cellCellSimulate
functionscTensor 2.17.0
Here, we explain the way to generate CCI simulation data.
scTensor has a function cellCellSimulate
to generate the simulation data.
The simplest way to generate such data is cellCellSimulate
with default parameters.
suppressPackageStartupMessages(library("scTensor"))
sim <- cellCellSimulate()
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!
This function internally generate the parameter sets by newCCSParams
,
and the values of the parameter can be changed, and specified as the input of cellCellSimulate
by users as follows.
# Default parameters
params <- newCCSParams()
str(params)
## Formal class 'CCSParams' [package "scTensor"] with 5 slots
## ..@ nGene : num 1000
## ..@ nCell : num [1:3] 50 50 50
## ..@ cciInfo:List of 4
## .. ..$ nPair: num 500
## .. ..$ CCI1 :List of 4
## .. .. ..$ LPattern: num [1:3] 1 0 0
## .. .. ..$ RPattern: num [1:3] 0 1 0
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## .. ..$ CCI2 :List of 4
## .. .. ..$ LPattern: num [1:3] 0 1 0
## .. .. ..$ RPattern: num [1:3] 0 0 1
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## .. ..$ CCI3 :List of 4
## .. .. ..$ LPattern: num [1:3] 0 0 1
## .. .. ..$ RPattern: num [1:3] 1 0 0
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## ..@ lambda : num 1
## ..@ seed : num 1234
# Setting different parameters
# No. of genes : 1000
setParam(params, "nGene") <- 1000
# 3 cell types, 20 cells in each cell type
setParam(params, "nCell") <- c(20, 20, 20)
# Setting for Ligand-Receptor pair list
setParam(params, "cciInfo") <- list(
nPair=500, # Total number of L-R pairs
# 1st CCI
CCI1=list(
LPattern=c(1,0,0), # Only 1st cell type has this pattern
RPattern=c(0,1,0), # Only 2nd cell type has this pattern
nGene=50, # 50 pairs are generated as CCI1
fc="E10"), # Degree of differential expression (Fold Change)
# 2nd CCI
CCI2=list(
LPattern=c(0,1,0),
RPattern=c(0,0,1),
nGene=30,
fc="E100")
)
# Degree of Dropout
setParam(params, "lambda") <- 10
# Random number seed
setParam(params, "seed") <- 123
# Simulation data
sim <- cellCellSimulate(params)
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!
The output object sim has some attributes as follows.
Firstly, sim$input contains a synthetic gene expression matrix. The size can be changed by nGene and nCell parameters described above.
dim(sim$input)
## [1] 1000 60
sim$input[1:2,1:3]
## Cell1 Cell2 Cell3
## Gene1 9105 2 0
## Gene2 4 37 850
Next, sim$LR contains a ligand-receptor (L-R) pair list. The size can be changed by nPair parameter of cciInfo, and the differentially expressed (DE) L-R pairs are saved in the upper side of this matrix. Here, two DE L-R patterns are specified as cciInfo, and each number of pairs is 50 and 30, respectively.
dim(sim$LR)
## [1] 500 2
sim$LR[1:10,]
## GENEID_L GENEID_R
## 1 Gene1 Gene81
## 2 Gene2 Gene82
## 3 Gene3 Gene83
## 4 Gene4 Gene84
## 5 Gene5 Gene85
## 6 Gene6 Gene86
## 7 Gene7 Gene87
## 8 Gene8 Gene88
## 9 Gene9 Gene89
## 10 Gene10 Gene90
sim$LR[46:55,]
## GENEID_L GENEID_R
## 46 Gene46 Gene126
## 47 Gene47 Gene127
## 48 Gene48 Gene128
## 49 Gene49 Gene129
## 50 Gene50 Gene130
## 51 Gene51 Gene131
## 52 Gene52 Gene132
## 53 Gene53 Gene133
## 54 Gene54 Gene134
## 55 Gene55 Gene135
sim$LR[491:500,]
## GENEID_L GENEID_R
## 491 Gene571 Gene991
## 492 Gene572 Gene992
## 493 Gene573 Gene993
## 494 Gene574 Gene994
## 495 Gene575 Gene995
## 496 Gene576 Gene996
## 497 Gene577 Gene997
## 498 Gene578 Gene998
## 499 Gene579 Gene999
## 500 Gene580 Gene1000
Finally, sim$celltypes contains a cell type vector. Since nCell is specified as “c(20, 20, 20)” described above, three cell types are generated.
length(sim$celltypes)
## [1] 60
head(sim$celltypes)
## Celltype1 Celltype1 Celltype1 Celltype1 Celltype1 Celltype1
## "Cell1" "Cell2" "Cell3" "Cell4" "Cell5" "Cell6"
table(names(sim$celltypes))
##
## Celltype1 Celltype2 Celltype3
## 20 20 20
## R Under development (unstable) (2024-10-21 r87258)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] scTGIF_1.21.0
## [2] Homo.sapiens_1.3.1
## [3] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
## [4] org.Hs.eg.db_3.20.0
## [5] GO.db_3.20.0
## [6] OrganismDbi_1.49.0
## [7] GenomicFeatures_1.59.0
## [8] AnnotationDbi_1.69.0
## [9] SingleCellExperiment_1.29.0
## [10] SummarizedExperiment_1.37.0
## [11] Biobase_2.67.0
## [12] GenomicRanges_1.59.0
## [13] GenomeInfoDb_1.43.0
## [14] IRanges_2.41.0
## [15] S4Vectors_0.45.0
## [16] MatrixGenerics_1.19.0
## [17] matrixStats_1.4.1
## [18] scTensor_2.17.0
## [19] RSQLite_2.3.7
## [20] LRBaseDbi_2.17.0
## [21] AnnotationHub_3.15.0
## [22] BiocFileCache_2.15.0
## [23] dbplyr_2.5.0
## [24] BiocGenerics_0.53.0
## [25] BiocStyle_2.35.0
##
## loaded via a namespace (and not attached):
## [1] fs_1.6.4 bitops_1.0-9 enrichplot_1.27.0
## [4] httr_1.4.7 webshot_0.5.5 RColorBrewer_1.1-3
## [7] Rgraphviz_2.51.0 tools_4.5.0 backports_1.5.0
## [10] utf8_1.2.4 R6_2.5.1 lazyeval_0.2.2
## [13] withr_3.0.2 prettyunits_1.2.0 graphite_1.53.0
## [16] gridExtra_2.3 schex_1.21.0 fdrtool_1.2.18
## [19] cli_3.6.3 TSP_1.2-4 entropy_1.3.1
## [22] sass_0.4.9 genefilter_1.89.0 meshr_2.13.0
## [25] Rsamtools_2.23.0 yulab.utils_0.1.7 txdbmaker_1.3.0
## [28] gson_0.1.0 DOSE_4.1.0 R.utils_2.12.3
## [31] MeSHDbi_1.43.0 AnnotationForge_1.49.0 nnTensor_1.3.0
## [34] plotrix_3.8-4 maps_3.4.2 visNetwork_2.1.2
## [37] generics_0.1.3 gridGraphics_0.5-1 GOstats_2.73.0
## [40] BiocIO_1.17.0 dplyr_1.1.4 dendextend_1.18.1
## [43] Matrix_1.7-1 fansi_1.0.6 abind_1.4-8
## [46] R.methodsS3_1.8.2 lifecycle_1.0.4 yaml_2.3.10
## [49] qvalue_2.39.0 SparseArray_1.7.0 grid_4.5.0
## [52] blob_1.2.4 misc3d_0.9-1 crayon_1.5.3
## [55] ggtangle_0.0.3 lattice_0.22-6 msigdbr_7.5.1
## [58] cowplot_1.1.3 annotate_1.85.0 KEGGREST_1.47.0
## [61] magick_2.8.5 pillar_1.9.0 knitr_1.48
## [64] fgsea_1.33.0 tcltk_4.5.0 rjson_0.2.23
## [67] codetools_0.2-20 fastmatch_1.1-4 glue_1.8.0
## [70] outliers_0.15 ggfun_0.1.7 data.table_1.16.2
## [73] vctrs_0.6.5 png_0.1-8 treeio_1.31.0
## [76] spam_2.11-0 rTensor_1.4.8 gtable_0.3.6
## [79] assertthat_0.2.1 cachem_1.1.0 xfun_0.48
## [82] S4Arrays_1.7.0 mime_0.12 tidygraph_1.3.1
## [85] survival_3.7-0 seriation_1.5.6 iterators_1.0.14
## [88] tinytex_0.53 fields_16.3 nlme_3.1-166
## [91] Category_2.73.0 ggtree_3.15.0 bit64_4.5.2
## [94] progress_1.2.3 filelock_1.0.3 bslib_0.8.0
## [97] colorspace_2.1-1 DBI_1.2.3 tidyselect_1.2.1
## [100] bit_4.5.0 compiler_4.5.0 curl_5.2.3
## [103] httr2_1.0.5 graph_1.85.0 xml2_1.3.6
## [106] DelayedArray_0.33.0 plotly_4.10.4 bookdown_0.41
## [109] rtracklayer_1.67.0 checkmate_2.3.2 scales_1.3.0
## [112] hexbin_1.28.4 RBGL_1.83.0 plot3D_1.4.1
## [115] rappdirs_0.3.3 stringr_1.5.1 digest_0.6.37
## [118] rmarkdown_2.28 ca_0.71.1 XVector_0.47.0
## [121] htmltools_0.5.8.1 pkgconfig_2.0.3 highr_0.11
## [124] fastmap_1.2.0 rlang_1.1.4 htmlwidgets_1.6.4
## [127] UCSC.utils_1.3.0 farver_2.1.2 jquerylib_0.1.4
## [130] jsonlite_1.8.9 BiocParallel_1.41.0 GOSemSim_2.33.0
## [133] R.oo_1.26.0 RCurl_1.98-1.16 magrittr_2.0.3
## [136] GenomeInfoDbData_1.2.13 ggplotify_0.1.2 dotCall64_1.2
## [139] patchwork_1.3.0 munsell_0.5.1 Rcpp_1.0.13
## [142] babelgene_22.9 ape_5.8 viridis_0.6.5
## [145] stringi_1.8.4 tagcloud_0.6 ggraph_2.2.1
## [148] zlibbioc_1.53.0 MASS_7.3-61 plyr_1.8.9
## [151] parallel_4.5.0 ggrepel_0.9.6 Biostrings_2.75.0
## [154] graphlayouts_1.2.0 splines_4.5.0 hms_1.1.3
## [157] igraph_2.1.1 biomaRt_2.63.0 reshape2_1.4.4
## [160] BiocVersion_3.21.1 XML_3.99-0.17 evaluate_1.0.1
## [163] BiocManager_1.30.25 foreach_1.5.2 tweenr_2.0.3
## [166] tidyr_1.3.1 purrr_1.0.2 polyclip_1.10-7
## [169] heatmaply_1.5.0 ggplot2_3.5.1 ReactomePA_1.51.0
## [172] ggforce_0.4.2 xtable_1.8-4 restfulr_0.0.15
## [175] reactome.db_1.89.0 tidytree_0.4.6 viridisLite_0.4.2
## [178] tibble_3.2.1 aplot_0.2.3 ccTensor_1.0.2
## [181] GenomicAlignments_1.43.0 memoise_2.0.1 registry_0.5-1
## [184] cluster_2.1.6 concaveman_1.1.0 GSEABase_1.69.0