Contents

1 Getting started

brgedata includes a collection of BRGE omic and exposome data from the same cohort. The diferent objects guarantees a minimum of samples in common between all sets.

Data available in this R package:

Data Type Number of Samples Number of Features Technology Object Name Class
Exposome 110 15 brge_expo ExposomeSet
Transcriptome 75 67528 Affymetrix HTA 2.0 brge_gexp ExpressionSet
Methylome 20 392277 Illumina Human Methylation 450K brge_methy GenomicRatioSet
Proteome 90 47 brge_prot ExpressionSet

sex and age was included as phenotipic data in each set. Moreover, the ExposomeSet includes asthma status and rhinitis status of each sample.

2 Data Resources

2.1 Exposome Data

To load the exposome data, stored in an ExposomeSet, run the follow commands:

data("brge_expo", package = "brgedata")
brge_expo
## Object of class 'ExposomeSet' (storageMode: environment)
##  . exposures description:
##     . categorical:  0 
##     . continuous:  15 
##  . exposures transformation:
##     . categorical: 0 
##     . transformed: 0 
##     . standardized: 0 
##     . imputed: 0 
##  . assayData: 15 exposures 110 individuals
##     . element names: exp, raw 
##     . exposures: Ben_p, ..., PCB153 
##     . individuals: x0001, ..., x0119 
##  . phenoData: 110 individuals 6 phenotypes
##     . individuals: x0001, ..., x0119 
##     . phenotypes: Asthma, ..., Age 
##  . featureData: 15 exposures 12 explanations
##     . exposures: Ben_p, ..., PCB153 
##     . descriptions: Family, ..., .imp 
## experimentData: use 'experimentData(object)'
## Annotation:

The summary of the data contained by brge_expo:

Data Type Number of Samples Number of Features Technology Object Name Class
Exposome 110 15 brge_expo ExposomeSet

2.2 Transcriptome Data

To load the transcriptome data, saved in an ExpressionSet, run the follow commands:

data("brge_gexp", package = "brgedata")
brge_gexp
## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 67528 features, 100 samples 
##   element names: exprs 
## protocolData: none
## phenoData
##   sampleNames: x0001 x0002 ... x0139 (100 total)
##   varLabels: age sex
##   varMetadata: labelDescription
## featureData
##   featureNames: TC01000001.hg.1 TC01000002.hg.1 ...
##     TCUn_gl000247000001.hg.1 (67528 total)
##   fvarLabels: transcript_cluster_id probeset_id ... notes (11 total)
##   fvarMetadata: labelDescription
## experimentData: use 'experimentData(object)'
## Annotation:

The summary of the data contained by brge_gexp:

Data Type Number of Samples Number of Features Technology Object Name Class
Transcriptome 75 67528 Affymetrix HTA 2.0 brge_gexp ExpressionSet

2.3 Methylome Data

To load the methylation data, encapsulated in a GenomicRatioSet, run the follow commands:

data("brge_methy", package = "brgedata")
brge_methy
## class: GenomicRatioSet 
## dim: 392277 20 
## metadata(0):
## assays(1): Beta
## rownames(392277): cg13869341 cg24669183 ... cg26251715 cg25640065
## rowData names(14): Forward_Sequence SourceSeq ...
##   Regulatory_Feature_Group DHS
## colnames(20): x0017 x0043 ... x0077 x0079
## colData names(9): age sex ... Mono Neu
## Annotation
##   array: IlluminaHumanMethylation450k
##   annotation: ilmn12.hg19
## Preprocessing
##   Method: NA
##   minfi version: NA
##   Manifest version: NA

The summary of the data contained by brge_methy:

Data Type Number of Samples Number of Features Technology Object Name Class
Methylome 20 392277 Illumina Human Methylation 450K brge_methy GenomicRatioSet

2.4 Proteome Data

To load the protein data, stored in an ExpressionSet, run the follow commands:

data("brge_prot", package = "brgedata")
brge_prot
## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 47 features, 90 samples 
##   element names: exprs 
## protocolData: none
## phenoData
##   sampleNames: x0001 x0002 ... x0090 (90 total)
##   varLabels: age sex
##   varMetadata: labelDescription
## featureData
##   featureNames: Adiponectin_ok Alpha1AntitrypsinAAT_ok ...
##     VitaminDBindingProte_ok (47 total)
##   fvarLabels: chr start end
##   fvarMetadata: labelDescription
## experimentData: use 'experimentData(object)'
## Annotation:

The summary of the data contained by brge_prot:

Data Type Number of Samples Number of Features Technology Object Name Class
Proteome 90 47 brge_prot ExpressionSet

Session info

## R Under development (unstable) (2024-10-21 r87258)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so 
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_GB              LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: America/New_York
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] BiocStyle_2.35.0
## 
## loaded via a namespace (and not attached):
##   [1] splines_4.5.0               BiocIO_1.17.0              
##   [3] norm_1.0-11.1               bitops_1.0-9               
##   [5] tibble_3.2.1                preprocessCore_1.69.0      
##   [7] XML_3.99-0.17               rpart_4.1.23               
##   [9] lifecycle_1.0.4             lattice_0.22-6             
##  [11] MASS_7.3-61                 base64_2.0.2               
##  [13] scrime_1.3.5                flashClust_1.01-2          
##  [15] backports_1.5.0             magrittr_2.0.3             
##  [17] minfi_1.53.0                limma_3.63.1               
##  [19] Hmisc_5.2-0                 sass_0.4.9                 
##  [21] rmarkdown_2.29              jquerylib_0.1.4            
##  [23] yaml_2.3.10                 doRNG_1.8.6                
##  [25] askpass_1.2.1               DBI_1.2.3                  
##  [27] minqa_1.2.8                 RColorBrewer_1.1-3         
##  [29] multcomp_1.4-26             abind_1.4-8                
##  [31] zlibbioc_1.53.0             quadprog_1.5-8             
##  [33] GenomicRanges_1.59.0        purrr_1.0.2                
##  [35] RCurl_1.98-1.16             BiocGenerics_0.53.1        
##  [37] nnet_7.3-19                 TH.data_1.1-2              
##  [39] sandwich_3.1-1              circlize_0.4.16            
##  [41] GenomeInfoDbData_1.2.13     IRanges_2.41.0             
##  [43] S4Vectors_0.45.0            ggrepel_0.9.6              
##  [45] rentrez_1.2.3               genefilter_1.89.0          
##  [47] annotate_1.85.0             DelayedMatrixStats_1.29.0  
##  [49] codetools_0.2-20            DelayedArray_0.33.1        
##  [51] xml2_1.3.6                  DT_0.33                    
##  [53] tidyselect_1.2.1            gmm_1.8                    
##  [55] shape_1.4.6.1               UCSC.utils_1.3.0           
##  [57] lme4_1.1-35.5               beanplot_1.3.1             
##  [59] matrixStats_1.4.1           stats4_4.5.0               
##  [61] base64enc_0.1-3             illuminaio_0.49.0          
##  [63] GenomicAlignments_1.43.0    jsonlite_1.8.9             
##  [65] multtest_2.63.0             Formula_1.2-5              
##  [67] survival_3.7-0              iterators_1.0.14           
##  [69] emmeans_1.10.5              foreach_1.5.2              
##  [71] tools_4.5.0                 pryr_0.1.6                 
##  [73] Rcpp_1.0.13-1               glue_1.8.0                 
##  [75] gridExtra_2.3               SparseArray_1.7.0          
##  [77] xfun_0.49                   MatrixGenerics_1.19.0      
##  [79] GenomeInfoDb_1.43.0         dplyr_1.1.4                
##  [81] HDF5Array_1.35.1            BiocManager_1.30.25        
##  [83] fastmap_1.2.0               boot_1.3-31                
##  [85] rhdf5filters_1.19.0         fansi_1.0.6                
##  [87] openssl_2.2.2               caTools_1.18.3             
##  [89] digest_0.6.37               R6_2.5.1                   
##  [91] estimability_1.5.1          imputeLCMD_2.1             
##  [93] colorspace_2.1-1            gtools_3.9.5               
##  [95] RSQLite_2.3.7               tidyr_1.3.1                
##  [97] utf8_1.2.4                  generics_0.1.3             
##  [99] data.table_1.16.2           rtracklayer_1.67.0         
## [101] httr_1.4.7                  htmlwidgets_1.6.4          
## [103] S4Arrays_1.7.1              scatterplot3d_0.3-44       
## [105] pkgconfig_2.0.3             gtable_0.3.6               
## [107] blob_1.2.4                  siggenes_1.81.0            
## [109] impute_1.81.0               XVector_0.47.0             
## [111] htmltools_0.5.8.1           bookdown_0.41              
## [113] multcompView_0.1-10         scales_1.3.0               
## [115] Biobase_2.67.0              rexposome_1.29.0           
## [117] png_0.1-8                   tmvtnorm_1.6               
## [119] leaps_3.2                   corrplot_0.95              
## [121] knitr_1.48                  rstudioapi_0.17.1          
## [123] tzdb_0.4.0                  rjson_0.2.23               
## [125] reshape2_1.4.4              curl_5.2.3                 
## [127] coda_0.19-4.1               checkmate_2.3.2            
## [129] nlme_3.1-166                nloptr_2.1.1               
## [131] bumphunter_1.49.0           cachem_1.1.0               
## [133] zoo_1.8-12                  rhdf5_2.51.0               
## [135] GlobalOptions_0.1.2         stringr_1.5.1              
## [137] KernSmooth_2.23-24          parallel_4.5.0             
## [139] foreign_0.8-87              AnnotationDbi_1.69.0       
## [141] restfulr_0.0.15             GEOquery_2.75.0            
## [143] pillar_1.9.0                grid_4.5.0                 
## [145] reshape_0.8.9               vctrs_0.6.5                
## [147] gplots_3.2.0                pcaMethods_1.99.0          
## [149] xtable_1.8-4                cluster_2.1.6              
## [151] htmlTable_2.4.3             evaluate_1.0.1             
## [153] readr_2.1.5                 GenomicFeatures_1.59.0     
## [155] Rsamtools_2.23.0            locfit_1.5-9.10            
## [157] mvtnorm_1.3-2               cli_3.6.3                  
## [159] compiler_4.5.0              rngtools_1.5.2             
## [161] rlang_1.1.4                 crayon_1.5.3               
## [163] nor1mix_1.3-3               mclust_6.1.1               
## [165] plyr_1.8.9                  stringi_1.8.4              
## [167] lsr_0.5.2                   BiocParallel_1.41.0        
## [169] munsell_0.5.1               Biostrings_2.75.0          
## [171] glmnet_4.1-8                Matrix_1.7-1               
## [173] hms_1.1.3                   sparseMatrixStats_1.19.0   
## [175] bit64_4.5.2                 ggplot2_3.5.1              
## [177] Rhdf5lib_1.29.0             KEGGREST_1.47.0            
## [179] statmod_1.5.0               FactoMineR_2.11            
## [181] SummarizedExperiment_1.37.0 memoise_2.0.1              
## [183] bslib_0.8.0                 bit_4.5.0