Package 'MetaScope'

January 23, 2025

sequencing microbiome data Version 1.7.2 **Description** This package contains tools and methods for preprocessing microbiome data. Functionality includes library generation, demultiplexing, alignment, and microbe identification. It is in part an R translation of the PathoScope 2.0 pipeline. **License** GPL (>= 3) URL https://github.com/wejlab/metascope https://wejlab.github.io/metascope-docs/ BugReports https://github.com/wejlab/MetaScope/issues **Depends** R (>= 4.4.0) **Imports** BiocFileCache, Biostrings, data.table (>= 1.16.2), dplyr, ggplot2, magrittr, Matrix, MultiAssayExperiment, Rbowtie2, readr, rlang, Rsamtools, S4Vectors, stringr, SummarizedExperiment, taxonomizr, tibble, tidyr, tools Suggests animalcules, BiocStyle, biomformat, GenomicRanges, IRanges, knitr, lintr, plyr, R.utils, rmarkdown, Rsubread, spelling, sys, testthat, usethis Enhances BiocParallel VignetteBuilder knitr **BiocType** Software biocViews MicrobiomeData, ReproducibleResearch, SequencingData **Encoding UTF-8** Language en-US LazyData FALSE RoxygenNote 7.3.2 git_url https://git.bioconductor.org/packages/MetaScope

Title Tools and functions for preprocessing 16S and metagenomic

Type Package

2 Contents

git_branch devel
git_last_commit 67089b7
git_last_commit_date 2025-01-16
Repository Bioconductor 3.21
Date/Publication 2025-01-23
Author Aubrey Odom [aut, cre] (ORCID: https://orcid.org/0000-0001-7113-7598), Rahul Varki [aut], W. Evan Johnson [aut] (ORCID: https://orcid.org/0000-0002-6247-6595), Howard Fan [ctb]
Maintainer Aubrey Odom <aodom@bu.edu></aodom@bu.edu>

Contents

MetaScope-package
add_in_taxa
add_in_taxa_ncbi
align_details
align_target
align_target_bowtie
bam_reheader_R
blastn_results
blastn_single_result
blast_reassignment
blast_result_metrics
bt2_16S_params
bt2_missing_params
bt2_regular_params
check_blastn_exists
check_samtools_exists
combined_header
convert_animalcules
convert_animalcules_patho
convert_animalcules_silva
count_matches
download_accessions
download_refseq
extract_reads
filter_host
filter_host_bowtie
filter_unmapped_reads
get_children
get_multi_seqs
get_seqs
locations
merge_bam_files
metascope blast

MetaScope-package		3

Meta	Scope-package	A	1et	aS	coi	ne:	7	Γοσ	ols	ar	ıd	fi	ınc	tie	on.	s f	cor	· n	ore	nr	00	es	sii	10	1	68	: a	no	l n	ne	ta	ge.	_
Index																																	48
	taxid_to_name																																47
	remove_matches																																
	mk_subread_index																																45
	mk_bowtie_index																																43
	meta_demultiplex																																42
	metascope_id																																40

MetaScope: Tools and functions for preprocessing 16S and metagenomic sequencing microbiome data

Description

This package contains tools and methods for preprocessing microbiome data. Functionality includes library generation, demultiplexing, alignment, and microbe identification. It is in part an R translation of the PathoScope 2.0 pipeline.

Author(s)

Maintainer: Aubrey Odom <aodom@bu.edu> (ORCID)

Authors:

- Rahul Varki <rvarki@bu.edu>
- W. Evan Johnson <wej@bu.edu>(ORCID)

Other contributors:

• Howard Fan <hjfan@bu.edu> [contributor]

See Also

Useful links:

- https://github.com/wejlab/metascopehttps://wejlab.github.io/metascope-docs/
- Report bugs at https://github.com/wejlab/MetaScope/issues

4 add_in_taxa_ncbi

add_in_taxa	Adds in taxa if silva database Returns MetaScope Table with silva taxa
	in separate columns

Description

Adds in taxa if silva database Returns MetaScope Table with silva taxa in separate columns

Usage

```
add_in_taxa(metascope_id_in, caching, path_to_write)
```

Arguments

metascope_id_in

MetaScope ID file with silva taxa

caching Boolean for if all_silva_headers.rds is already downloaded

path_to_write Path to save all_silva_headers.rds

Value

Data.frame of taxonomy information

Description

Returns MetaScope Table with NCBI taxa in separate columns

Usage

```
add_in_taxa_ncbi(metascope_id_in, accession, BPPARAM)
```

Arguments

metascope_id_in

MetaScope ID file with NCBI taxa qnames

BPPARAM An optional BiocParallelParam instance determining the parallel back-end to be

used during evaluation.

Value

data.frame or tibble of taxonomy information

align_details 5

align_details

A universal parameter settings object for Rsubread alignment

Description

This object is a named vector of multiple options that can be chosen for functions that involve alignment with Rsubread, namely align_target() and filter_host(). Both functions take an object for the parameter settings, which are provided by align_details by default, or may be given by a user-created object containing the same information.

Usage

```
data(align_details)
```

Format

list.

Details

The default options included in align_details are type = "dna", maxMismatches = 3, nsubreads = 10, phredOffset = 33, unique = FALSE, and nBestLocations = 16. Full descriptions of these parameters can be read by accessing ?Rsubread::align.

Examples

```
data("align_details")
```

align_target

Align microbiome reads to a set of reference libraries

Description

This is the main MetaScope target library mapping function, using Rsubread and multiple libraries. Aligns to each library separately, filters unmapped reads from each file, and then merges and sorts the .bam files from each library into one output file. If desired, output can be passed to 'filter_host()' to remove reads that also map to filter library genomes.

6 align_target

Usage

```
align_target(
  read1,
  read2 = NULL,
  lib_dir = NULL,
  libs,
  threads = 1,
  align_file = tools::file_path_sans_ext(read1),
  subread_options = align_details,
  quiet = TRUE
)
```

Arguments

read1 Path to the .fastq file to align.

read2 Optional: Location of the mate pair .fastq file to align.

lib_dir Path to the index files for all libraries.

libs A vector of character strings giving the basenames of the Subread index files

for alignment. If ALL indices to be used are located in the current working

directory, set lib_dir = NULL. Default is lib_dir = NULL.

threads The number of threads that can be utilized by the function. Default is 1 thread.

align_file The basename of the output alignment file (without trailing .bam extension).

subread_options

A named list specifying alignment parameters for the Rsubread::align() function, which is called inside align_target(). Elements should include type, nthreads, maxMismatches, nsubreads, phredOffset, unique, and nBestLocations. Descriptions of these parameters are available under ?Rsubread::align.

Defaults to the global align_details object.

quiet Turns off most messages. Default is TRUE.

Value

This function writes a merged and sorted .bam file after aligning to all reference libraries given, along with a summary report file, to the user's working directory. The function also outputs the new .bam filename.

```
#### Align example reads to an example reference library using Rsubread
## Create temporary directory
target_ref_temp <- tempfile()
dir.create(target_ref_temp)

tax <- "Ovine atadenovirus D"
## Create temporary taxonomizr accession</pre>
```

align_target_bowtie 7

```
tmp_accession <- system.file("extdata", "example_accessions.sql", package = "MetaScope")</pre>
## Download genome
all_ref <- MetaScope::download_refseq(tax,</pre>
                                        reference = FALSE,
                                        representative = FALSE,
                                        compress = TRUE,
                                        out_dir = target_ref_temp,
                                        caching = TRUE,
                                        accession_path = tmp_accession)
## Create subread index
ind_out <- mk_subread_index(all_ref)</pre>
## Get path to example reads
readPath <- system.file("extdata", "reads.fastq",</pre>
                         package = "MetaScope")
## Copy the example reads to the temp directory
refPath <- file.path(target_ref_temp, "reads.fastq")</pre>
file.copy(from = readPath, to = refPath)
## Modify alignment parameters object
data("align_details")
align_details[["type"]] <- "rna"</pre>
align_details[["phredOffset"]] <- 50</pre>
# Just to get it to align - toy example!
align_details[["maxMismatches"]] <- 100</pre>
## Run alignment
target_map <- align_target(refPath,</pre>
                            libs = stringr::str_replace_all(tax, " ", "_"),
                            lib_dir = target_ref_temp,
                            subread_options = align_details)
## Remove temporary folder
unlink(target_ref_temp, recursive = TRUE)
```

align_target_bowtie Align microbiome reads to set of indexed Bowtie2 libraries

Description

This is the main MetaScope target library mapping function, using Rbowtie2 and multiple libraries. Aligns to each library separately, filters unmapped reads from each file, and then merges and sorts the .bam files from each library into one output file. If desired, output can be passed to 'filter_host_bowtie()' to remove reads that also map to filter library genomes.

align_target_bowtie

Usage

```
align_target_bowtie(
  read1,
  read2 = NULL,
  lib_dir,
  libs,
  align_dir,
  align_file,
  bowtie2_options = NULL,
  threads = 1,
  overwrite = FALSE,
  quiet = TRUE
)
```

Arguments

read1 Path to the .fastq file to align.

read2 Optional: Location of the mate pair .fastq file to align.

lib_dir Path to the directory that contains the Bowtie2 indexes.

1 The basename of the Bowtie2 indexes to align against (without trailing .bt2 or

.bt2l extensions).

align_dir Path to the directory where the output alignment file should be created.

align_file The basename of the output alignment file (without trailing .bam extension).

bowtie2_options

Optional: Additional parameters that can be passed to the align_target_bowtie() function. To see all the available parameters use Rbowtie2::bowtie2_usage(). See Details for default parameters. NOTE: Users should pass all their parameters as one string and if optional parameters are given then the user is responsible for entering all the parameters to be used by Bowtie2. The only parameter that

should NOT be specified here is the number of threads.

threads The number of threads that can be utilized by the function. Default is 1 thread.

overwrite Whether existing files should be overwritten. Default is FALSE.

quiet Turns off most messages. Default is TRUE.

Details

The default parameters are the same that PathoScope 2.0 uses. "-very-sensitive-local -k 100 -scoremin L,20,1.0"

If you experience any issues with reading the input files, make sure that the file(s) are not located in a read-only folder. This can be circumvented by copying files to a new location before running the function.

Value

Returns the path to where the output alignment file is stored.

align_target_bowtie 9

```
#### Align example reads to an example reference library using Rbowtie2
## Create temporary directory to store file
target_ref_temp <- tempfile()</pre>
dir.create(target_ref_temp)
tmp_accession <- system.file("extdata", "example_accessions.sql", package = "MetaScope")</pre>
## Dowload reference genome
MetaScope::download_refseq("Morbillivirus hominis",
                            reference = FALSE,
                            representative = FALSE,
                            compress = TRUE,
                            out_dir = target_ref_temp,
                            caching = TRUE,
                            accession_path = tmp_accession
)
## Create temporary directory to store the indices
index_temp <- tempfile()</pre>
dir.create(index_temp)
## Create bowtie2 index
MetaScope::mk_bowtie_index(
  ref_dir = target_ref_temp,
  lib_dir = index_temp,
  lib_name = "target",
  overwrite = TRUE
)
## Create temporary directory for final file
output_temp <- tempfile()</pre>
dir.create(output_temp)
## Get path to example reads
readPath <- system.file("extdata", "virus_example.fastq",</pre>
                         package = "MetaScope")
## Align to target genomes
target_map <-</pre>
  MetaScope::align_target_bowtie(
    read1 = readPath,
    lib_dir = index_temp,
    libs = "target",
    align_dir = output_temp,
    align_file = "bowtie_target",
    overwrite = TRUE,
    bowtie2_options = "--very-sensitive-local"
  )
## Remove extra folders
```

10 blastn_results

```
unlink(target_ref_temp, recursive = TRUE)
unlink(index_temp, recursive = TRUE)
unlink(output_temp, recursive = TRUE)
```

bam_reheader_R

Replace the header from a .bam file

Description

This function replaces the header from one .bam file with a header from a different .sam file. This function mimics the function of the 'reheader' function in samtools. It is not intended for use by users.

Usage

```
bam_reheader_R(
  head,
  old_bam,
  new_bam = paste(tools::file_path_sans_ext(old_bam), "h.bam", sep = "")
)
```

Arguments

head A file name and location for the .sam file with the new header.

old_bam A file name and location for the .bam file which you would

new_bam A file name for the new .bam file with a replaced header. Defaults to the same

base filename plus 'h.bam'. For example, 'example.bam' will be written as

'exampleh.bam'.

Value

This function will return a new .bam file with a replaced header. The function also outputs the new .bam filename.

blastn_results

Reformat BLASTn results

Description

Reformat BLASTn results

blastn_results 11

Usage

```
blastn_results(
  results_table,
  bam_file,
  num_results = 10,
  num_reads_per_result = 100,
  hit_list = 10,
  num_threads = 1,
  db_path,
  out_path,
  db = NULL,
  sample_name = NULL,
  quiet = quiet,
  accession_path,
  fasta_dir = NULL,
 BPPARAM
)
```

Arguments

results_table data.frame containing the MetaScope results.

bam_file Rsamtools::bamFile instance for the given sample.

num_results Integer; maximum number of Metascope results to BLAST. Default is 10.

num_reads_per_result

Integer; number of reads to BLAST per result. Default is 100.

hit_list Integer; how many BLAST results to fetch for each read. Default is 10.

num_threads Integer; how many threads to use if multithreading. Default is 1.

db_path Character string; filepath for the location of the pre-installed BLAST database.

out_path Character string; Output directory to save CSV output files, including base name

of files. For example, given a sample "X78256", filepath would be file.path(directory_here,

"X78256") with extension omitted.

db Currently accepts one of c("ncbi", "silva", "other") Default is "ncbi",

appropriate for samples aligned against indices compiled from NCBI whole genome databases. Alternatively, usage of an alternate database (like Green-

genes2) should be specified with "other".

sample_name Character string, sample name for output files.

quiet Logical, whether to print out more informative messages. Default is FALSE.

accession_path (character) Filepath to NCBI accessions SQL database. See taxonomzr::prepareDatabase().

fasta_dir Character string; Directory where fastas from metascope_id are stored.

BPPARAM An optional BiocParallelParam instance determining the parallel back-end to be

used during evaluation.

Value

Creates and exports num_results number of csv files with blast results from local blast

12 blastn_single_result

blastn_single_result blastn_single_result

Description

blastn_single_result

Usage

```
blastn_single_result(
    results_table,
    bam_file,
    which_result,
    num_reads = 100,
    hit_list = 10,
    num_threads,
    db_path,
    quiet,
    accession_path,
    bam_seqs,
    out_path,
    sample_name,
    fasta_dir = NULL
)
```

Arguments

results_table A dataframe of the Metascope results

bam_file A sorted bam file and index file, loaded with Rsamtools::bamFile

which_result Index in results_table for which result to Blast search

num_reads Number of reads to blast per result

hit_list Number of how many blast results to fetch per read

db_path Blast database path

quiet Logical, whether to print out more informative messages. Default is FALSE.

accession_path (character) Filepath to NCBI accessions SQL database. See taxonomzr::prepareDatabase().

bam_seqs A list of the sequence IDs from the bam file

out_path Path to output results.

sample_name Character string, sample name for output files.

fasta_dir Path to where fasta files are stored.

Value

Returns a dataframe of blast results for a metascope result

blast_reassignment 13

blast_reassignment

Reassign reads from MetaScope BLASTn alignment

Description

Using the output from metascope_blast(), the blast_reassignment() function takes the results and alters the original metascope_id() output to reassign reads that were invalidated by the BLAST findings. Currently, the implementation of this function only reassigns reads to a taxon that was already found in the sample at a higher abundance.

Usage

```
blast_reassignment(
  metascope_blast_path,
  species_threshold,
  num_hits,
  blast_tmp_dir,
  out_dir,
  sample_name
)
```

Arguments

metascope_blast_path

Character string. The filepath to a metascope_blast CSV output file.

species_threshold

Numeric. A number between 0 and 1 indicating the minimum proportion of reads needed for a taxon to be considered validated from the BLAST results.

Default is 0.2, or 20%.

num_hits Integer. The number of hits for which to assess validation. Default is 10, i.e.,

only the top 10 taxa will be assessed.

from the metascope_blast function. Referencing the arguments from metascope_blast,

this would be file.path(tmp_dir, "blast")

out_dir Character string, path to output directory.

sample_name Character string, sample name for output files.

Value

Returns a data. frame with the reassigned taxa and read counts.

14 bt2_16S_params

blast_result_metrics Calculates result metrics from a blast results table

Description

This function calculates the best hit (genome with most blast read hits), uniqueness score (total number of genomes hit), species percentage hit (percentage of reads where MetaScope species also matched the blast hit species), genus percentage hit (percentage of reads where blast genus matched MetaScope aligned genus) and species contaminant score (percentage of reads that blasted to other species genomes) and genus contaminant score (percentage of reads that blasted to other genus genomes)

Usage

```
blast_result_metrics(blast_results_table_path, accession_path, db = NULL)
```

Arguments

blast_results_table_path

path for blast results csv file

 $accession_path \ \ (character) \ Filepath \ to \ NCBI \ accessions \ SQL \ database. \ See \ taxonomzr::prepareDatabase().$

db

Currently accepts one of c("ncbi", "silva", "other") Default is "ncbi", appropriate for samples aligned against indices compiled from NCBI whole genome databases. Alternatively, usage of an alternate database (like Greengenes2) should be specified with "other".

Value

a vector with best_hit, uniqueness_score, species_percentage_hit genus_percentage_hit, species_contaminant_score, and genus_contaminant_score

bt2_16S_params

A universal parameter object for Bowtie 2 16S alignment

Description

This character string provides several Bowtie 2 options to provide an optimized alignment specifically optimized for 16S amplicon sequencing data. This object can be used with functions that use the Bowtie 2 aligner through the Rbowtie2 package, namely align_target_bowtie() and filter_host_bowtie. These settings can be substituted for default settings by passing to the bowtie2_options argument.

Usage

data(bt2_16S_params)

bt2_missing_params 15

Format

list

Details

The default parameters listed in this object are "-local -R 2 -N 0 -L 25 -i S,1,0.75 -k 5 -score-min L,0,1.88"

Note that k is actually 10 and is doubled internally from 5. The score-min function was chosen such that the minimum alignment score allowed requires 98

Further delineation of Bowtie 2 parameters is provided in the Bowtie 2 manual.

Examples

```
data("bt2_16S_params")
```

bt2_missing_params

A universal parameter object for Bowtie 2 metagenomic alignment where the host genome is thought to be absent from the reference database

Description

This character string provides several Bowtie 2 options to conduct an alignment useful for metagenomes, especially in the case where a genome may not be present in the reference database. This object can be used with functions that use the Bowtie 2 aligner through the Rbowtie2 package, namely align_target_bowtie() and filter_host_bowtie. These settings can be substituted for default settings by passing to the bowtie2_options argument.

Usage

```
data(bt2_missing_params)
```

Format

list

Details

The default parameters listed in this object are "-local -R 2 -N 0 -L 25 -i S,1,0.75 -k 5 -score-min L,0,1.4".

Further delineation of Bowtie 2 parameters is provided in the Bowtie 2 manual.

```
data("bt2_missing_params")
```

16 check_blastn_exists

bt2_regular_params	A universal parameter object for Bowtie 2 metagenomic or non-16S alignment

Description

This character string provides several Bowtie 2 options to provide a 95 alignment useful for metagenomes. This object can be used with functions that use the Bowtie 2 aligner through the Rbowtie2 package, namely align_target_bowtie() and filter_host_bowtie. These settings can be substituted for default settings by passing to the bowtie2_options argument.

Usage

```
data(bt2_regular_params)
```

Format

list

Details

The default parameters listed in this object are "-local -R 2 -N 0 -L 25 -i S,1,0.75 -k 5 -score-min L,0,1.7".

Further delineation of Bowtie 2 parameters is provided in the Bowtie 2 manual.

Examples

```
data("bt2_regular_params")
```

check_blastn_exists

Check if blastn exists on the system

Description

This is an internal function that is not meant to be used outside of the package. It checks whether blastn exists on the system.

Usage

```
check_blastn_exists()
```

Details

Checks if blastn is installed

check_samtools_exists 17

Value

Returns TRUE if blastn exists on the system, else FALSE.

check_samtools_exists Check if samtools exists on the system

Description

This is an internal function that is not meant to be used outside of the package. It checks whether samtools exists on the system.

Usage

```
check_samtools_exists()
```

Value

Returns TRUE if samtools exists on the system, else FALSE.

Description

This function generates a combined header from multiple .bam files from different reference libraries (e.g. a split bacterial library). It is not intended for use by users.

Usage

```
combined_header(bam_files, header_file = "header_tmp.sam")
```

Arguments

bam_files A character vector of the locations/file names of .bam files from which to com-

bine the headers.

header_file A file name and location for the output file for the combined header. This will

be a .sam format file without any reads. Defaults to 'header_tmp.sam'.

Value

This function will return a combined header from all the supplied .bam files.

18 convert_animalcules

convert_animalcules

Create a multi-assay experiment from MetaScope output for usage with animalcules

Description

Upon completion of the MetaScope pipeline, users can analyze and visualize abundances in their samples using the animalcules package. This function allows interoperability of metascope_id output with both animalcules and QIIME. After running this function, the user should save the returned MAE to an RDS file using a function like saveRDS to upload the output into the animalcules package.

Usage

```
convert_animalcules(
 meta_counts,
  annot_path,
  which_annot_col,
  end_string = ".metascope_id.csv",
  qiime_biom_out = FALSE,
  path_to_write = ".",
  accession_path = NULL
)
```

Arguments

meta_counts

A vector of filepaths to the counts ID CSVs output by metascope_id().

annot_path

The filepath to the CSV annotation file for the samples. This CSV metadata/annotation file should contain at least two columns, one with names of all samples WITH-

OUT the extension listed in end_string, e.g. for output file "sample_x76.metascope_id.csv",

the column specified in which_annot_col should contain the entry "sample_x76". Sample names containing characters "_", "-", and "." are fine, however sample names beginning with numbers should be renamed to have a prefix, e.g. "777897sample" should be renamed to "X777897sample" for both the output

which_annot_col

The name of the column of the annotation file containing the sample IDs. These

should be the same as the meta_counts root filenames.

file name and the annotation name.

end_string

The end string used at the end of the metascope_id files. Default is ".metas-

cope_id.csv".

qiime_biom_out Would you also like a qiime-compatible biom file output? If yes, two files will be saved: one is a biom file of the counts table, and the other is a specifically

formatted mapping file of metadata information. Default is FALSE.

path_to_write

If qiime_biom_out = TRUE, where should output QIIME files be written? Should be a character string of the folder path. Default is '.', i.e. the current working

directory.

accession_path (character) Path to taxonomizr accessions. See taxonomizr::prepareDatabase().

convert_animalcules 19

Value

Returns a MultiAssay Experiment file of combined sample counts data and/or biom file and mapping file for analysis with QIIME. The MultiAssay Experiment will have a counts assay ("MGX").

```
tempfolder <- tempfile()</pre>
dir.create(tempfolder)
# Create three different samples
samp_names <- c("X123", "X456", "X789")</pre>
all_files <- file.path(tempfolder,
                        paste0(samp_names, ".csv"))
create_IDcsv <- function (out_file) {</pre>
 final_taxids <- c("273036", "418127", "11234")
 final_genomes <- c(</pre>
    "Staphylococcus aureus RF122, complete sequence",
    "Staphylococcus aureus subsp. aureus Mu3, complete sequence",
    "Measles virus, complete genome")
 best_hit <- sample(seq(100, 1050), 3)
 proportion <- best_hit/sum(best_hit) |> round(2)
 EMreads <- best_hit + round(runif(3), 1)</pre>
 EMprop <- proportion + 0.003
 dplyr::tibble(TaxonomyID = final_taxids,
                Genome = final_genomes,
                read_count = best_hit, Proportion = proportion,
                EMreads = EMreads, EMProportion = EMprop) |>
   dplyr::arrange(dplyr::desc(.data$read_count)) |>
    utils::write.csv(file = out_file, row.names = FALSE)
 message("Done!")
 return(out_file)
out_files <- vapply(all_files, create_IDcsv, FUN.VALUE = character(1))</pre>
# Create annotation data for samples
annot_dat <- file.path(tempfolder, "annot.csv")</pre>
dplyr::tibble(Sample = samp_names, RSV = c("pos", "neg", "pos"),
              month = c("March", "July", "Aug"),
              yrsold = c(0.5, 0.6, 0.2)) >
 utils::write.csv(file = annot_dat,
                   row.names = FALSE)
# Create temporary taxonomizr accession
tmp_accession <- system.file("extdata", "example_accessions.sql", package = "MetaScope")</pre>
# Convert samples to MAE
outMAE <- convert_animalcules(meta_counts = out_files,</pre>
                               annot_path = annot_dat,
                               which_annot_col = "Sample",
                               end_string = ".metascope_id.csv",
                               qiime_biom_out = FALSE,
```

```
accession_path = tmp_accession)
unlink(tempfolder, recursive = TRUE)
```

convert_animalcules_patho

Create a multi-assay experiment from PathoScope 2.0 output for usage with animalcules

Description

This function serves as a legacy integration method for usage with PathoScope 2.0 outputs. Upon completion of the PathoScope 2.0 pipeline, users can analyze and visualize abundances in their samples using the animalcules package. After running this function, the user should save the returned MAE to an RDS file using a function like saveRDS to upload the output into the animalcules package.

Usage

```
convert_animalcules_patho(
  patho_counts,
  annot_path,
  which_annot_col,
  end_string = "-sam-report.tsv"
)
```

Arguments

patho_counts Character string, a directory filepath to the counts ID CSVs output by metascope_id().

annot_path The filepath to the CSV annotation file for the samples.

which_annot_col

The name of the column of the annotation file containing the sample IDs. These

should be the same as the meta_counts root filenames.

end_string The end string used at the end of the metascope_id files. Default is ".metas-

cope_id.csv".

Value

Returns a MultiAssay Experiment file of combined sample counts data. The MultiAssay Experiment will have a counts assay ("MGX").

```
convert_animalcules_silva
```

Create a multi-assay experiment from MetaScope output for usage with animalcules with the SILVA 13 8 database

Description

Upon completion of the MetaScope pipeline, users can analyze and visualize abundances in their samples using the animalcules package. This function allows interoperability of metascope_id output with both animalcules and QIIME. After running this function, the user should save the returned MAE to an RDS file using a function like saveRDS to upload the output into the animalcules package. NOTE: This function is for outputs that were generated with the SILVA 13_8 database.

Usage

```
convert_animalcules_silva(
 meta_counts,
  annot_path,
 which_annot_col,
  end_string = ".metascope_id.csv",
  qiime_biom_out = FALSE,
  path_to_write = ".",
  caching = TRUE
)
```

Arguments

meta_counts

A vector of filepaths to the counts ID CSVs output by metascope_id() created with the SILVA database.

annot_path

The filepath to the CSV annotation file for the samples. This CSV metadata/annotation file should contain at least two columns, one with names of all samples WITH-OUT the extension listed in end_string, e.g. for output file "sample_x76.metascope_id.csv",

the column specified in which_annot_col should contain the entry "sample_x76". Sample names containing characters "_", "-", and "." are fine, however sample names beginning with numbers should be renamed to have a prefix, e.g. "777897sample" should be renamed to "X777897sample" for both the output file name and the annotation name.

which_annot_col

The name of the column of the annotation file containing the sample IDs. These should be the same as the meta_counts root filenames.

end_string

The end string used at the end of the metascope_id files. Default is ".metascope_id.csv".

qiime_biom_out Would you also like a qiime-compatible biom file output? If yes, two files will be saved: one is a biom file of the counts table, and the other is a specifically formatted mapping file of metadata information. Default is FALSE.

path_to_write If qiime_biom_out = TRUE, where should output QIIME files be written? Should be a character string of the folder path. Default is '.', i.e. the current working directory.

caching Whether to use BiocFileCache when downloading genomes. Default is FALSE.

Value

Returns a MultiAssay Experiment file of combined sample counts data and/or saved biom file and mapping file for analysis with QIIME. The MultiAssayExperiment will have a counts assay ("MGX").

```
tempfolder <- tempfile()</pre>
dir.create(tempfolder)
# Create three different samples
samp_names <- c("X123", "X456", "X789")</pre>
all_files <- file.path(tempfolder,</pre>
                        paste0(samp_names, ".csv"))
create_IDcsv <- function (out_file) {</pre>
 final_taxids <- c("AY846380.1.2583", "AY909584.1.2313", "HG531388.1.1375")
 final_genomes <- rep("Genome name", 3)</pre>
 best_hit <- sample(seq(100, 1050), 3)
 proportion <- best_hit/sum(best_hit) |> round(2)
 EMreads <- best_hit + round(runif(3), 1)
 EMprop <- proportion + 0.003
 dplyr::tibble("TaxonomyID" = final_taxids,
                "Genome" = final_genomes,
                "read_count" = best_hit, "Proportion" = proportion,
                "EMreads" = EMreads, "EMProportion" = EMprop) |>
    dplyr::arrange(dplyr::desc(.data$read_count)) |>
   utils::write.csv(file = out_file, row.names = FALSE)
 message("Done!")
 return(out_file)
}
out_files <- vapply(all_files, create_IDcsv, FUN.VALUE = character(1))</pre>
# Create annotation data for samples
annot_dat <- file.path(tempfolder, "annot.csv")</pre>
dplyr::tibble(Sample = samp_names, RSV = c("pos", "neg", "pos"),
              month = c("March", "July", "Aug"),
              yrsold = c(0.5, 0.6, 0.2)) |>
 utils::write.csv(file = annot_dat,
                   row.names = FALSE)
# Convert samples to MAE
outMAE <- convert_animalcules_silva(meta_counts = out_files,</pre>
                                     annot_path = annot_dat,
                                     which_annot_col = "Sample",
                                     end_string = ".metascope_id.csv",
```

23 count_matches

```
qiime_biom_out = FALSE,
                                     caching = TRUE)
unlink(tempfolder, recursive = TRUE)
```

Count the number of base lengths in a CIGAR string for a given opercount_matches ation

Description

The 'CIGAR' (Compact Idiosyncratic Gapped Alignment Report) string is how the SAM/BAM format represents spliced alignments. This function will accept a CIGAR string for a single read and a single character indicating the operation to be parsed in the string. An operation is a type of column that appears in the alignment, e.g. a match or gap. The integer following the operator specifies a number of consecutive operations. The count_matches() function will identify all occurrences of the operator in the string input, add them, and return an integer number representing the total number of operations for the read that was summarized by the input CIGAR string.

Usage

```
count_matches(x, char = "M")
```

Arguments

Х Character. A CIGAR string for a read to be parsed. Examples of possible operators include "M", "D", "I", "S", "H", "=", "P", and "X".

A single letter representing the operation to total for the given string. char

Details

This function is best used on a vector of CIGAR strings using an apply function (see examples).

Value

an integer number representing the total number of alignment operations for the read that was summarized by the input CIGAR string.

```
# A single cigar string: 3M + 3M + 5M
cigar1 <- "3M1I3M1D5M"
count_matches(cigar1, char = "M")
# Parse with operator "P": 2P
cigar2 <- "4M1I2P9M"
count_matches(cigar2, char = "P")
```

24 download_accessions

download_accessions

Download indexes required for MetaScope ID and MetaBlast modules

Description

This is a necessary step for all samples utilizing NCBI and SILVA databases in the MetaScope pipeline. As specified by the user, download_accessions will automatically download the NCBI accessions database, the SILVA taxonomy database, and or the NCBI Blast 16S database and prepare consolidated databases for downstream use with the MetaID and MetaBLAST modules. This package relies on the taxonomizr package.

Usage

```
download_accessions(
  ind_dir,
  tmp_dir = file.path(ind_dir, "tmp"),
  remove_tmp_dir = TRUE,
  NCBI_accessions_database = TRUE,
  NCBI_accessions_name = "accessionTaxa",
  silva_taxonomy_database = TRUE,
  silva_taxonomy_name = "all_silva_headers",
  blast_16S_database = TRUE,
  blast_16S_name = "16S_ribosomal_RNA"
)
```

Arguments

ind_dir Character string. Directory filepath where indices should be saved. Required.

tmp_dir Character path to directory for storing temp files. (Useful to avoid redownloading) Defaults to file.path(ind_dir, "tmp")

remove tmp_dir_Delete tmp_dir_efter_downloads are complete? Defaults to TRUE

remove_tmp_dir Delete tmp_dir after downloads are complete? Defaults to TRUE NCBI_accessions_database

Logical. Download taxonomizr NCBI accessions database? Defaults to TRUE.

 ${\tt NCBI_accessions_name}$

Character string. Filename (with or without extension) to save taxonomizr NCBI accessions database. Defaults to "accessionTaxa.sql".

silva_taxonomy_database

Logical. Download SILVA taxonomy database? Defaults to TRUE.

silva_taxonomy_name

Character string. Filename (with or without extension) to save SILVA taxonomy database. Defaults to the file supplied with the package, "all_silva_headers.rds".

download_refseq 25

```
blast_16S_database
Download NCBI 16S Blast database? Defaults to TRUE.

blast_16S_name Character string. Filename (without extension) to save SILVA taxonomy database.
Defaults to "16S_ribosomal_RNA".
```

Value

Exports database(s) with names and to location specified by the user.

Examples

```
## Not run:
    download_accessions(
        ind_dir = "C:/Users/JohnSmith/Research",
        tmp_dir = file.path(ind_dir, "tmp"),
        remove_tmp_dir = TRUE,
        NCBI_accessions_database = TRUE,
        NCBI_accessions_name = "accessionTaxa.sql",
        silva_taxonomy_database = TRUE,
        silva_taxonomy_name = "all_silva_headers.rds",
        blast_16S_database = TRUE,
        blast_16S_name = "16S_ribosomal_RNA")
## End(Not run)
```

download_refseq

Download RefSeq genome libraries

Description

This function will automatically download RefSeq genome libraries in a fasta format from the specified taxon. The function will first download the summary report at: ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/**ki and then use this file to download the genome(s) and combine them in a single compressed or uncompressed fasta file.

Usage

```
download_refseq(
  taxon,
  reference = TRUE,
  representative = FALSE,
  compress = TRUE,
  patho_out = FALSE,
  out_dir = NULL,
  caching = FALSE,
  quiet = TRUE,
  accession_path = NULL
)
```

26 download_refseq

Arguments

taxon	Name of single taxon to download. The taxon name should be a recognized NCBI scientific or common name, with no grammatical or capitalization inconsistencies. All available taxonomies are visible by accessing the MetaScope:::taxonomy_table object included in the package.
reference	Download only RefSeq reference genomes? Defaults to TRUE. Automatically set to TRUE if representative = TRUE.
representati	Download RefSeq representative and reference genomes? Defaults to FALSE. If TRUE, reference is automatically set at TRUE.
compress	Compress the output .fasta file? Defaults to TRUE.
patho_out	Create duplicate outpute files compatible with PathoScope? Defaults to FALSE.
out_dir	Character string giving the name of the directory to which libraries should be output. Defaults to creation of a new temporary directory.
caching	Whether to use BiocFileCache when downloading genomes. Default is FALSE.
quiet	Turns off most messages. Default is TRUE.
accession_pa	th (character) Filepath to NCBI accessions SQL database. See taxonomzr::prepareDatabase().

Details

When selecting the taxon to be downloaded, if you receive an error saying Your input is not a valid taxon, please take a look at the taxonomy_table object, which can be accessed with the command MetaScope:::taxonomy_table). Only taxa with exact spelling as they appear at any level of the table will be acknowledged.

Value

Returns a .fasta or .fasta.gz file of the desired RefSeq genomes. This file is named after the kingdom selected and saved to the current directory (e.g. 'bacteria.fasta.gz'). This function also has the option to return a .fasta file formatted for PathoScope as well (e.g. bacteria.pathoscope.fasta.gz') if path_out = TRUE.

extract_reads 27

extract_reads

Helper function for demultiplexing

Description

Helper function for demultiplexing sequencing reads, designed in a way to allow for parallelization across barcodes (parallel extraction of reads by barcode). This function takes a specific barcode (numeric index) from lists of sample names/barcodes, a Biostrings::DNAStringSet of barcodes by sequence header, and a Biostrings::QualityScaledXStringSet of reads corresponding to the barcodes. Based on the barcode index given, it extracts all reads for the indexed barcode and writes all the reads from that barcode to a separate .fastq file.

Usage

```
extract_reads(
  barcodeIndex,
  barcodes,
  sampleNames,
  index,
  reads,
  location = "./demultiplex_fastq",
  rcBarcodes = TRUE,
  hDist = 0,
  quiet = TRUE
)
```

Arguments

barcodeIndex	Which barcode	(integer number or	index) in the	barcodes or sample name to use

for read extraction.

barcodes A list of all barcodes in the sequencing dataset. Correlates and in same order as

sampleNames.

sampleNames A list of sample names or identifiers associated with each barcode in the bar-

codes list.

index A Biostrings::DNAStringSet that contains the read headers and barcode se-

quence for each header in the sequence slot.

reads A Biostrings::QualityScaledXStringSet that has the same headers and or-

der as the index file, but contains the read sequences and their quality scores.

location A directory location to store the demultiplexed read files. Defaults to generate a

new subdirectory at './demultiplex_fastq'

rcBarcodes Should the barcode indices in the barcodes list be reverse complemented to

match the sequences in the index DNAStringSet? Defaults to TRUE.

hDist Uses a Hamming Distance or number of base differences to allow for inexact

matches for the barcodes/indexes. Defaults to 0. Warning: if the Hamming Distance is >=1 and this leads to inexact index matches to more than one barcode,

that read will be written to more than one demultiplexed read files.

28 filter_host

quiet

Turns off most messages. Default is TRUE.

Value

Writes a single .fastq file that contains all reads whose index matches the barcode specified. This file will be written to the location directory, and will be named based on the specified sampleName and barcode, e.g. './demultiplex_fastq/SampleName1_GGAATTATCGGT.fastq.gz'

Examples

```
## Create temporary directory
ref_temp <- tempfile()</pre>
dir.create(ref_temp)
## Load example barcode, index, and read data into R session
barcodePath <- system.file("extdata", "barcodes.txt", package = "MetaScope")</pre>
bcFile <- read.table(barcodePath, sep = "\t", header = TRUE)</pre>
indexPath <- system.file("extdata", "virus_example_index.fastq",</pre>
package = "MetaScope")
inds <- Biostrings::readDNAStringSet(indexPath, format = "fastq")</pre>
readPath <- system.file("extdata", "virus_example.fastq",</pre>
                         package = "MetaScope")
reads <- Biostrings::readQualityScaledDNAStringSet(readPath)</pre>
## Extract reads from the first barcode
results <- extract_reads(1, bcFile[, 2], bcFile[, 1], inds, reads,
                         rcBarcodes = FALSE, location = ref_temp)
## Extract reads from multiple barcodes
more_results <- lapply(1:6, extract_reads, bcFile[, 2], bcFile[, 1], inds,</pre>
                        reads, rcBarcodes = FALSE, location = ref_temp)
## Remove temporary directory
unlink(ref_temp, recursive = TRUE)
```

filter_host

Use Rsubread to align reads against one or more filter libraries and subsequently remove mapped reads

Description

After aligning your sample to a target library with align_target(), use filter_host() to remove unwelcome host contamination using filter reference libraries. This function takes as input the name of the .bam file produced via align_target(), and produces a sorted .bam file with any reads that match the filter libraries removed. This resulting .bam file may be used upstream for further analysis. This function uses Rsubread. For the Rbowtie2 equivalent of this function, see filter_host_bowtie.

filter_host 29

Usage

```
filter_host(
  reads_bam,
  lib_dir = NULL,
  libs,
  make_bam = FALSE,
  output = paste(tools::file_path_sans_ext(reads_bam), "filtered", sep = "."),
  subread_options = align_details,
  YS = 1e+05,
  threads = 1,
  quiet = TRUE
)
```

Arguments

reads_bam The name of a merged, sorted .bam file that has previously been aligned to a ref-

erence library. Likely, the output from running an instance of align_target().

lib_dir Path to the directory that contains the filter Subread index files.

libs The basename of the filter libraries (without index extension).

make_bam Logical, whether to also output a bam file with host reads filtered out. A .csv.gz

file will be created instead if FALSE. Creating a bam file is costly on resources over creating a compressed csv file with only relevant information, so default is

FALSE.

output The desired name of the output .bam or .csv.gz file. Extension is automatically

defined by whether make_bam = TRUE. Default is the basename of unfiltered_bam

+ .filtered + extension.

subread_options

A named list specifying alignment parameters for the Rsubread::align() function, which is called inside align_target(). Elements should include type, nthreads, maxMismatches, nsubreads, phredOffset, unique, and nBestLocations. Descriptions of these parameters are available under ?Rsubread::align.

Defaults to the global align_details object.

YS yieldSize, an integer. The number of alignments to be read in from the bam file

at once for chunked functions. Default is 100000.

threads The amount of threads available for the function. Default is 1 thread.

quiet Turns off most messages. Default is TRUE.

Details

A compressed .csv can be created to produce a smaller output file that is created more efficiently and is still compatible with metascope_id().

Value

The name of a filtered, sorted .bam file written to the user's current working directory. Or, if make_bam = FALSE, a .csv.gz file containing a data frame of only requisite information to run metascope_id().

30 filter_host_bowtie

Examples

```
#### Filter reads from bam file that align to any of the filter libraries
## Assuming a bam file has been created previously with align_target()
## Create temporary directory
filter_ref_temp <- tempfile()</pre>
dir.create(filter_ref_temp)
## Create temporary taxonomizr accession
tmp_accession <- system.file("extdata", "example_accessions.sql", package = "MetaScope")</pre>
## Download filter genome
all_species <- c("Staphylococcus aureus subsp. aureus str. Newman")
all_ref <- vapply(all_species, MetaScope::download_refseq,</pre>
                  reference = FALSE, representative = FALSE, compress = TRUE,
                  out_dir = filter_ref_temp, caching = FALSE,
                  accession_path = tmp_accession,
                  FUN.VALUE = character(1))
ind_out <- vapply(all_ref, mk_subread_index, FUN.VALUE = character(1))</pre>
## Get path to example reads
readPath <- system.file("extdata", "subread_target.bam",</pre>
                         package = "MetaScope")
## Copy the example reads to the temp directory
refPath <- file.path(filter_ref_temp, "subread_target.bam")</pre>
file.copy(from = readPath, to = refPath)
utils::data("align_details")
align_details[["type"]] <- "rna"</pre>
align_details[["phredOffset"]] <- 10</pre>
# Just to get it to align - toy example!
align_details[["maxMismatches"]] <- 10</pre>
## Align and filter reads
filtered_map <- filter_host(</pre>
 refPath, lib_dir = filter_ref_temp,
 libs = stringr::str_replace_all(all_species, " ", "_"),
 threads = 1, subread_options = align_details)
## Remove temporary directory
unlink(filter_ref_temp, recursive = TRUE)
```

filter_host_bowtie 31

Description

After a sample is aligned to a target library with align_target_bowtie(), we may use filter_host_bowtie() to remove unwelcome host contamination using filter reference libraries. This function takes as input the name of the .bam file produced via align_target_bowtie(), and produces a sorted .bam or .csv.gz file with any reads that match the filter libraries removed. This resulting .bam file may be used downstream for further analysis. This function uses Rbowtie2 For the Rsubread equivalent of this function, see filter_host.

Usage

```
filter_host_bowtie(
  reads_bam,
  lib_dir,
  libs,
  make_bam = FALSE,
  output = paste(tools::file_path_sans_ext(reads_bam), "filtered", sep = "."),
  bowtie2_options = NULL,
  YS = 1e+05,
  threads = 1,
  overwrite = FALSE,
  quiet = TRUE
)
```

Arguments

reads_bam The name of a merged, sorted .bam file that has previously been aligned to a ref-

erence library. Likely, the output from running an instance of align_target_bowtie().

lib_dir Path to the directory that contains the filter Bowtie2 index files.

libs The basename of the filter libraries (without .bt2 or .bt2l extension).

make_bam Logical, whether to also output a bam file with host reads filtered out. A .csv.gz

file will be created instead if FALSE. Creating a bam file is costly on resources over creating a compressed csv file with only relevant information, so default is

FALSE.

output The desired name of the output .bam or .csv.gz file. Extension is automatically

defined by whether make_bam = TRUE. Default is the basename of unfiltered_bam

+ .filtered + extension.

bowtie2_options

Optional: Additional parameters that can be passed to the filter_host_bowtie() function. To see all the available parameters use Rbowtie2::bowtie2_usage(). See Details for default parameters. NOTE: Users should pass all their parameters as one string and if optional parameters are given then the user is responsible for entering all the parameters to be used by Bowtie2. The only parameters that should NOT he appaided here in the threads.

should NOT be specified here is the threads.

YS yieldSize, an integer. The number of alignments to be read in from the bam file

at once for chunked functions. Default is 100000.

threads The amount of threads available for the function. Default is 1 thread.

32 filter_host_bowtie

overwrite Whether existing files should be overwritten. Default is FALSE. quiet Turns off most messages. Default is TRUE.

Details

A compressed .csv can be created to produce a smaller output file that is created more efficiently and is still compatible with metascope_id().

The default parameters are the same that PathoScope 2.0 uses. "-very-sensitive-local -k 100 -scoremin L, 20, 1.0"

Value

The name of a filtered, sorted .bam file written to the user's current working directory. Or, if make_bam = FALSE, a .csv.gz file containing a data frame of only requisite information to run metascope_id().

```
#### Filter reads from bam file that align to any of the filter libraries
## Assuming a bam file has already been created with align_target_bowtie()
# Create temporary filter library
filter_ref_temp <- tempfile()</pre>
dir.create(filter_ref_temp)
## Create temporary taxonomizr accession
tmp_accession <- system.file("extdata", "example_accessions.sql", package = "MetaScope")</pre>
## Download reference genome
MetaScope::download_refseq("Orthoebolavirus zairense",
                            reference = FALSE,
                            representative = FALSE,
                            compress = TRUE,
                            out_dir = filter_ref_temp,
                            caching = TRUE,
                            accession_path = tmp_accession)
## Create temp directory to store the indices
index_temp <- tempfile()</pre>
dir.create(index_temp)
## Create filter index
MetaScope::mk_bowtie_index(
 ref_dir = filter_ref_temp,
 lib_dir = index_temp,
 lib_name = "filter",
 overwrite = TRUE
)
## Create temporary folder to hold final output file
output_temp <- tempfile()</pre>
dir.create(output_temp)
```

```
## Get path to example bam
bamPath <- system.file("extdata", "bowtie_target.bam",</pre>
                       package = "MetaScope")
target_copied <- file.path(output_temp, "bowtie_target.bam")</pre>
file.copy(bamPath, target_copied)
## Align and filter reads
filter_out <-
 filter_host_bowtie(
    reads_bam = target_copied,
   lib_dir = index_temp,
   libs = "filter",
    threads = 1
## Remove temporary directories
unlink(filter_ref_temp, recursive = TRUE)
unlink(index_temp, recursive = TRUE)
unlink(output_temp, recursive = TRUE)
```

filter_unmapped_reads Filter unmapped reads

Description

This function will remove all unmapped reads or lines in a .bam file (warning: overwrites the original file!). This function is needed because combining multiple .bam files from different microbial libraries may lead to some reads that mapped to one library and have unmapped entries from another library. This will remove any unmapped entries and leave all reference mapped lines in the .bam file.

Usage

```
filter_unmapped_reads(bamfile)
```

Arguments

bamfile

Location for the .bam file to filter & remove all unmapped reads

Details

It is not intended for direct use.

Value

This function will overwrite the existing .bam file with a new .bam file in the same location that has only mapped lines. The function itself returns the output .bam file name.

34 get_multi_seqs

get_c	:h	i	1	d	r	er	า
-------	----	---	---	---	---	----	---

Get child nodes from NCBI taxonomy

Description

This function will utilize an organism classification table to obtain all children species and/or strains with available NCBI reference sequences given a parent taxon and its rank.

Usage

```
get_children(input_taxon, input_rank, tax_dat = NULL)
```

Arguments

input_taxon

The parent taxon.

input_rank

The taxonomic rank of the input taxon.

tax_dat

A dataframe of organism classification information. At minimum, should have a column indicating "strain", and and all others should be taxonomic ranks. Each row should be a taxonomic relationship. This defaults to NULL, which calls the

'taxonomy_table' object.

Value

Returns a vector of all the child species and/or strains of the input taxon.

Examples

```
## Get all child species and strains in bacteria superkingdom
get_children('Bacteria','superkingdom')

## Get all child species and strains in fungi kingdom
get_children('Fungi', 'kingdom')

## Get all child species in primate order
get_children('Primates', 'order')
```

get_multi_seqs

Gets multiple sequences from different accessions in a bam file

Description

Returns fasta sequences from a bam file with given taxonomy IDs

Usage

```
get_multi_seqs(ids_n, bam_file, seq_info_df, metascope_id_tax, sorted_bam_file)
```

get_seqs 35

Arguments

ids_n List of vectors with Taxonomy IDs and the number of sequences to get from

each

bam_file A sorted bam file and index file, loaded with Rsamtools::bamFile

seq_info_df Dataframe of sequence information from metascope_blast()

metascope_id_tax

Data.frame of taxonomy information

sorted_bam_file

Filepath to sorted bam file

Value

Biostrings format sequences

get_seqs

Gets sequences from bam file

Description

Returns fasta sequences from a bam file with a given taxonomy ID

Usage

```
get_seqs(id, bam_file, n = 10, bam_seqs)
```

Arguments

id Taxonomy ID of genome to get sequences from

bam_file A sorted bam file and index file, loaded with Rsamtools::bamFile

n Number of sequences to retrieve

bam_seqs A list of the sequence IDs from the bam file

Value

Biostrings format sequences

36 merge_bam_files

locations

Helper Function for MetaScope ID

Description

Used to create plots of genome coverage for any number of accession numbers

Usage

```
locations(
  which_taxid,
  which_genome,
  accessions,
  taxids,
  reads,
  out_base,
  out_dir
)
```

Arguments

which_taxid Which taxid to plot
which_genome Which genome to plot
accessions List of accessions from metascope_id()
taxids List of accessions from metascope_id()
reads List of reads from input file
out_base The basename of the input file
out_dir The path to the input file

Value

A plot of the read coverage for a given genome

Description

This function merges .bam files. It first used the combined_header function to generate a combined header for all the files, reheaders the files, and then merges and sorts the .bam files. It is similar to the 'samtools merge' function, but it allows the .bam files to have different headers. It is not intended for direct use.

metascope_blast 37

Usage

```
merge_bam_files(
  bam_files,
  destination,
  head_file = paste(destination, "_header.sam", sep = ""),
  quiet = TRUE
)
```

Arguments

bam_files A list of file names for the .bam files to be merged.

destination A file name and location for the merged .bam file.

head_file A file name and location for the combined header file. Defaults to the destina-

tion. For example, 'example.bam' will be written as 'example.bam'.

quiet Turns off most messages. Default is TRUE.

Value

This function merges .bam files and combines them into a single file. The function also outputs the new .bam filename.

metascope_blast

Blast reads from MetaScope aligned files

Description

This function allows the user to check a subset of identified reads against NCBI BLAST and the nucleotide database to confirm or contradict results provided by MetaScope. It aligns the top 'metascope_id()' results to NCBI BLAST database. It REQUIRES that command-line BLAST and a separate nucleotide database have already been installed on the host machine. It returns a csv file updated with BLAST result metrics.

Usage

```
metascope_blast(
  metascope_id_path,
  bam_file_path = list.files(tmp_dir, ".updated.bam$", full.names = TRUE)[1],
  tmp_dir,
  out_dir,
  sample_name,
  fasta_dir = NULL,
  num_results = 10,
  num_reads = 100,
  hit_list = 10,
  num_threads = 1,
  db_path,
```

38 metascope_blast

```
quiet = FALSE,
db = NULL,
accession_path = NULL
)
```

Arguments

metascope_id_path

Character string; path to a csv file output by 'metascope_id()'.

bam_file_path Character string; full path to bam file for the same sample processed by 'metas-

cope_id'. Note that the 'filter_bam' function must have output a bam file, and not a .csv.gz file. See '?filter_bam_bowtie' for more details. Defaults to

list.files(file_temp, ".updated.bam\$")[1].

tmp_dir Character string, a temporary directory in which to host files.

out_dir Character string, path to output directory.
sample_name Character string, sample name for output files.

fasta_dir Directory where fasta files for blast will be stored.

num_results Integer, the maximum number of taxa from the metascope_id output to check

reads. Takes the top n taxa, i.e. those with largest abundance. Default is 10.

num_reads Integer, the maximum number of reads to blast per microbe. If the true number

of reads assigned to a given taxon is smaller, then the smaller number will be chosen. Default is 100. Too many reads will involve more processing time.

hit_list Integer, number of blast hit results to keep. Default is 10.

num_threads Integer, number of threads if running in parallel (recommended). Default is 1.

db_path Character string. The database file to be searched (including basename, but

without file extension). For example, if the nt database is in the nt folder, this would be /filepath/nt/nt assuming that the database files have the nt basename. Check this path if you get an error message stating "No alias or index file found".

quiet Logical, whether to print out more informative messages. Default is FALSE.

db Currently accepts one of c("ncbi", "silva", "other") Default is "ncbi",

appropriate for samples aligned against indices compiled from NCBI whole genome databases. Alternatively, usage of an alternate database (like Green-

genes2) should be specified with "other".

accession_path (character) Filepath to NCBI accessions SQL database. See taxonomzr::prepareDatabase().

Details

This function assumes that you used the NCBI nucleotide database to process samples, with a download date of 2021 or later. This is necessary for compatibility with the bam file headers.

This is highly computationally intensive and should be ran with multiple cores, submitted as a multi-threaded computing job if possible.

Note, if best_hit_strain is FALSE, then no strain was observed more often among the BLAST results.

metascope_blast 39

Value

This function writes an updated csv file with metrics.

```
## Not run:
### Create temporary directory
file_temp <- tempfile()</pre>
dir.create(file_temp)
bamPath <- system.file("extdata", "bowtie_target.bam",</pre>
                       package = "MetaScope")
file.copy(bamPath, file_temp)
metascope_id(file.path(file_temp, "bowtie_target.bam"), aligner = "bowtie2",
             input_type = "bam", out_dir = file_temp, num_species_plot = 0,
             update_bam = TRUE)
## Run metascope blast
### Get export name and metascope id results
out_base <- bamPath |> basename() |> tools::file_path_sans_ext() |>
  tools::file_path_sans_ext()
metascope_id_path <- file.path(file_temp, paste0(out_base, ".metascope_id.csv"))</pre>
# NOTE: change db_path to the location where your BLAST database is stored!
db <- "/restricted/projectnb/pathoscope/data/blastdb/nt/nt"</pre>
tmp_accession <- system.file("extdata", "example_accessions.sql", package = "MetaScope"</pre>
metascope_blast(metascope_id_path,
                bam_file_path = file.path(file_temp, "bowtie_target.bam"),
                tmp_dir = file_temp,
                out_dir = file_temp,
                sample_name = out_base,
                db_path = db,
                num_results = 10,
                num_reads = 5,
                hit_list = 10,
                num\_threads = 3,
                db = "ncbi",
                quiet = FALSE,
                fasta_dir = NULL,
                accession_path = tmp_accession)
## Remove temporary directory
unlink(file_temp, recursive = TRUE)
## End(Not run)
```

40 metascope_id

metascope_id

Identify which genomes are represented in a processed sample

Description

This function will read in a .bam or .csv.gz file, annotate the taxonomy and genome names, reduce the mapping ambiguity using a mixture model, and output a .csv file with the results. Currently, it assumes that the genome library/.bam files use NCBI accession names for reference names (rnames in .bam file).

Usage

```
metascope_id(
  input_file,
  input_type = "csv.gz",
  aligner = "bowtie2",
  db = "ncbi",
  db_feature_table = NULL,
  accession_path = NULL,
  tmp_dir = dirname(input_file),
  out_dir = dirname(input_file),
  convEM = 1/10000,
 maxitsEM = 25,
  update_bam = FALSE,
  num_species_plot = NULL,
  blast_fastas = FALSE,
  num\_genomes = 100,
  num_reads = 50,
  quiet = TRUE
)
```

Arguments

input_type

Extension of file input. Should be either "bam" or "csv.gz". Default is "csv.gz".

The aligner which was used to create the bam file. Default is "bowtie2" but can also be set to "subread" or "other".

Currently accepts one of c("ncbi", "silva", "other") Default is "ncbi", appropriate for samples aligned against indices compiled from NCBI whole genome databases. Alternatively, usage of an alternate database (like Greengenes2) should be specified with "other".

Characters and the supplied with two columns "Feeture ID".

If db = "other", a data.frame must be supplied with two columns, "Feature ID" matching the names of the alignment indices, and a second character column supplying the taxon identifying information.

accession_path (character) Filepath to NCBI accessions SQL database. See taxonomzr::prepareDatabase().

metascope_id 41

tmp_dir	Path to a directory to which bam and updated bam files can be saved. Required.
out_dir	The directory to which the .csv output file will be output. Defaults to dirname(input_file).
convEM	The convergence parameter of the EM algorithm. Default set at 1/10000.
maxitsEM	The maximum number of EM iterations, regardless of whether the convEM is below the threshhold. Default set at 50. If set at 0, the algorithm skips the EM step and summarizes the .bam file 'as is'
update_bam	Whether to update BAM file with new read assignments. Default is FALSE. If TRUE, requires input_type = TRUE such that a BAM file is the input to the function.
num_species_plot	
	The number of genome coverage plots to be saved. Default is NULL, which saves coverage plots for the ten most highly abundant species.
blast_fastas	Logical, whether or not to output fasta files for MetaBlast. Default is FALSE.
num_genomes	Number of genomes to output fasta files for MetaBlast. Default is 100.
num_reads	Number of reads per genome per fasta file for MetaBlast. Default is 50.
quiet	Turns off most messages. Default is TRUE.

Value

This function returns a .csv file with annotated read counts to genomes with mapped reads. The function itself returns the output .csv file name. Depending on the parameters specified, can also output an updated BAM file, and fasta files for usage downstream with MetaBLAST.

```
#### Align reads to reference library and then apply metascope_id()
## Assuming filtered bam files already exist
## Create temporary directory
file_temp <- tempfile()</pre>
dir.create(file_temp)
## Get temporary accessions database
tmp_accession <- system.file("extdata", "example_accessions.sql", package = "MetaScope")</pre>
#### Subread aligned bam file
## Create object with path to filtered subread csv.gz file
filt_file <- "subread_target.filtered.csv.gz"</pre>
bamPath <- system.file("extdata", filt_file, package = "MetaScope")</pre>
file.copy(bamPath, file_temp)
## Run metascope id with the aligner option set to subread
metascope_id(input_file = file.path(file_temp, filt_file),
             aligner = "subread", num_species_plot = 0,
             input_type = "csv.gz", accession_path = tmp_accession)
#### Bowtie 2 aligned .csv.gz file
```

42 meta_demultiplex

meta_demultiplex

Demultiplexing sequencing reads

Description

Function for demultiplexing sequencing reads arranged in a common format provided by sequencers (such as Illumina) generally for 16S data. This function takes a matrix of sample names/barcodes, a .fastq file of barcodes by sequence header, and a .fastq file of reads corresponding to the barcodes. Based on the barcodes given, the function extracts all reads for the indexed barcode and writes all the reads from that barcode to separate .fastq files.

Usage

```
meta_demultiplex(
  barcodeFile,
  indexFile,
  readFile,
  rcBarcodes = TRUE,
  location = NULL,
  threads = 1,
  hammingDist = 0,
  quiet = TRUE
)
```

Arguments

barcodeFile	Path to a file containing a .tsv matrix with a header row, and then sample names (column 1) and barcodes (column 2).
indexFile	Path to a .fastq file that contains the barcodes for each read. The headers should be the same (and in the same order) as readFile, and the sequence in the indexFile should be the corresponding barcode for each read. Quality scores are not considered.
readFile	Path to the sequencing read .fastq file that corresponds to the indexFile.

mk_bowtie_index 43

rcBarcodes Should the barcode indexes in the barcodeFile be reverse complemented to match the sequences in the indexFile? Defaults to TRUE.

location A directory location to store the demultiplexed read files. Defaults to generate a

new temporary directory.

threads The number of threads to use for parallelization (BiocParallel). This function

will parallelize over the barcodes and extract reads for each barcode separately

and write them to separate demultiplexed files.

hammingDist Uses a Hamming Distance or number of base differences to allow for inexact

matches for the barcodes/indexes. Defaults to 0. Warning: if the Hamming Distance is >=1 and this leads to inexact index matches to more than one barcode,

that read will be written to more than one demultiplexed read files.

quiet Turns off most messages. Default is TRUE.

Value

Returns multiple .fastq files that contain all reads whose index matches the barcodes given. These files will be written to the location directory, and will be named based on the given sampleNames and barcodes, e.g. './demultiplex_fastq/SampleName1_GGAATTATCGGT.fastq.gz'

Examples

mk_bowtie_index

Make a Bowtie2 index

Description

This function is a wrapper for the Rbowtie2::bowtie2_build function. It will create either small (.bt2) or large Bowtie2 indexes (.bt2l) depending on the combined size of the reference fasta files.

Usage

```
mk_bowtie_index(
  ref_dir,
  lib_dir,
```

44 mk_bowtie_index

```
lib_name,
bowtie2_build_options,
threads = 1,
overwrite = FALSE
)
```

Arguments

ref_dir The path to the directory that contains the reference files either uncompressed or

compressed (.gz). NOTE: This directory should contain only the reference fasta

files to be indexed.

lib_dir The path to the directory where Bowtie2 index files should be created.

lib_name The basename of the index file to be created (without the .bt2 or .bt2l extension)

bowtie2_build_options

Optional: Options that can be passed to the mk_bowtie_index() function. All options should be passed as one string. To see all the available options that can be passed to the function use Rbowtie2::bowtie2_build_usage(). NOTE: Do not

specify threads here.

threads The number of threads available to the function. Default is 1 thread.

overwrite Whether existing files should be overwritten. Default is FALSE.

Value

Creates the Bowtie2 indexes of the supplied reference .fasta files. Returns the path to the directory containing these files.

mk_subread_index 45

mk_subread_index	Make a Subread index
IIIK_SUDI CAU_ITIUCX	Make a subteau maex

Description

This function is a wrapper for the Rsubread::buildindex function. It will generate one or more Subread indexes from a .fasta file. If the library is too large (default >4GB) it will automatically be split into multiple indexes, with _1, _2, etc at the end of the ref_lib basename.

Usage

```
mk_subread_index(ref_lib, split = 4, mem = 8000, quiet = TRUE)
```

Arguments

ref_lib	The name/location of the reference library file, in (uncompressed) .fasta format.
split	The maximum allowed size of the genome file (in GB). If the ref_lib file is larger than this, the function will split the library into multiple parts.
mem	The maximum amount of memory (in MB) that can be used by the index generation process (used by the Rsubread::buildindex function).
quiet	Turns off most messages. Default is TRUE.

Value

Creates one or more Subread indexes for the supplied reference .fasta file. If multiple indexes are created, the libraries will be named the ref_lib basename + "_1", "_2", etc. The function returns the names of the folders holding these files.

46 remove_matches

remove_matches

Helper function to remove reads matched to filter libraries

Description

Using the filter_host() function, we align our sequencing sample to all filter libraries of interest. The remove_matches() function allows for removal of any target reads that are also aligned to filter libraries.

Usage

```
remove_matches(
  reads_bam,
  read_names,
  output,
  YS,
  threads,
  aligner,
  make_bam,
  quiet
)
```

Arguments

reads_bam	The name of a merged, sorted .bam file that has previously been aligned to a reference library. Likely, the output from running an instance of align_target().
read_names	A list of target query names from reads_bam that have also aligned to a filter reference library. Each list element should be a vector of read names.
output	The name of the .bam or .csv.gz file that to which the filtered alignments will be written.
YS	yieldSize, an integer. The number of alignments to be read in from the bam file at once for chunked functions. Default is 100000.
threads	The number of threads to be used in filtering the bam file. Default is 1.
aligner	The aligner which was used to create the bam file.
make_bam	Logical, whether to also output a bam file with host reads filtered out. A .csv.gz file will be created instead if FALSE. Creating a bam file is costly on resources over creating a compressed csv file with only relevant information, so default is FALSE.
quiet	Turns off most messages. Default is TRUE.

Details

This function is not intended for direct use.

taxid_to_name 47

Value

Depending on input make_bam, either the name of a filtered, sorted .bam file written to the user's current working directory, or an RDS file containing a data frame of only requisite information to run metascope_id().

taxid_to_name

Converts NCBI taxonomy ID to scientific name

Description

Converts NCBI taxonomy ID to scientific name

Usage

```
taxid_to_name(taxids, accession_path)
```

Arguments

```
taxids List of NCBI taxids to convert to scientific name accession_path (character) Filepath to NCBI accessions SQL database. See taxonomzr::prepareDatabase().
```

Value

Returns a dataframe of blast results for a metascope result

Index

* datasets
align_details,5
bt2_16S_params, 14
bt2_missing_params, 15
bt2_regular_params, 16
* internal
add_in_taxa,4
add_in_taxa_ncbi,4
<pre>get_multi_seqs, 34</pre>
MetaScope-package, 3
add_in_taxa,4
add_in_taxa_ncbi,4
align_details, 5
align_target, 5
align_target_bowtie,7
bam_reheader_R, 10
blast_reassignment, 13
blast_result_metrics, 14
blastn_results, 10
blastn_single_result, 12
bt2_16S_params, 14
bt2_missing_params, 15
bt2_regular_params, 16
check_blastn_exists, 16
<pre>check_samtools_exists, 17</pre>
combined_header, 17
convert_animalcules, 18
<pre>convert_animalcules_patho, 20</pre>
<pre>convert_animalcules_silva, 21</pre>
count_matches, 23
download_accessions, 24
download_refseq, 25
extract_reads, 27
filter_host, 28
filter_host_bowtie, 30

```
filter\_unmapped\_reads, 33
get_children, 34
{\tt get\_multi\_seqs}, 34
get_seqs, 35
locations, 36
merge_bam_files, 36
meta\_demultiplex, 42
MetaScope (MetaScope-package), 3
MetaScope-package, 3
metascope_blast, 37
\texttt{metascope\_id}, \textcolor{red}{40}
mk_bowtie_index, 43
mk_subread_index, 45
remove\_matches, 46
taxid_to_name, 47
```