FALSE, addwt = TRUE)

Genotype Fitness

1 W 1.00
2 A 0.95
3 B 0.95
4 C 0.95
5 A, B 0.92
6 A, C 0.92
w7 B, C 0.92
8 A, B, C 1.20

The plot, of course, is not very revealing and we cannot show that there is a three-way interaction (only
all three two-way interactions):

plot (wb)

As we have seen several times already (sections ??, 7?7, ??) we can also give the genotypes directly and,
consequently, the fitness of each genotype (not the added contribution):

wc <- allFitnessEffects(
epistasis = c(
"A:-B:-C" = di,
"B:-C:-A" = di,

OncoSimulR: genetic simulation with arbitrary epistasis 61

"C:-A:-B" = di,

"A:B:-C" = d2,
"A:C:-B" = d2,
"B:C:-A" = d2,

"A:B:C" = d3))
evalAllGenotypes(wc, order = FALSE, addwt = TRUE)

Genotype Fitness

1 WT 1.00
2 A 0.95
3 B 0.95
4 C 0.95
5 A, B 0.92
6 A, C 0.92
7 B, C 0.92
8 A, B, C 1.20

s’

3.5 Gerstung et al., pancreatic cancer poset

Similar to what we did in v.1 (see section ??) we can specify the pancreatic cancer poset in Gerstung et
al. [?] (their figure 2B, left). We use directly the names of the genes, since that is immediately supported
by the new version.

pancr <- allFitnessEffects(
data.frame(parent = c("Root", rep("KRAS", 4),

"SMAD4", "CDNK2A",
"TP53", "TP53", "MLL3"),

child = c("KRAS","SMAD4", "CDNK2A",
"TpP53", "MLL3",
rep("PXDN", 3), rep("TGFBR2", 2)),

s =0.1,

sh = -0.9,

typeDep = "MN"))

plot (pancr)

OncoSimulR: genetic simulation with arbitrary epistasis

Of course the “s” and “sh” are set arbitrarily here.

62

OncoSimulR: genetic simulation with arbitrary epistasis 63

3.6 Raphael and Vandin’s modules

In [?], Raphael and Vandin show several progression models in terms of modules. We can code the extended
poset for the colorectal cancer model in their Figure 4.a is (s and sh are arbitrary):

rvl <- allFitnessEffects(data.frame(parent = c("Root", "A", "KRAS"),
child = c("A", "KRAS", "FBXW7"),

s =0.1,
sh = -0.01,
typeDep = "MN"),
geneToModule = c("Root" = "Root",
"A" = YEVC2, PIK3CA, TP53",
"KRAS" = "KRAS",
"FBXW7" = "FBXW7"))

plot(rvl, expandModules = TRUE, autofit = TRUE)

Root

}

EVC2, PIK3CA, TP53

KRAS

FBXW7

We have used the (experimental) autofit option to fit the labels to the edges. Note how we can use the
same name for genes and modules, but we need to specify all the modules.

OncoSimulR: genetic simulation with arbitrary epistasis 64

Their Figure 5b is

rv2 <- allFitnessEffects(data.frame(parent = c("Root", "1", "2", "3", "4"),
child = c("1", "2", "3", "4" "ELF3"),
s =0.1,
sh = -0.01,
typeDep = "MN"),
geneToModule = c("Root" = "Root",

"i" = "APC, FBXW7",

"2" = "ATM, FAM123B, PIK3CA, TP53",

"3" = "BRAF, KRAS, NRAS",

"4 = "SMAD2, SMAD4, SO0X9",

"ELF3" = "ELF3"))

plot(rv2, expandModules = TRUE, autofit = TRUE)

Root

v

APC, FBXW7

}

ATM, FAM123B, PIK3CA, TP53

v

BRAF, KRAS, NRAS

}

SMAD2, SMAD4, SOX9

v

ELF3

OncoSimulR: genetic simulation with arbitrary epistasis

4 Running and plotting the simulations

65

4.1 Bauer’s example again

We will use the model of Bauer et al., [?] that we saw in section ?7.

K <- 5

sd <- 0.1
sdp <- 0.15
sp <- 0.05

bauer <- data.frame(parent = c("Root", rep("p", K)),
child = c("p", pasteO("s", 1:K)),
s = c(sd, rep(sdp, K)),
sh = c(0, rep(sp, K)),
typeDep = "MN")
fbauer <- allFitnessEffects(bauer)
set.seed(1)
Use fairly large mutation rate
bl <- oncoSimulIndiv(fbauer, mu = 5e-5, initSize = 1000)

We will now use a variety of plots

par (mfrow = c(3, 1))

Farst, drivers

plot(bl, type = "line", addtot = TRUE)
plot(bl, type = "stacked")

plot(bl, type = "stream")

OncoSimulR: genetic simulation with arbitrary epistasis

Number of cells

Number of cells

Number of cells

10000

100

50000 100000 150000

0

0 50000

-50000

Number of drivers

A WNEFE O

0 50 100 150 200
Time units
Number of drivers
0
m1
2
=3
m 4
T T T T
0 50 100 150
Time units
Number of drivers
0
m1
2
=3
m 4
T T T T T
0 50 100 150 200

Time units

66

OncoSimulR: genetic simulation with arbitrary epistasis

par (mfrow = c(3, 1))
Next, genotypes

plot(bl, show = "genotypes", type = "line")
plot(bl, show = "genotypes", type = "stacked")
plot(bl, show = "genotypes", type = "stream")

67

OncoSimulR: genetic simulation with arbitrary epistasis

Genotypes
— WT — s1,s3
=1 — p —— sl,s3,s4
8 71— psl — sl,s4
o — p,sl,s2 —— sl,s4,s5
g — p,sl,s2,s4 — s1,s5
- W
5 — p,sl, s4 — 82,83
2 o — p,sl, s5 — s3
g S 71— s1 — s4
z — sl,s2 — s5
— s1,82/s
T M
o /U J\/\ U \ _] h
T T T T T
0 50 100 150 200
Time units
o
o
8
0 Genotypes
WT sl, s3
p sl, s3,s4
= p, sl " sl,s4
o 8 - p, s1, s2 sl, s4,s5
Q S p,sl,s2,s4 = s1,s5
5 = p,sl,s3 = s2
5 = p,sl, s4 = s2,s3
-g o " p,sl, s5 = s3
S 8 =1 = s4
Z 8 |=sLs2 " s5
" sl1,s2,54
o -
T T T T
0 50 100 150
Time units
Genotypes
8 WT sl, s3
8 p sl, s3,s4
o p, sl " sl,s4
o p, sl,s2 sl, s4,s5
g p, sl,s2,s4 sl, s5
5 = p,sl,s3 = s2
5 © " e e =
-g " p,sl, s5 = s3
S = sl " s4
z = sl,s2 = s5
= " sl1,s2,54
S |
o
i
T T T T T
0 50 100 150 200

Time units

OncoSimulR: genetic simulation with arbitrary epistasis 69

In this case, probably the stream plots are most helpful. Note, however, that (in contrast to some figures
in the literature showing models of clonal expansion) the stream plot (or the stacked plot) does not try to
explicitly show parent-descendant relationships, which would hardly be realistically possible in these plots
(although the plots of phylogenies in section ?? could be of help).

4.2 McFarland model with 5000 passengers and 70 drivers

set.seed(456)

nd <- 70
np <- 5000
s <- 0.1
sp <- 1le-3

spp <- -sp/(1 + sp)
mcfl <- allFitnessEffects(nolntGenes = c(rep(s, nd), rep(spp, np)),
drv = seq.int(nd))
mcfls <- oncoSimullIndiv(mcfil,
model = "McFL",
mu = le-7,
detectionSize = 1e8,
detectionDrivers = 100,
sampleEvery = 0.02,
keepEvery = 2,
initSize = 2000,
finalTime = 1000,
onlyCancer = FALSE)
summary (mcfls)

NumClones TotalPopSize LargestClone MaxNumDrivers MaxDriversLast

1 554 2374 2270 1 1
NumDriversLargestPop TotalPresentDrivers FinalTime NumIter

1 1 7 1000 51044

HittedWallTime errorMF minDMratio minBMratio

1 FALSE 0.01197637 1697 .976 1972.387

#i# OccurringDrivers

1 7, 21, 22, 38, 43, 52, 68

par (mfrow = c(2, 1))

I use thinData to make figures smaller and faster

plot(mcfls, addtot = TRUE, lwdClone = 0.9, log = "",
thinData = TRUE, thinData.keep = 0.5)

I also use here zlim, to focus only on a part of the

data (and make it plot faster)

plot(mcfls, show = "drivers", type = "stacked",
thinData = TRUE, thinData.keep = 0.5,
xlim = c(600, 1000), legend.ncols = 2)

OncoSimulR:

genetic simulation with arbitrary epistasis

1500 2000 2500

Number of cells
1000

500

1500 2000 2500

Number of cells
1000

500
I

“|Number of drivers

\ ‘ W N
\ ‘ NN o, \ '
TAN Ay
‘//\\ ’\‘/\\‘_’\/ Vi _)”\ LJ;‘ N _J AN LN
I A IR VL ST AT S LU UL . NN
~_ A ~, ~y MVa PN AN N LS WIS L N\ - A
- v~y PARYEY AL AN S LS A AU - B /. .
PRSP ENSEIRII S L ARy LRI~ Lo e FNEESE R PICNE SR S SAP AP, Ll lngy

“INumber of drivers

=0n"1

600 700 800

Time units

900 1000

70

OncoSimulR: genetic simulation with arbitrary epistasis 71

With the above output (where we see there are over 500 different genotypes) trying to represent the
genotypes makes no sense.

4.3 McFarland model with 50000 passengers and 70 drivers: clonal competition

The next is too slow (takes a couple of minutes in an i5 laptop) and too big to run in a vignette, because
we keep track of over 4000 different clones (which leads to a result object of over 800 MB):

set.seed(123)

nd <- 70
np <- 50000
s <- 0.1

sp <- le-4 ## as we have many more passengers
spp <- -sp/(1 + sp)
mcfl <- allFitnessEffects(noIntGenes = c(rep(s, nd), rep(spp, np)),
drv = seq.int(nd))
mcfLs <- oncoSimulIndiv(mcfL,
model = "McFL",
mu = le-7,
detectionSize = 1e8,
detectionDrivers = 100,
sampleEvery = 0.02,
keepEvery = 2,
initSize = 1000,
finalTime = 2000,
onlyCancer = FALSE)

But you can access the pre-stored results and plot them (beware: this object has been trimmed by removing
empty passenger rows in the Genotype matrix)

data(mcfLs)
plot (mcfls, addtot = TRUE, lwdClone = 0.9, log = "", plotDiversity = TRUE)

OncoSimulR: genetic simulation with arbitrary epistasis

e _
(40}
e]
AN
T —
e]
—
o _
o
Number of drivers
0
o 1
8 — — D
—
3
i/
w
i) o
g8 o _
o 5
o — [|
— 1 l|
(] 'I il':
O \ n.lf‘:.
S \ i
=} \,) L
1
z b ;Y
B " " |
o vooan b
o — l‘ 'l|.. 1 :] .
Tp] |‘| 1‘:: : :",‘ l"“,\‘ | I, N
S
y I' ooy " ":l, , amey
! “"': ' I:'u RN ":.: '3"
! ! }\lf' BT " l"l" b
VETRTR S P T
|“ i ’1:) Y ’|'| \
gy Bl
i, ,\.MM“ wi! |f|‘l| R A wl,,(’ o Aty A
] Ma‘ﬂ;{"‘\;\\ '(‘g\h! \‘i %', '.I,\:‘J,q "S (,Yl,i',ml i
LR
o - At AL A PAaf X v]

1500 2000

Time units

The argument plotDiversity = TRUE asks to show a small plot on top with Shannon’s diversity index.
summary (mcfLs)

NumClones TotalPopSize LargestClone MaxNumDrivers MaxDriversLast
1 4458 1718 253 3 3
NumDriversLargestPop TotalPresentDrivers FinalTime NumIter

1 3 70 2000 113759

HittedWallTime errorMF minDMratio minBMratio OccurringDrivers
1 FALSE 0.01921737 184.1019 199.6085 13, 38, 40, 69
number of passengers per clone

summary (colSums (mcfLs$Genotypes [-(1:70), 1))

Min. 1st Qu. Median Mean 3rd Qu. Max.

OncoSimulR: genetic simulation with arbitrary epistasis 73

0.000 4.000 6.000 5.673 7.750 13.000

Note that we see clonal competition between clones with the same number of drivers (and with different
drivers, of course). We will return to this (section 7).

A stacked plot might be better to show the extent of clonal competition (plotting takes some time —a
stream plot reveals similar patterns and is also slower than the line plot). | will thin the data for this plot
so it is faster and smaller (but we miss some of the fine grain, of course):

plot (mcfLs, type = "stacked", thinData = TRUE,
thinData.keep = 0.5,
plotDiversity = TRUE,
xlim = c(0, 1000))

2.0

H
1.0

—{Number of drivers

150@.0

1000

Number of cells

500
l

Time units

OncoSimulR: genetic simulation with arbitrary epistasis 74

4.4 Loading fitnessEffects data for simulation examples

We will use several of the previous examples. Most of them are in file examplesFitnessEffects, where
they are stored inside a list, with named components (names the same as in the examples above):

data(examplesFitnessEffects)
names (examplesFitnessEffects)

[1] llcbnlll "Cbn2“ Ilsmnlll IIXorlll |pr3" llfp4m|| ll03||
[8] llofelll "Ofe2" Ilfoilll n SV" llSVBIl "SVB]." "SV2I|
[15] “Sml“ lle2|| IIE3A|| IIemll |Ifeall llfbauerll IIWII

[22] "pancr"

4.5 Simulation with a conjunction example

We will simulate using the simple CBN-like restrictions of section ?? with two different models:

data(examplesFitnessEffects)
evalAllGenotypes (examplesFitnessEffects$cbnl, order = FALSE) [1:10,]

#i# Genotype Fitness

1 a 1.10
2 b 1.10
3 c 0.10
4 d 1.10
5 e 1.10
6 g 0.10
##t 7 a, b 1.21
8 a, c 0.11
9 a, d 1.21
10 a, e 1.21

sm <- oncoSimulIndiv(examplesFitnessEffects$cbnl,
model = "McFL",
mu = be-7,
detectionSize = 1e8,
detectionDrivers = 2,
sampleEvery = 0.025,
keepEvery = b,
initSize = 2000,
onlyCancer = TRUE)

summary (sm)

NumClones TotalPopSize LargestClone MaxNumDrivers MaxDriversLast

1 4 2841 2745 2 2
NumDriversLargestPop TotalPresentDrivers FinalTime NumIter
1 2 3 831.55 33269
HittedWallTime errorMF minDMratio minBMratio OccurringDrivers
1 FALSE 0.01445669 310327.8 333333.3 a, b, g

set.seed(1234)
evalAllGenotypes (examplesFitnessEffects$cbnl, order = FALSE,
model = "Bozic")[1:10,]

OncoSimulR: genetic simulation with arbitrary epistasis

##
##
##
#H#t
##
Ht
##
##
##
##
##

sb

Genotype Death_rate

a 0.90
.90
.90
.90
.90
.90
.81
.71
.81
.81

a,
a,
a,
a,

© 00 N O O d W N -
O, O OO = O

® & 0 Tl 0o A& 0o O

—
(@)
(@)

<- oncoSimulIndiv(examplesFitnessEffects$cbnl,

model = "Bozic",
mu = 5e-6,

detectionSize = 1e8,

detectionDrivers
sampleEvery = 2,
initSize = 2000,
onlyCancer = TRUE)

=4’

summary (sb)

NumClones TotalPopSize LargestClone MaxNumDrivers MaxDriverslLast
1 13 101655458 101587387 3 3
NumDriversLargestPop TotalPresentDrivers FinalTime NumIter

1 1 6 172 25162

HittedWallTime errorMF minDMratio minBMratio OccurringDrivers

1 FALSE NA 33333.33 33333.33 a, b, c, d, e, g

As usual, we will use several plots here.

75

OncoSimulR: genetic simulation with arbitrary epistasis 76

Show drivers, line plot
par(cex = 0.75, las = 1)
plot(sb,show = "drivers", type = "line", addtot = TRUE, plotDiversity = TRUE)

H
Lllillll

1e+08 —{Number of drivers

e+06

e+04

Number,of cells,

e+02

1le+00 —

Time units

Draivers, stacked
par(cex = 0.75, las = 1)
plot(sb,show = "drivers", type = "stacked", plotDiversity = TRUE)

1e+08 —{Number of drivers
0
ﬂ8e+07 — =1
§ 2
6e+07 "3
g
Ae+07
>
Z
2e+07 —
0e+00 —
T T T T
0 50 100 150

Time units

Draivers, stream
par(cex = 0.75, las = 1)
plot(sb,show = "drivers", type = "stream", plotDiversity = TRUE)

OncoSimulR: genetic simulation with arbitrary epistasis

4e+07

e+07

e+00

e+07

Nymbegof cells

-4e+07

Number of drivers

| ||
W N PF- O

50

Time units

100

150

7

OncoSimulR: genetic simulation with arbitrary epistasis

Genotypes, line plot
par(cex = 0.75, las = 1)

plot(sb,show = "genotypes", type

"line", plotDiversity = TRUE)

T =
1le+08 Genotypes

— WT — b,c,e
detos 4 — &b ~—— bd
2 — a,b,c — b,d, e
% — a,b,d — b,d, g
sle+04 - — a,b,g — b,e /
o — b — Dbg
§ — b, c
“e+02 /
1e+00 7 — W

T T T T
0 50 100 150
Time units

Genotypes, stacked
par(cex = 0.75, las = 1)

plot(sb,show = "genotypes", type

"stacked", plotDiversity = TRUE)

r g =

le+08 — Genotypes
WT b,c e

u§e+07 - a, b b, d

2 a,b,c b, d, e

be+07 - * a,b.d = b.d, g

t = abg=be

S1es07 - = b = bg

e+07 — '

2? b, c

4

2e+07

0e+00 —
T T T T
0 50 100 150

Time units

Genotypes, stream
par(cex = 0.75, las = 1)

plot(sb,show = "genotypes", type

"stream", plotDiversity = TRUE)

78

OncoSimulR: genetic simulation with arbitrary epistasis 79

T =
Genotypes
4e+07 — WT ce
a, b b, d
2et07 | »w a,b,c = b, d,e
.,g = a,bd=bdg
2De+00 — = abrg—"—bre
o m Db [] b,g
£ b
2e+07 ' C
-4e+07 —
T T T T
0 50 100 150

Time units

The above illustrates again that different types of plots can be useful to reveal different patterns in the
data. For instance, here, because of the huge relative frequency of one of the clones/genotypes, the stacked
and stream plots do not reveal the other clones/genotypes as we cannot use a log-transformed y-axis, even
if there are other clones/genotypes present.

4.6 Simulation with order effects and McFL model

(We use a somewhat large mutation rate than usual, so that the simulation runs quickly.)

set.seed(4321)

tmp <- oncoSimulIndiv(examplesFitnessEffects[["03"]],
model = "McFL",
mu = 5e-5,
detectionSize = 1e8,
detectionDrivers = 3,
sampleEvery = 0.025,
max.num.tries = 10,
keepEvery = 5,
initSize = 2000,
finalTime = 6000,
onlyCancer = FALSE)

We show a stacked and a line plot of the drivers:

OncoSimulR: genetic simulation with arbitrary epistasis

par(las =
plot(tmp, addtot

H
OO0
ONROON

4000

w
o
o
o

2000

Number of cells

1000

0.85)
TRUE,

1, cex

log = "", plotDiversity = TRUE)

WM

Number of drivers
0

WN -

X -h.-.&- o o @iifns
I

I I
0 1000

par(las = 1, cex = 0.85)
plot(tmp, type = "stacked", plotDiversity = TRUE,
= c(0, 5500), legend.ncols = 4)

ylim

H
CO000R =
oONRoON

6]
o
o
o

4000

3000

2000

Number of cells

1000

I I I I
2000 3000 4000 5000 6000

Time units

Number of drivers

0m1 2.

3

0 1000

I I I I I
2000 3000 4000 5000 6000

Time units

80

OncoSimulR: genetic simulation with arbitrary epistasis 81

In this example (and at least under Linux, with both GCC and clang), we can see that the mutants with
three drivers do not get established when we stop the simulation at time 6000. This is one case where the
summary statistics about number of drivers says little of value, as fitness is very different for genotypes
with the same number of mutations, and does not increase in a simple way with drivers:

evalAllGenotypes (examplesFitnessEffects[["03"]], addwt = TRUE)

#H#t Genotype Fitness
1 WT 1.00
2 d 1.00
3 £ 1.00
4 m 1.00
5 d > f 1.00
6 d>m 1.10
7 f>d 1.00
8 f>m 1.00
9 m > d 1.50
10 m > f 1.00
11 d > f > m 1.54
12 d >m > £ 1.32
13 £ >d >m 0.77
14 £ >m > d 1.50
15 m > d > £ 1.50
16 m > £ > d 1.50

A few figures could help:

par(mfrow = c(2, 1))
plot (tmp, show = "genotypes", ylim
plot(tmp, show "genotypes", type

c(0, 5500), legend.ncols = 3)
"line", ylim = c(1, 6000))

OncoSimulR: genetic simulation with arbitrary epistasis

Number of cells

Number of cells

1000 2000 3000 4000 5000

0

500 5000

50

Genotypes
= WT = f>d_ =m>d_
= d mf>m Em>d>f_
mf = m_

0 1000 2000 3000 4000 5000 6000

Time units

Genotypes
— WT — f>m_

i

(ARl

N
]

0 1000 2000 3000 4000 5000 6000

Time units

82

OncoSimulR: genetic simulation with arbitrary epistasis 83

u_n

(When reading the figure legends, recall that genotype x > y _ z is one where a mutation in “x" happened
before a mutation in "y”, and there is also a mutation in “z" for which order does not matter. Here, there
are no genes for which order does not matter and thus there is nothing after the “"

In this case, the clones with three drivers end up displacing those with two by the time we stop; moreover,
notice how those with one driver never really grow to a large population size, so we basically go from a
population with clones with zero drivers to a population made of clones with two or three drivers:

set.seed(15)

tmp <- oncoSimulIndiv(examplesFitnessEffects[["03"]],
model = "McFL",
mu = 5e-5,
detectionSize = 1e8,
detectionDrivers = 3,
sampleEvery = 0.015,
max.num.tries = 10,
keepEvery = b,
initSize = 2000,
finalTime = 20000,
onlyCancer = FALSE,
extraTime = 1500)

tmp

#Ht
Individual OncoSimul trajectory with call:
oncoSimulIndiv(fp = examplesFitnessEffects[["03"]], model = "McFL",

mu = 5e-05, detectionSize = 1e+08, detectionDrivers = 3,

#i# sampleEvery = 0.015, initSize = 2000, keepEvery = 5, extraTime = 1500,
#it finalTime = 20000, onlyCancer = FALSE, max.num.tries = 10)

##

NumClones TotalPopSize LargestClone MaxNumDrivers MaxDriverslLast
1 10 4117 2995 3 3
NumDriversLargestPop TotalPresentDrivers FinalTime NumIter

1 2 3 20000 1338746

HittedWallTime errorMF minDMratio minBMratio OccurringDrivers
1 FALSE 0.01345455 6152.152 6666.667 d, f, m
##

Final population composition:

#i# Genotype N

1 _ 0

2 d _ 0

3 d > f _ 0

4 f _ 0

5 f>d._ 0

6 f>m_ 0

7 m _ 0

8 m > d 2995

9 m > d > f 1122

10 m > f 0

OncoSimulR: genetic simulation with arbitrary epistasis

use a drivers plot:

par(las =
plot (tmp, addtot

Co000H
oNvhOO

i
o
o
o

W
o
o
o

2000

Number of cells

1000

0.85)
TRUE, log = "", plotDiversity = TRUE)

1, cex

WN -

Number of drivers
0 h‘mum'.t«n..w i?p‘.l|luﬂ.pﬂp.w F’l'wmﬂ “

I I I I I
0 5000 10000 15000 20000

Time units

par(las = 1, cex = 0.85)
plot(tmp, type = "stacked", plotDiversity = TRUE,
legend.ncols = 4, ylim = c(0, 5200))

Co0000H
onvhoOLO

al
o
o
o

4000

3000

2000

Number of cells

1000

Number of drivers
0Om1 2 3

I I I I I
0 5000 10000 15000 20000

Time units

84

OncoSimulR: genetic simulation with arbitrary epistasis

Now show the genotypes explicitly:

Improve telling appart the most abundant

genotypes by sorting colors

differently via breakSortColors

Modify ncols of legend, so it is legible by not overlapping

with plot

par(las = 1, cex = 0.85)

plot(tmp, show = "genotypes", breakSortColors = "distave",
plotDiversity = TRUE, legend.ncols = 4,
ylim = c(0, 5300))

1.0
0.8
0.4 —
0.2 —
0.0 —

Genotypes

5000 —

4000 —

3000 —

Number of cells

2000 —

1000 —

I I I I
0 5000 10000 15000

Time units

As before, the argument plotDiversity = TRUE asks to show a small plot on top with Shannon's diversity
index. Here, as before, the quick clonal expansion of the clone with two drivers leads to a sudden drop in
diversity (for a while, the population is made virtually of a single clone). Note, however, that compared
to section ??, we are modeling here a scenario with very few genes, and correspondingly very few possible

genotypes, and thus it is not strange that we observe very little diversity.

(We have used extraTime to continue the simulation well past the point of detection, here specified as
three drivers. Instead of specifying extraTime we can set the detectionDrivers value to a number larger
than the number of existing possible drivers, and the simulation will run until finalTime if onlyCancer

= FALSE.)

20000

OncoSimulR: genetic simulation with arbitrary epistasis 86

4.7 Numerical issues with Bozic

As we mentioned above (section ??) death rates of 0 can lead to trouble when using Bozic's model:

il <- allFitnessEffects(noIntGenes = c(1))
evalAllGenotypes(il, order = FALSE, addwt = TRUE,
model = "Bozic")

Genotype Death_rate

1 WT 1

2 1 0

il_b <- oncoSimulIndiv(il, model = "Bozic")

Warning in nr_oncoSimul.internal (rFE = fp, birth = birth, death = death, : You are

using a Bozic model with the new restriction specification, and you have at least one
s of 1. If that gene is mutated, this will lead to a death rate of 0 and the simulations
will abort when you get a non finite value.

##

DEBUG2: Value of rnb = nan
##

DEBUG2: Value of m = 1
##

DEBUG2: Value of pe = 0
##

DEBUG2: Value of pm = 1
##

this is spP

##

popSize = 1

birth =1

death = 0

o W=1

R =1

mutation = 1e-09
timelLastUpdate = 188.441

absfitness = -inf
numMutablePos =0
it

Unrecoverable exception: Algo 2: retval not finite. Aborting.

Of course, there is no problem in using the above with other models:

evalAllGenotypes(il, order = FALSE, addwt = TRUE,
model = "Exp")

Genotype Fitness

1 WT 1
2 1 2
il_e <- oncoSimulIndiv(il, model = "Exp")

summary (il_e)

NumClones TotalPopSize LargestClone MaxNumDrivers MaxDriversLast
1 2 161597186 161595079 0 0

OncoSimulR: genetic simulation with arbitrary epistasis 87

NumDriversLargestPop TotalPresentDrivers FinalTime NumIter

1 0 0 1708 1709
HittedWallTime errorMF minDMratio minBMratio OccurringDrivers
1 FALSE NA 1e+06 1e+06

4.8 Interactive graphics

It is possible to create interactive stacked area and stream plots using the streamgraph package, available
from https://github.com /hrbrmstr/streamgraph. However, that package is not available as a CRAN or
BioConductor package, and thus we cannot depend on it for this vignette (or this package). You can,
however, paste the code below and make it run locally.

Before calling the streamgraph function, though, we need to convert the data from the original format in
which it is stored into “long format”. A simple convenience function is provided as OncoSimulWide2Long
in OncoSimulR.

As an example, we will use the data we generated above for section ?77.

Convert the data
1bl <- OncoSimulWide2Long(bl)

Install the streamgraph package from github and load
library(devtools)
devtools::install_github("hrbrmstr/streamgraph")
library(streamgraph)

Stream plot for Genotypes
sg_legend(streamgraph(lbl, Genotype, Y, Time, scale = "continuous"),
show=TRUE, label="Genotype: ")

Staked area plot and we use the pipe

streamgraph(lbl, Genotype, Y, Time, scale = "continuous",
offset = "zero") %>/ sg_legend(show=TRUE, label="Genotype: ")

5 Sampling multiple simulations

Often, you will want to simulate multiple runs of the same scenario, and do something with them. Con-
ceptually, the first step is running multiple simulations and, then, sampling them.

We will use the “pancreas” example, above section ?77.

pancrPop <- oncoSimulPop(10, pancr,
detectionSize = 1e7,
keepEvery = 10,
mc.cores = 2)

summary (pancrPop)
Hit NumClones TotalPopSize LargestClone MaxNumDrivers MaxDriversLast
1 14 11334355 11071037 3 3

2 12 10420485 10358239 3 3

https://github.com/hrbrmstr/streamgraph
http://bioconductor.org/packages/OncoSimulR

OncoSimulR: genetic simulation with arbitrary epistasis 88

3 10 10190632 10187749 2 2
4 10 10323810 10315607 3 3
5 8 10777397 10775995 2 2
6 11 10593905 10500391 3 3
7 9 10271803 10271046 3 3
8 10 10499813 10494110 2 2
9 9 10983403 10979812 2 2
10 11 10989516 10983157 2 2
NumDriversLargestPop TotalPresentDrivers FinalTime NumIter

1 2 7 333 684

2 1 7 1919 2630

3 1 7 1549 2264

4 1 7 448 1141

5 1 7 286 1025

6 1 7 381 1107

7 1 7 509 1189

8 1 7 1238 1949

9 1 7 531 1238

10 1 7 1196 2019

#Hit HittedWallTime errorMF minDMratio minBMratio

1 FALSE NA 142857.1 142857.1

2 FALSE NA 142857.1 142857.1

3 FALSE NA 142857.1 142857.1

4 FALSE NA 142857.1 142857.1

5 FALSE NA 142857.1 142857.1

6 FALSE NA 142857.1 142857.1

7 FALSE NA 142857.1 142857.1

8 FALSE NA 142857.1 142857.1

9 FALSE NA 142857.1 142857.1

10 FALSE NA 142857.1 142857.1

OccurringDrivers

1 CDNK2A, KRAS, MLL3, PXDN, SMAD4, TGFBR2, TP53

2 CDNK2A, KRAS, MLL3, PXDN, SMAD4, TGFBR2, TP53

3 CDNK2A, KRAS, MLL3, PXDN, SMAD4, TGFBR2, TP53

4 CDNK2A, KRAS, MLL3, PXDN, SMAD4, TGFBR2, TP53

5 CDNK2A, KRAS, MLL3, PXDN, SMAD4, TGFBR2, TP53

6 CDNK2A, KRAS, MLL3, PXDN, SMAD4, TGFBR2, TP53

7 CDNK2A, KRAS, MLL3, PXDN, SMAD4, TGFBR2, TP53

8 CDNK2A, KRAS, MLL3, PXDN, SMAD4, TGFBR2, TP53

9 CDNK2A, KRAS, MLL3, PXDN, SMAD4, TGFBR2, TP53

10 CDNK2A, KRAS, MLL3, PXDN, SMAD4, TGFBR2, TP53

The above runs the simulation process 10 times, and stores the results. We can then sample from them:

pancrSPop <- samplePop(pancrPop)

##
Subjects by Genes matriz of 10 subjects and 7 genes.

pancrSPop

CDNK2A KRAS MLL3 PXDN SMAD4 TGFBR2 TP53
[1,] 1 1 0 0 0 0 0

OncoSimulR: genetic simulation with arbitrary epistasis 89

[2,] 0 1 0 0 0 0 0
[3,] 0 1 0 0 0 0 0
[4,] 0 1 0 0 0 0 0
[5,] 0 1 0 0 0 0 0
[6,] 0 1 0 0 0 0 0
[7,] 0 1 0 0 0 0 0
[8,] 0 1 0 0 0 0 0
[9,] 0 1 0 0 0 0 0
[10,] 0 1 0 0 0 0 0

But if we are only interested in the final matrix of populations by mutations, the above is wasteful,
because we store fully all of the simulations (in the call to oncoSimulPop) and then sample (in the call to
samplePop). In particular, data from every sampling time (as given by sampleEvery) is preserved. It is
in the call to samplePop when we actually sample the data.

An alternative approach is to use the function oncoSimulSample. The output is directly the matrix (and
a little bit of summary from each run), and during the simulation it only stores one time point.

pancrSamp <- oncoSimulSample(10, pancr)
Successfully sampled 10 individuals

##
Subjects by Genes matriz of 10 subjects and 7 genes.

pancrSamp

$popSummary

NumClones TotalPopSize LargestClone MaxNumDrivers MaxDriversLast
1 3 4638 3789 2 2
2 9 12897209 12886194 2 2
3 8 37047684 37040242 2 2
4 8 36745635 36741049 2 2
5 13 58723285 56677238 3 3
6 8 40493385 40488129 2 2
7 4 17405 16405 2 2
8 9 3155476 3117927 3 3
9 3 11728 8155 2 2
10 3 7004 5091 2 2
NumDriversLargestPop TotalPresentDrivers FinalTime NumIter

1 1 2 509 519

2 1 7 450 1354

3 1 7 1529 4007

4 1 7 1014 3448

5 1 7 590 4702

6 1 7 2064 4699

7 1 3 856 862

8 1 7 1216 1435

9 1 2 2095 2134

10 1 2 927 940

#Hi#t HittedWallTime errorMF minDMratio minBMratio

1 FALSE NA 142857.1 142857.1

2 FALSE NA 142857.1 142857.1

3 FALSE NA 142857 .1 142857.1

OncoSimulR: genetic simulation with arbitrary epistasis

##
##
##
#H#t
##
Ht
##
##
##
##
##
##
#H#t
##
#H#t
##
#Ht
##
##
##
##
##
##
##
##
#H#t
##
#H#t
##
##
##
##
##
##
##
##
#H#t
##
#Ht
##
##
##
##
##
##
##

© 00 N O O »

—
o

CDNK2A,
CDNK2A,
CDNK2A,
CDNK2A,
CDNK2A,

CDNK2A,

© 0 N O O W N -

—
o

$popSample

K
K
K
K
K

K

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

RAS,
RAS,
RAS,
RAS,
RAS,

RAS,

MLL3,
MLL3,
MLL3,
MLL3,
MLL3,

MLL3,

CDNK2A KRAS MLL3

[1,]
[2,]
[3,]
[4,]
(5,]
(6,]
(7,1
(8,]
[9,]
[10,]

0

O O O O O O O O o

1

N e = T e =

$attemptsUsed

[1] 95

$probCancer

[1] 0.1052632

$HittedMaxTries

[1] FALSE

$HittedWallTime

[1] FALSE

$UnrecoverExcept

[1] FALSE

O O O O O O O O O o

NA
NA
NA
NA
NA
NA
NA

PXDN,
PXDN,
PXDN,
PXDN,
PXDN,

PXDN,

142857.1 142857.1
142857.1 142857.1
142857.1 142857.1
142857.1 142857.1
142857.1 142857.1
142857.1 142857.1
142857.1 142857.1
OccurringDrivers
KRAS, TP53

SMAD4, TGFBR2, TP53
SMAD4, TGFBR2, TP53
SMAD4, TGFBR2, TP53
SMAD4, TGFBR2, TP53
SMAD4, TGFBR2, TP53
KRAS, SMAD4, TGFBR2
SMAD4, TGFBR2, TP53

KRAS, PXDN

KRAS, PXDN

PXDN SMAD4 TGFBR2 TP53

0

O O O O O O O O o

0 0

O O O O O O O o o
O O O O O O O o o
O O O O O O O O O O

OncoSimulR: genetic simulation with arbitrary epistasis 91

5.1 Differences between samplePop and oncoSimulSample

samplePop provides two sampling times: “last” and “uniform”. "last” means to sample each individual in
the very last time period of the simulation. "uniform” means sampling each individual at a time choosen
uniformly from all the times recorded in the simulation between the time when the first driver appeared
and the final time period. "unif’ means that it is almost sure that different individuals will be sampled at
different times. "last” does not guarantee that different individuals will be sampled at the same time unit,
only that all will be sampled in the last time unit of their simulation.

With oncoSimulSample we obtain samples that correspond to timeSample = ‘last’’ in samplePop
by specifying a unique value for detectionSize and detectionDrivers. The data from each simulation
will correspond to the time point at which those are reached (analogous to timeSample = ‘last’’).
How about uniform sampling? We pass a vector of detectionSize and detectionDrivers, where each
value of the vector comes from a uniform distribution. This is not identical to the “uniform” sampling of
oncoSimulSample, as we are not sampling uniformly over all time periods, but are stopping at uniformly
distributed values over the stopping conditions. Arguably, however, the procedure in samplePop might be
closer to what we mean with “uniformly sampled over the course of the disease” if that course is measured
in terms of drivers or size of tumor.

As an example, if you look at the output above, the object “pancrSamp” contains some simulations that
have only a few drivers because those simulations were set to run only until they had just a small number
of cells.

An additional advantage of oncoSimulSample is that we can specify arbitrary sampling schemes, just by
passing the appropriate vector detectionSize and detectionDrivers. A disadvantage is that if we
change the stopping conditions we can not just resample the data, but we need to run it again.

There is no difference between oncoSimulSample and oncoSimulPop + samplePop in terms of the
typeSample argument (whole tumor or single cell).

Finally, there are some additional differences between the two functions. oncoSimulPop can run paral-
lelized (it uses mclapply). This is not done with oncoSimulSample because this function is designed
for simulation experiments where you want to examine many different scenarios simultaneously. Thus, we
provide additional stopping criteria (max.wall.time.total and max.num.tries.total) to determine
whether to continue running the simulations, that bounds the total running time of all the simulations in
a call to oncoSimulSample. And, if you are running multiple different scenarios, you might want to make
multiple, separate, independent calls (e.g., from different R processes) to oncoSimulSample, instead of
relying in mclapply, since this is likely to lead to better usage of multiple cores/CPUs if you are examining
a large number of different scenarios.

5.2 Dealing with errors in oncoSimulPop

When running OncoSimulR under Windows mclapply does not use multiple cores, and errors from
oncoSimulPop are reported directly. For example:

if (.Platform$0S.type == "windows")
try(pancrError <- oncoSimulPop(10, pancr,
initSize = 1le-5,
detectionSize = 1e7,
keepEvery = 10,
mc.cores = 2))

OncoSimulR: genetic simulation with arbitrary epistasis 92

Under POSIX operating systems (e.g., GNU/Linux or Mac OSX) oncoSimulPop can ran parallelized by
calling mclapply. Now, suppose you did something like

if (.Platform$0S.type != "windows")
pancrError <- oncoSimulPop(10, pancr,
initSize = 1le-5,
detectionSize = 1e7,
keepEvery = 10,
mc.cores = 2)

Warning in mclapply(seq.int(Nindiv), function(x) oncoSimulIndiv(fp = fp, : all scheduled
cores encountered errors in user code

The warning you are seeing tells you there was an error in the functions called by mclapply. If you check
the help for mclpapply you'll see that it returns a try-error object, so we can inspect it. For instance, we
could do:

pancrError [[1]]

But the output of this call might be easier to read:
pancrError [[1]] [1]

And from here you could see the error that was returned by oncoSimulIndiv: initSize < 1 (which is
indeed true: we pass initSize = 1e-5).

5.3 What can you do with the simulations?

This is up to you. Below (section ??) we show an example where we infer an oncogenetic tree from
simulated data.

5.4 Whole tumor sampling and genotypes

You are obtaining genotypes, regardless of order. When we use “whole tumor sampling”, it is the frequency
of the mutations in each gene that counts, not the order. So, for instance, “c, d” and “c, d” both contribute
to the counts of “c” and "d". Similarly, when we use single cell sampling, we obtain a genotype defined
in terms of mutations, but there might be multiple orders that give this genotype. For example, d > ¢
and ¢ > d both give you a genotype with “c” and "“d”" mutated, and thus in the output you can have two
columns with both genes mutated.

5.5 Can | start the simulation from a specific mutant?

You bet. In v.1 you can only give the initial mutant as one with a single mutated gene. In version 2,
however, you can specify the genotype for the initial mutant with the same flexibility as in evalGenotype.
Here we show a couple of examples (we use the representation of the phylogeny —discussed in section
77— of the clones so that you can see which clones appear, and from which).

03init <- allFitnessEffects(orderEffects = c(
"M >D > F" = 0.99,
"D >M>F" = 0.2,
IID > Mll
IIM > DII

I
o O
O =

),

OncoSimulR: genetic simulation with arbitrary epistasis

noIntGenes = c("u" = 0.01,
"y" = 0.01,
"w" = 0.001,
"x" = 0.0001,
"y" = -0.0001,
"z" = -0.001),
geneToModule =
C("M" = ||mu,
llFll = ||fll’
np" = "d"))
onel <- oncoSimulIndiv(o3init, model = "McFL",

mu = 5e-5, finalTime = 500,
detectionDrivers = 3,
onlyCancer = FALSE,
initSize = 1000,

keepPhylog = TRUE,
initMutant = c¢("m > u > d")

K

plotClonePhylog(oneI, N = 0)

m>@> f_m>@_ upy >@_ umx >@_ unz>@_ upv>@_u, w

m>d3>f_uy

93

OncoSimulR: genetic simulation with arbitrary epistasis

##

ospl <- oncoSimulPop(4,
o3init, model = "Exp",
mu = be-5, finalTime = 500,
detectionDrivers = 3,
onlyCancer = TRUE,
initSize = 10,

TRUE,

c(d >m>z"),

keepPhylog

initMutant
mc.cores = 2

)

op <- par(mar = rep(0, 4), mfrow = c(2, 2))
plotClonePhylog(ospI[[1]])
plotClonePhylog(ospI[[2]1])
plotClonePhylog(ospI[[3]1])
plotClonePhylog(ospI[[4]1])

d>an_z
d>m>f_z d>@_v,z d>@_v,z

d>gn_z d>xgn_z

—¢

d>@_u,z d>@_w,z d>@_x,z d>@>f_z d>mp>f_z

par (op)

d>m>f_z

OncoSimulR: genetic simulation with arbitrary epistasis

ossI <- oncoSimulSample(4,
o3init, model = "Exp",
mu = 5e-5, finalTime = 500,
detectionDrivers = 2,
onlyCancer = TRUE,
initSize = 10,
initMutant = c("z > d"),

thresholdWhole = 1 ## check presence of inttMutant

)

Successfully sampled 4 individuals
##

Subjects by Genes matrixz of 4 subjects and 9 genes.

No phylogeny ts kept with oncoSimulSample, but look at the

OcurringDrivers and the sample

ossI$popSample

dfmuvwxyz
[1,] 100000001
[2,] 100000001
[3,] 100000001
[4,] 100000001

ossI$popSummary[, "OccurringDrivers", drop = FALSE]

OccurringDrivers

1 d, m
2 d, m
3 d, £
4 d, m

H

6 Showing the true phylogenetic relationships of clones

95

If you run simulations with the keepPhylog = TRUE argument, the simulations keep track of when every
clone is generated, and that will allow us to see the true phylogenetic relationships of clones. (This is

disabled by default: the code runs a little bit slower and the result is larger.)

Let us re-run a previous example:

set.seed(15)

tmp <- oncoSimulIndiv(examplesFitnessEffects[["03"]],

model = "McFL",

mu = 5e-5,
detectionSize = 1e8,
detectionDrivers = 3,
sampleEvery = 0.015,
max.num.tries = 10,
keepEvery = 5,
initSize = 2000,
finalTime = 20000,

OncoSimulR: genetic simulation with arbitrary epistasis

onlyCancer = FALSE,

extraTime = 1500,

keepPhylog = TRUE)
tmp

##
Individual OncoSimul trajectory with call:
oncoSimulIndiv(fp = examplesFitnessEffects[["03"]], model = "McFL",

mu = 5e-05, detectionSize = 1e+08, detectionDrivers = 3,

#i#t sampleEvery = 0.015, initSize = 2000, keepEvery = 5, extraTime = 1500,
#i# finalTime = 20000, onlyCancer = FALSE, keepPhylog = TRUE,

#it max.num.tries = 10)

##

NumClones TotalPopSize LargestClone MaxNumDrivers MaxDriverslast
1 10 4117 2995 3 3
NumDriversLargestPop TotalPresentDrivers FinalTime NumIter

1 2 3 20000 1338746

HittedWallTime errorMF minDMratio minBMratio OccurringDrivers
1 FALSE 0.01345455 6152.152 6666.667 d, f, m
##

Final population composition:

#i# Genotype N

1 _ 0

2 d _ 0

3 d > f _ 0

4 f _ 0

5 f>d_ 0

6 f>m _ 0

7 m _ 0

8 m > d 2995

9 m>d > f 1122

10 m > f 0

96

We can plot the phylogenetic relationships’ of every clone ever created (with fitness larger than 0 —clones

without viability are never shown):

plotClonePhylog(tmp, N = 0)

"There are several packages in R devoted to phylogenetic inference and related issues. For instance, ape. | have not used
that infrastructure because of our very specific needs and circumstances; for instance, internal nodes are observed, we can

have networks instead of trees, and we have no uncertainty about when events occurred.

http://cran.fhcrc.org/web/packages/ape/index.html

OncoSimulR: genetic simulation with arbitrary epistasis 97

However, we often only want to show clones that exist (have number of cells > 0) at a certain time (while
of course showing all of their ancestors, even if those are now extinct —i.e., regardless of their current

numbers).

plotClonePhylog(tmp, N = 1)

OncoSimulR: genetic simulation with arbitrary epistasis

If we set keepEvents = TRUE the arrows show how many times each clone appeared:

(The next can take a while)

plotClonePhylog(tmp, N = 1, keepEvents = TRUE)

98

OncoSimulR: genetic simulation with arbitrary epistasis 99

® & o 0o

And we can plot the phylogeny so the vertical axis is proportional to time (though you might see overlap
of nodes if a child node appeared shortly after the parent):

plotClonePhylog(tmp, N = 1, timeEvents = TRUE)

OncoSimulR: genetic simulation with arbitrary epistasis 100

©

We can obtain the adjacency matrix doing

get.adjacency(plotClonePhylog(tmp, N = 1, returnGraph = TRUE))

4 x 4 sparse Matrix of class "dgCMatrix"
#H# m m>d_ m>d>f _

. 1

m _ . . 1

m > d _ c 0 o 1
m > d > £ _

We can see another example here:

set.seed(456)

mcfls <- oncoSimullIndiv(mcfil,
model = "McFL",
mu = le-7,

OncoSimulR: genetic simulation with arbitrary epistasis 101

detectionSize = 1e8,
detectionDrivers = 100,
sampleEvery = 0.02,
keepEvery = 2,

initSize = 2000,
finalTime = 1000,
onlyCancer = FALSE,
keepPhylog = TRUE)

Showing only clones that exist at the end of the simulation (and all their parents):

plotClonePhylog(mcfls, N = 1)

O

=)

@6 5@95 7 5@35 5@52

52, 1631

Notice that the labels here do not have a “_", since there were no order effects in fitness. However, the
labels show the genes that are mutated, just as before.

OncoSimulR: genetic simulation with arbitrary epistasis 102

Similar, but with vertical axis proportional to time:

plotClonePhylog(mcfls, N = 1, timeEvents = TRUE)

O

©
5@95 52, 752{952

56, 5p6

What about those that existed in the last 200 time units?
plotClonePhylog(mcfls, N = 1, t = c(800, 1000))

OncoSimulR: genetic simulation with arbitrary epistasis

/////////////‘“)
1 £

-

\\'

- '/////‘H““
T

103

And try now to show also when the clones appeared (we restrict the time to between 900 and 1000, to

avoid too much clutter):

plotClonePhylog(mcfls, N = 1, t = c(900, 1000), timeEvents = TRUE)

OncoSimulR: genetic simulation with arbitrary epistasis 104

O

(By playing with t, it should be possible to obtain animations of the phylogeny. We will not pursue it
here.)

If the previous graph seems cluttered, we can represent it in a different way by calling igraph directly after
storing the graph and using the default layout:

gl <- plotClonePhylog(mcfls, N = 1, t = c(900, 1000), returnGraph = TRUE)

plot(gl)

http://cran.fhcrc.org/web/packages/igraph/index.html

OncoSimulR: genetic simulation with arbitrary epistasis

105

which might be easier to show complex relationships or identify central or key clones.

It is of course quite possible that, especially if we consider few genes, our phylogeny will be a network, not
a tree, as the same child node can have multiple parents. You can play with this example, modified from

one we saw before (section ?7?):

op <- par(ask = TRUE)
while (TRUE) {
tmp <- oncoSimulIndiv(smnl, model = "McFL",
mu = 5e-5, finalTime = 500,
detectionDrivers = 3,
onlyCancer = FALSE,
initSize = 1000, keepPhylog = TRUE)
plotClonePhylog(tmp, N = 0)
}

par (op)

OncoSimulR: genetic simulation with arbitrary epistasis

6.1 Phylogenies from multiple runs

If you use oncoSimulPop you can store and plot the phylogenies of the different runs:

0i <- allFitnessEffects(orderEffects =

c("F > D" = -0.3, "D > F" = 0.4),
noIlntGenes = rexp(5, 10),
geneToModule =
c("F" = "f1, £2, £3",
"D = "d1, d2"))
0iIl <- oncoSimulIndiv(oi, model = "Exp")

0iP1 <- oncoSimulPop(4, oi,
keepEvery = 10,
mc.cores = 2,
keepPhylog = TRUE)

We will plot the first two:

op <- par(mar = rep(0, 4), mfrow = c(2, 1))
plotClonePhylog(oiP1[[1]])
plotClonePhylog(oiP1[[2]])

106

OncoSimulR: genetic simulation with arbitrary epistasis 107

©

@D O

)0 @ra no@neQ) oo (6)o@ nag o

©

D

@@ Q@O DG B

fz@ 10

par (op)

This is so far disabled in function oncoSimulSample, since that function is optimized for other uses. This
might change in the future.

OncoSimulR: genetic simulation with arbitrary epistasis 108

7 Using v.1 posets and simulations

It is strongly recommended that you use the new (v.2) procedures for specifying fitness effects. However,
the former v.1 procedures are still available, with only very minor changes to function calls. What follows
below is the former vignette. You might want to use v.1 because for certain models (e.g., small number
of genes, with restrictions as specified by a simple poset) simulations might be faster with v.1 (fitness
evaluation is much simpler —we are working on further improving speed).

7.1 Specifying restrictions: posets

How to specify the restrictions is shown in the help for poset. It is often useful, to make sure you did not
make any mistakes, to plot the poset. This is from the examples (we use an “L" after a number so that
the numbers are integers, not doubles; we could alternatively have modified storage.mode).

pl <- cbind(c(1L, 1L, OL), c(2L, 3L, 4L))
plotPoset(pl, addroot = TRUE)

p4 <- cbind(OL, 15L)
plotPoset(p4, addroot = TRUE)

OncoSimulR: genetic simulation with arbitrary epistasis 109

Root

OOHOOOOOOO®®®®®WE®

Specifying posets is actually straightforward. For instance, we can specify the pancreatic cancer poset in
Gerstung et al. [?] (their figure 2B, left). We specify the poset using numbers, but for nicer plotting we
will use names (KRAS is 1, SMAD4 is 2, etc). This example is also in the help for poset:
pancreaticCancerPoset <- cbind(c(1, 1, 1, 1, 2, 3, 4, 4, 5),

c(2, 3, 4, 5, 6, 6, 6,7, 7))
storage.mode (pancreaticCancerPoset) <- "integer"
plotPoset (pancreaticCancerPoset,

names = c("KRAS", "SMAD4", "CDNK2A", "TP53",
"MLL3","PXDN", "TGFBR2"))

7.2 Simulating cancer progression

We can simulate the progression in a single subject. Using an example very similar to the one in the help:

data(examplePosets)
pl101 <- examplePosets[["p1101"]]

OncoSimulR: genetic simulation with arbitrary epistasis 110

bl <- oncoSimulIndiv(p1101, keepEvery = 15)

summary (b1)

NumClones TotalPopSize LargestClone MaxNumDrivers

1 9 19568498 11444514 4

MaxDriversLast NumDriversLargestPop TotalPresentDrivers
1 4 2 5
FinalTime NumIter HittedWallTime errorMF minDMratio

1 283 1484 FALSE NA 90909.09

minBMratio OccurringDrivers
1 90909.09 1, 7, 8, 9, 10

The first thing we do is make it simpler (for future examples) to use a set of restrictions. In this case,

those encoded in poset pl1101. Then, we run the simulations and look at a simple summary and a plot.

If you want to plot the trajectories, it is better to keep more frequent samples, so you can see when clones
appear:

b2 <- oncoSimulIndiv(p1101, keepEvery = 1)

summary (b2)

NumClones TotalPopSize LargestClone MaxNumDrivers

1 22 49015030 17980044 4

MaxDriversLast NumDriversLargestPop TotalPresentDrivers
1 4 1 9
FinalTime NumIter HittedWallTime errorMF minDMratio

1 558 3404 FALSE NA 90909.09

minBMratio OccurringDrivers

1 90909.09 1, 2, 3, 4, 5, 6, 7, 8, 9
plot (b2)

OncoSimulR: genetic simulation with arbitrary epistasis 111

Number of drivers
0
3 1
T4 T2 !
3 3 !
%) 4 ;‘
© g
O q—]
5 9 | g
— [} N
e |
> ;
pa X
AN 1!
o X
F i
(4]
— !
o e
o !
F .
Q
— | | | | | |
0 100 200 300 400 500

Time units

As we have seen before, the stacked plot here is less useful and that is why | do not evaluate that code for

this vignette.
plot (b2, type = "stacked")

The following is an example where we do not care about passengers, but we want to use a different graph,
and we want a few more drivers before considering cancer has been reached. And we allow it to run for
longer. Note that in the McF model detectionSize really plays no role. Note also how we pass the poset:

it is the same as before, but now we directly access the poset in the list of posets.

m2 <- oncoSimulIndiv(examplePosets[["p1101"]], model = "McFL",
numPassengers = 0, detectionDrivers = 8,

mu = b5e-7, initSize = 4000,

sampleEvery = 0.025,
finalTime = 25000, keepEvery = 5,

detectionSize = 1e6)
(Very rarely the above run will fail to reach cancer. If that happens, execute it again.)
As usual, we will plot using both a line and a stacked plot:
par (mfrow = c(2, 1))

plot(m2, addtot = TRUE, log = "",
thinData = TRUE, thinData.keep = 0.5)

OncoSimulR: genetic simulation with arbitrary epistasis 112

plot(m2, type = "stacked",
thinData = TRUE, thinData.keep = 0.5)

OncoSimulR: genetic simulation with arbitrary epistasis 113

Number of drivers
§ | 0 = 5
-~ 2 7
» 3 8
8 g | —*
Y— o —
o O
— —
(]
O
e
> o
< 5]
o
Lo
O —
| | | | | | | |
0 2000 4000 6000 8000 10000 12000 14000
Time units
Number of drivers
S 0 5
S 7 1 =6
— "2 m7
1%) 3 m 8
3 38 4
Y— o —
© & IPM
— i
(]
O
£ I
> o
< 5 |
o T e
Lo
o —

I I I I I I I I
0 2000 4000 6000 8000 10000 12000 14000

Time units

OncoSimulR: genetic simulation with arbitrary epistasis 114

The default is to simulate progression until a simulation reaches cancer (i.e., only simulations that satisfy
the detectionDrivers or the detectionSize will be returned). If you use the McF model with large enough
initSize this will often be the case but not if you use very small initSize. Likewise, most of the Bozic
runs do not reach cancer. Lets try a few:

b3 <- oncoSimulIndiv(p1101, onlyCancer = FALSE)

summary (b3)

NumClones TotalPopSize LargestClone MaxNumDrivers

1 1 0 0 0

MaxDriversLast NumDriversLargestPop TotalPresentDrivers
1 0 0 0
FinalTime NumIter HittedWallTime errorMF minDMratio

1 494 496 FALSE NA 90909.09

minBMratio OccurringDrivers

1 90909.09 NA

b4 <- oncoSimulIndiv(p1101, onlyCancer = FALSE)

summary (b4)

NumClones TotalPopSize LargestClone MaxNumDrivers

1 3 3188 3188 1

MaxDriversLast NumDriversLargestPop TotalPresentDrivers
1 0 0 2
FinalTime NumIter HittedWallTime errorMF minDMratio

1 2281.25 2339 FALSE NA 90909.09

minBMratio OccurringDrivers

1 90909.09 1, 7

Plot those runs:

par(mfrow = c(1, 2))
par(cex = 0.8)
plot(b3)

plot(b4)

o
_|Number of drivers §‘NmmaMdmas
0
S - _ 1
N o
—] O_
") n ©
8 8- 8
5 S 1
2 S 3
o]
m_
N -
— — -
T T T T T T T T T T T
0 100 200 300 400 500 0 500 1000 1500 2000

Time units Time units

OncoSimulR: genetic simulation with arbitrary epistasis 115

7.2.1 Simulating progression in several subjects

To simulate the progression in a bunch of subjects (we will use only four, so as not to fill the vignette with
plots) we can do, with the same settings as above:

pl <- oncoSimulPop(4, p1101, mc.cores = 2)
par(mfrow = c(2, 2))
plot(pl, ask = FALSE)

Number of drivers Number of drivers
0 _ 0
@ 7 1 @ 1
TC; < — D) g < — D)
5 2 3 5 % 2 |
8 = s -)
S S !
=} > i
pd — pd T)
o o J'
o ‘ o 'l'
+ - 5 + - .
o | | | | | | | 2 | | | | | |
0 200 400 600 800 1200 0 200 400 600 800 1000
Time units Time units
Number of drivers Number of drivers
0 | 0
@ 7 1 @ 1
D —_2 3 - 2
° < o <
5 @ 3 5 % 3
B @ 4 & = 4
S S
> >
zZ — pd —
o o
o o
+ — : + - =
o | | | | | | | @ | | | | | |
0 50 100 150 200 250 300 0 50 100 150 200 250
Time units Time units

We can also use stream and stacked plots, though they might not be as useful in this case. For the sake
of keeping the vignette small, these are commented out.

par(mfrow = c(2, 2))
plot(pl, type = "stream", ask = FALSE)

par(mfrow = c(2, 2))
plot(pl, type = "stacked", ask = FALSE)

OncoSimulR: genetic simulation with arbitrary epistasis 116

7.3 Sampling from a set of simulated subjects

You will often want to do something with the simulated data. For instance, sample the simulated data.
Here we will obtain the trajectories for 100 subjects in a scenario without passengers. Then we will sample
with the default options and store that as a vector of genotypes (or a matrix of subjects by genes):

ml <- oncoSimulPop(100, examplePosets[["p1101"]],
numPassengers = 0, mc.cores = 2)

The function samplePop samples that object, and also gives you some information about the output:
genotypes <- samplePop(ml)

##

Subjects by Genes matriz of 100 subjects and 11 genes.

What can you do with it? That is up to you. As an example, let us try to infer an oncogenetic tree (and
plot it) using the Oncotree package [?] after getting a quick look at the marginal frequencies of events:

colSums (genotypes) /nrow(genotypes)

#i#t 1 2 3 4 5 6 7 8 9 10 11
0.57 0.03 0.00 0.00 0.00 0.00 0.45 0.00 0.01 0.00 0.00

require(Oncotree)

Loading required package: Oncotree
Loading required package: boot

otl <- oncotree.fit(genotypes)

The following events had no observed occurances,so they will not be included in the constru
3 456 8 10 11

plot(otl)

http://cran.fhcrc.org/web/packages/Oncotree/index.html

OncoSimulR: genetic simulation with arbitrary epistasis 117

Your run will likely differ from mine, but with the defaults (detection size of 108) it is likely that events
down the tree will never appear. You can set detectionSize = 1e9 and you will see that events down
the tree are now found in the cross-sectional sample.

Alternatively, you can use single cell sampling and that, sometimes, recovers one or a couple more events.
genotypesSC <- samplePop(ml, typeSample = "single")

##
Subjects by Genes matrixz of 100 subjects and 11 genes.

colSums (genotypesSC) /nrow (genotypesSC)

1 2 3 4 5 6 7 8 9 10 11
0.65 0.09 0.12 0.00 0.00 0.00 0.57 0.10 0.10 0.00 0.00

ot2 <- oncotree.fit(genotypesSC)

The following events had no observed occurances,so they will not be included in the constru
4 5 6 10 11

plot(ot2)

OncoSimulR: genetic simulation with arbitrary epistasis

118

You can of course rename the columns of the output matrix to something else if you want so the names

of the nodes will reflect those potentially more meaningful names.

8 Generating random DAGs for restrictions

You might want to randomly generate DAGs like those often found in the literature on oncogenetic trees
et al. Function sim0Graph might help here.

No seed fized, so reruns will give different DAGs.

(al <- sim0Graph(10))

##
##
##
#H#
##
##
##
##
##
##
##
##

QOOO\IOBU'In-PCAJ[\JD—kO{ﬂ
(e}
ct

—
o

Root

0
0
0
0
0
0
0
0
0
0
0

O O O O O O O O O O -
O O O O O O O O O O+
O O O O O O O O O O =
O O O O O O O O O O -

library(graph)
plot(as(al, "graphNEL"))

N
w
W

O O O O OO+ O Fr OO Wm
[l ol eoleoleol i elNe)]
O O O O O OO+ OO o N
O O OO OO OO O o
O O O O O OO+ O ooV

for simple

=
O L PP O Fr O OO OO O

o

plotting

OncoSimulR: genetic simulation with arbitrary epistasis 119

oo
L

Once you obtain the adjacency matrices, it is for now up to you to convert them into appropriate posets
or fitnessEffects objects.

Why this function? | searched for, and could not find any that did what | wanted, in particular bounding
the number of parents, being able to specify the approximate depth® of the graph, and optionally being
able to have DAGs where no node is connected to another both directly (an edge between the two) and
indirectly (there is a path between the two through other nodes). So | wrote my own code. The code is
fairly simple to understand (all in file generate-random-trees.R). | would not be surprised if this way
of generating random graphs has been proposed and named before; please let me know, best if with a
reference.

Should we remove direct connections if there are indirect? Or, should we set removeDirectIndirect =
TRUE? Except for [?], none of the DAGs I've seen in the context of CBNs, oncogenetic trees, etc, include
both direct and indirect connections between nodes. If these exist, reasoning about the model can be

8Where depth is defined in the usual way to mean smallest number of nodes —or edges— to traverse to get from the
bottom to the top of the DAG.

OncoSimulR: genetic simulation with arbitrary epistasis 120

harder. For example, with CBN (AND or CMPN or monotone relationships) adding a direct connection
makes no difference iff we assume that the relationships encoded in the DAG are fully respected (e.g., all
sp = —00). But it can make a difference if we allow for deviations from the monotonicity, specially if we
only check for the satisfaction of the presence of the immediate ancestors. And things get even trickier
if we combine XOR with AND. The code for computing fitness, however, should deal with all of this just
fine.

9 Session info and packages used

This is the information about the version of R and packages used:

sessionInfo()

R version 3.3.0 (2016-05-03)
Platform: x86_64-apple-darwinl3.4.0 (64-bit)
Running under: 0S X 10.9.5 (Mavericks)

##

locale:

[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##

attached base packages:

[1] parallel stats graphics grDevices utils
[6] datasets methods Dbase

##

other attached packages:

[1] Oncotree_0.3.3 boot_1.3-18

[3] igraph_1.0.1 graph_1.50.0

[5] BiocGenerics_0.18.0 OncoSimulR_2.2.2
[7] knitr_1.13

##

loaded via a namespace (and not attached):
[1] Rcpp_0.12.5 lattice_0.20-33
[3] gtools_3.5.0 grid_3.3.0

[5] chron_2.3-47 stats4_3.3.0

[7] formatR_1.4 magrittr_1.5

[9] evaluate_0.9 highr 0.6

[11] stringi_1.0-1 data.table_1.9.6

[13] Rgraphviz_2.16.0 Matrix_1.2-6
[15] BiocStyle_2.0.2 RColorBrewer_1.1-2
[17] tools_3.3.0 stringr_1.0.0

