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1 Introduction
This package is an implementation the Quantitative Set Analysis for Gene Expression
(qusage) method described in Yaari et al. (Nucleic Acids Res, 2013). This is a novel
Gene Set Enrichment-type test, which is designed to provide a faster, more accurate, and
easier to understand test for gene expression studies. The package is designed primarily
for use with microarray expression data, but can be extended for use with count data
as well.

qusage accounts for inter-gene correlations using a Variance Inflation Factor tech-
nique that extends the method proposed by Wu et al. (Nucleic Acids Res, 2012). In
addition, rather than simply evaluating the deviation from a null hypothesis with a sin-
gle number (a P value), qusage quantifies gene set activity with a complete probability
density function (PDF). From this PDF, P values and confidence intervals can be easily
extracted. Preserving the PDF also allows for post-hoc analysis (e.g., pair-wise compar-
isons of gene set activity) while maintaining statistical traceability. Finally, while qusage
is compatible with individual gene statistics from existing methods (e.g., LIMMA), a
Welch-based method is implemented that is shown to improve specificity.

2 Getting Started
The qusage package can be downloaded from the Bioconductor website using the follow-
ing commands:

> if (!requireNamespace("BiocManager", quietly=TRUE))
+ install.packages("BiocManager")
> BiocManager::install("qusage")
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3 A Simple Example
The simplest way to run the qusage algorithm is by using the qusage function. This func-
tion is a wrapper for the three primary algorithms used in the package, makeComparison
aggregateGeneSet, and calcVIF, each of which can be run individually if you want to
have greater control over the parameters used in the algorithm. A discussion of each
function can be found in section 4.

With default settings, qusage takes four inputs: eset, labels, contrast, & geneSets

1. eset

This variable can be provided in two formats: either as an objet of class ExpressionSet
containing log-normalized expression data (as created by the affy and lumi pack-
ages), or as matrix of log2 gene expression measurements, with rows of genes and
columns of samples. For best results, we recommend that this dataset be trimmed
to remove genes with very low expression.

For this example, we’ll use part of a dataset from a study by Huang Y et al. (GEO
ID: GSE30550), which looks at gene expression in 17 patients before and 77 hours
after exposure to the influenza virus. This dataset has already been trimmed to
remove genes with very low expression. Here is what the first few rows of our
expression data look like:

> dim(eset)

[1] 4147 34

> eset[1:5,1:5]

GSM757899 GSM757915 GSM757931 GSM757947 GSM757962
AKT3 4.600442 4.804845 4.454166 4.459647 4.589498
ACOT8 8.235681 7.667416 8.483951 8.471545 8.343489
GNPDA1 8.074555 8.732101 8.308964 8.499822 8.285027
CDH2 4.673311 5.088127 4.764211 4.630295 4.517296
TANK 9.039308 8.435497 8.835157 9.031125 8.951254

2. labels

This is a character vector which contains labels describing the group structure in
eset. The vector must have one entry for each column in the eset, and the labels
must be legal variable names in R, meaning they can’t contain spaces and must
start with a letter. Often data will consist of two groups, described using "mock"
and "treatment", or "healthy" and "disease". For our example data, we have 17
patients, each with a time point before and after viral exposure, which we will call
"t0" and "t1". We generate the labels as follows:
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> labels = c(rep("t0",17),rep("t1",17))
> labels

[1] "t0" "t0" "t0" "t0" "t0" "t0" "t0" "t0" "t0" "t0" "t0" "t0" "t0"
[14] "t0" "t0" "t0" "t0" "t1" "t1" "t1" "t1" "t1" "t1" "t1" "t1" "t1"
[27] "t1" "t1" "t1" "t1" "t1" "t1" "t1" "t1"

3. contrast

The contrast is a single character string indicating how you want to compare the
groups in your data. In almost all cases, this will be of the form "treatment-mock",
which will test whether our gene sets are significantly different in treatment vs mock
samples. We could also switch the order of the two groups, i.e. "mock-treatment",
which would result in negative fold changes for pathways that are higher in treatment.
In our example, the contrast of interest is simply:

> contrast = "t1-t0"

4. geneSets

This is either a vector describing a single gene set, or a list of vectors representing
a group of gene sets, such as the ones available from Broad’s Molecular Signatures
Database. In this first example, we will use a single list of IFN-stimulated genes,
which looks like this:

> ISG.geneSet[1:10]

[1] "ADAR" "ADM" "ALDH1A1" "ANKFY1" "APOL1" "APOL2"
[7] "APOL6" "ARG2" "ARHGEF3" "ATF3"

Notice that both this vector and the rownames of our eset are using gene symbols.
We could have just as easily used the original Affymetrix probe IDs or even con-
verted everything to REFSEQ IDs. The only requirement is that the rownames of
eset match the symbols used in geneSets. If they are in a different format, you
will receive an error stating that all of your gene sets are of size 0.

With these four parameters, we can run qusage as follows:
> qs.results = qusage(eset, labels, contrast, ISG.geneSet)

Calculating gene-by-gene comparisons...Done.
Aggregating gene data for gene sets.Done.
Calculating variance inflation factors...Done.

The qusage method will return a QSarray object containing statistical data on both the
distributions of individual genes and on the pathway itself (for a full description of the
data in the QSarray object, refer to section 8). While the results of this can be analyzed
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however you choose, there are a variety of functions available in the qusage package for
exploring these results.

To find out if our geneSet is significantly enriched for this comparison, we use the
pdf.pVal function, which calculates a p-value asking whether the convoluted distribu-
tion of our gene set is significantly enriched (i.e. that the mean fold change of the gene
set is different from 0).

> pdf.pVal(qs.results)

[1] 0.0001818507

In order to view the probability density function, you can either use the plotDensityCurves
function, or directly call plot on your QSarray object. In this case, plot will automat-
ically call plotDensityCurves with default parameters. This will appear as follows:

> plot(qs.results, xlab="Gene Set Activation")
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The plotDensityCurves function also invisibly returns the x- and y- coordinates of
the PDFs being plotted in the form of a list of matrices, which can be used to generate
custom plots for the PDFs. For more information on custom plots, refer to section 7).
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3.1 Multiple Gene Sets

Most often, qusage is not going to be run with a single gene set. Instead, it is most
useful when run on a group of gene sets as a tool for hypothesis discovery.

To demonstrate this, we will use MsigDB’s KEGG database (which can be down-
loaded at www.broadinstitute.org/gsea/msigdb). We can read this file in using the
read.gmt function. With the resulting object, we run qusage exactly as before:

> MSIG.geneSets = read.gmt("c2.cp.kegg.v4.0.symbols.gmt")

> summary(MSIG.geneSets[1:5])

Length Class Mode
KEGG_GLYCOLYSIS_GLUCONEOGENESIS 62 -none- character
KEGG_CITRATE_CYCLE_TCA_CYCLE 32 -none- character
KEGG_PENTOSE_PHOSPHATE_PATHWAY 27 -none- character
KEGG_PENTOSE_AND_GLUCURONATE_INTERCONVERSIONS 28 -none- character
KEGG_FRUCTOSE_AND_MANNOSE_METABOLISM 34 -none- character

> MSIG.geneSets[2]

$KEGG_CITRATE_CYCLE_TCA_CYCLE
[1] "LOC642502" "OGDHL" "OGDH" "PDHB" "IDH3G"
[6] "LOC283398" "IDH2" "IDH1" "PDHA2" "PDHA1"

[11] "SUCLA2" "FH" "DLST" "ACO2" "SUCLG2"
[16] "ACO1" "SUCLG1" "CS" "IDH3B" "ACLY"
[21] "DLAT" "PCK2" "IDH3A" "PCK1" "SDHA"
[26] "SDHB" "SDHC" "SDHD" "DLD" "MDH2"
[31] "PC" "MDH1"

> qs.results.msig = qusage(eset, labels, contrast, MSIG.geneSets)

Calculating gene-by-gene comparisons...Done.
Aggregating gene data for gene sets......................................Done.
Calculating variance inflation factors...Done.

> numPathways(qs.results.msig)

[1] 186

The qs.results.msig object now contains information for each of the gene sets in
MSIG.geneSets. Once again, we can get the p-values for the comparison by using the
pdf.pVal function. However, because we have calculated such a large number of p-
values, it’s generally not valid to look at them without performing some kind of multiple
hypothesis testing. Below, we calculate the p-values and use R’s built-in p.adjust
method to calculate the FDR values.
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> p.vals = pdf.pVal(qs.results.msig)
> head(p.vals)

[1] 0.288368617 0.970277527 0.009600519 0.528030282 0.112549381
[6] 0.106747491

> q.vals = p.adjust(p.vals, method="fdr")
> head(q.vals)

[1] 0.54178346 0.98776294 0.09398403 0.75548948 0.36091243 0.36091243

All of this data is also presented using the qsTable function, which returns a table
ordered according to the significance of each gene set. For our data, the results are as
follows:
> qsTable(qs.results.msig, number=10)

pathway.name log.fold.change p.Value FDR
135 KEGG_CIRCADIAN_RHYTHM_MAMMAL -0.16994258 1.326970e-05 0.002244544
22 KEGG_HISTIDINE_METABOLISM -0.06765522 3.205426e-05 0.002244544
127 KEGG_HEMATOPOIETIC_CELL_LINEAGE -0.10276783 3.620233e-05 0.002244544
124 KEGG_RIG_I_LIKE_RECEPTOR_SIGNALING_PATHWAY 0.13163298 3.774956e-04 0.017553544
15 KEGG_ALANINE_ASPARTATE_AND_GLUTAMATE_METABOLISM -0.07912495 4.845073e-04 0.018023671
26 KEGG_BETA_ALANINE_METABOLISM -0.08318178 7.196554e-04 0.020600285
25 KEGG_TRYPTOPHAN_METABOLISM 0.07844123 7.752796e-04 0.020600285
102 KEGG_MTOR_SIGNALING_PATHWAY -0.06927698 1.002185e-03 0.022430061
33 KEGG_O_GLYCAN_BIOSYNTHESIS 0.13299596 1.085326e-03 0.022430061
125 KEGG_CYTOSOLIC_DNA_SENSING_PATHWAY 0.13611612 1.229876e-03 0.022875703

We can also try plotting the data again using a call to plot(qs.results.msig).
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However, this time the qusage package creates a different kind of plot. This is
because, by default, when the QSarray object contains data on more than ten pathways,
plot will automatically use the function plotCIs. This function calculates the 95%
confidence interval for each gene set using the calcBayesCI function and plots it along
with the mean fold change of each gene set. This is usually a more useful view when
there are a large number of gene sets, but a plot of the PDFs can still be generated using
a call to plotDensityCurves.

3.2 Paired Samples

In some cases, samples in a gene expression experiment may be paired with each other.
For example, we may have pairs of samples from the same patient both before and after
treatment. Because there may be patient-specific effects in the gene expression data, we
want to use this information when we calculate pathway activation. In qusage, all we
have to do to indicate paired samples is supply a pairVector containing information
on which samples should be paired together. The vector should be the same length as
eset, and it can be either a numeric vector or a set of factors which uniquely describe
each pair. A simpler way to think about the pair vector is to consider it as a vector of
patient IDs for each column in eset.

Although for simplicity we have been ignoring it thus far, our gene expression data
is actually a paired dataset as well. We have a set of 17 patients with two samples each
(t0 and t1). For our pairVector, we will use the numbers 1:17 to represent our patients,
as follows:

> pairs = c(1:17,1:17)
> pairs

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2 3 4 5
[23] 6 7 8 9 10 11 12 13 14 15 16 17

Then, we can simply run the qusage function in a paired manner by adding the argument
pairVector=pairs (note: we don’t actually show this here, but you can see it in action
in the next section).

3.3 Two-Way Comparisons

The true power of the qusage method comes when you have results from more than one
run of qusage that you wish to compare. If a dataset contains more than two groups, it’s
common to compare these groups in many different ways, and the ablility to compare
the results of these comparisons with each other is extremely useful. These two-way
comparisons are important when examining differences in the response characteristics of
various groups (e.g. to answer the question of "does group A respond to treatment in a
different way than group B?").
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To illustrate how to make these comparisons, we will once again be using the Influenza
response data. Although in the previous examples we have grouped all patients together,
the patients can be classified into two distinct groups based on their response to the virus.
Of the 17 patients in the study, 9 of them had a symptomatic response, and 8 had an
asymptomatic response. While we could compare these two groups of patients directly
at the two time points, it might be more interesting to see if the response to virus over
the time-course of the experiment is different between these two groups.

Before we can compare these groups, however, we will need to remake the labels in
order to describe the new groups in our data. For this example, we have the response
information stored in a variable called resp, which is just a vector with either "sx" (for
symptomatic patients) or "asx" (for asymptomatic patients):

> resp

[1] sx asx asx asx sx sx sx sx asx sx asx sx sx asx sx asx
[17] asx sx asx asx asx sx sx sx sx asx sx asx sx sx asx sx
[33] asx asx
Levels: asx sx

> twoWay.labels = paste(resp, labels, sep=".")
> twoWay.labels

[1] "sx.t0" "asx.t0" "asx.t0" "asx.t0" "sx.t0" "sx.t0" "sx.t0"
[8] "sx.t0" "asx.t0" "sx.t0" "asx.t0" "sx.t0" "sx.t0" "asx.t0"

[15] "sx.t0" "asx.t0" "asx.t0" "sx.t1" "asx.t1" "asx.t1" "asx.t1"
[22] "sx.t1" "sx.t1" "sx.t1" "sx.t1" "asx.t1" "sx.t1" "asx.t1"
[29] "sx.t1" "sx.t1" "asx.t1" "sx.t1" "asx.t1" "asx.t1"

Now, we run qusage twice; once for each comparison that we are interested in (note:
we’re also including information on the sample pairs, which was described in section 3.2).

> sx.results = qusage(eset, twoWay.labels, "sx.t1-sx.t0",
+ MSIG.geneSets, pairVector=pairs)

Calculating gene-by-gene comparisons...Done.
Aggregating gene data for gene sets......................................Done.
Calculating variance inflation factors...Done.

> asx.results = qusage(eset, twoWay.labels, "asx.t1-asx.t0",
+ MSIG.geneSets, pairVector=pairs)

Calculating gene-by-gene comparisons...Done.
Aggregating gene data for gene sets......................................Done.
Calculating variance inflation factors...Done.
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We could examine the information contained in these two runs using the functions de-
scribed above, but what we are most interested in is whether or not there is a significant
difference between the responses of these two groups. We can directly compare the re-
sults in these two groups using the twoCurve.pVal function. This will return a p-value
for the comparison of each gene set in the two objects.

> p.vals = twoCurve.pVal(sx.results,asx.results)
> head(p.vals)

[1] 0.63040128 0.17410353 0.57256998 0.84789898 0.09554015 0.59914985

NOTE: In qusage version 2.0, we have added a streamlined version of the same method-
ology that also calculates the PDF of the difference between these two comparisons. In
this case, a more complex comparison can be specified, indicating that the resulting PDF
should be the difference between the symptomatic PDF and the asymptomatic PDF.

> asx.vs.sx = qusage(eset, twoWay.labels, "(sx.t1-sx.t0) - (asx.t1-asx.t0)",
+ MSIG.geneSets, pairVector=pairs)

Calculating gene-by-gene comparisons...Done.
Aggregating gene data for gene sets......................................Done.
Calculating variance inflation factors...Done.
Calculating gene-by-gene comparisons...Done.
Aggregating gene data for gene sets......................................Done.
Calculating variance inflation factors...Done.

> p.vals = pdf.pVal(asx.vs.sx)
> head(p.vals)

[1] 0.63529792 0.18139880 0.55901371 0.86541377 0.09953021 0.61440351

It turns out that gene set 125 – the "CYTOSOLIC DNA SENSING" pathway – has the
most significant difference in activation. There are multiple ways we could examine this
individual gene set, but perhaps the simplest way is to again use the plotDensityCurves
function. Notice here that we are specifying which pathway to plot using the path.index
parameter.

> plotDensityCurves(asx.results,path.index=125,xlim=c(-0.2,0.5),
+ col=3,main="CYTOSOLIC DNA SENSING")
> plotDensityCurves(sx.results,path.index=125,col=2,add=T)
> plotDensityCurves(asx.vs.sx, path.index=125,col=1,add=T, lwd=3)
> legend("topleft", legend=c("asx","sx","asx-sx"),lty=1,col=c(2:3,1),
+ lwd=c(1,1,3))
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The results here are pretty interesting, actually. What we’re seeing is that, in symp-
tomatic patients, the Cytosolic DNA Sensing pathway is extremely active, while the
asymptomatic patients essentially have no activity at all.

3.3.1 Individual Gene Plots

Often the next question when an interesting pathway is found is what’s happening with
the individual genes in that pathway. Looking at the individual genes can give some
idea as to how consistent the patterns of regulation in the data are, or whether the
significance levels are being driven by only one or two individual genes. Because the
gene set PDF in this package is actually a convolution of the PDFs of each individual
gene, we can actually look at the distributions of each gene directly to understand where
our variation comes from.

qusage provides two plotting functions which can be used to visualize this data. The
first is the plotGeneSetDistributions function, which plots out the PDF for both the
pathway and for that pathway’s individual genes. The plot, which can be seen below,
includes thin colored curves for each gene (color coded according to their standard devi-
ation), as well as a thicker black curve representing the PDF of the entire dataset. Here
we plot the results for both the symptomatic patients and the asymptomatic patients
side-by-side.

> plotGeneSetDistributions(sx.results,asx.results,path.index=125)
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Again, we can see that the symptomatic patients have much more activity than the
asymptomatic patients, a pattern which seems generally consistent in many of the genes
in this pathway. This plot is useful for giving a general idea of how the genes in the
pathway act. However, it would also be useful to find out which genes are the most
active, and since the plotGeneSetDistributions plot does not provide labels for the
individual genes, we must use a separate function: plotCIsGenes to see which genes are
most active. This function produces a very similar plot to the plotCIs function, but in
this case, it will plot the means and confidence intervals for each individual gene in a
pathway. To generate this plot for the CYTOSOLIC DNA SENSING pathway, we will
use the following code:

> par(mar=c(8,4,1,2))
> plotCIsGenes(sx.results,path.index=125)
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3.4 Running qusage with small sample sizes

Although qusage does not require as many samples as permutation-based methods, the
current implementation requires at least three degrees of freedom. As the variance of a
t distribution is ν

ν−2
, this will diverge for ν → 2. Hence, in cases where the degrees of

freedom falls below three, QuSAGE artificially set the degrees of freedom to be three
and issues a warning message that the results should be interpreted with caution. It is
imortant to keep in mind that in this case, the p-values will be inflated, and may not
accurately reflect the underlying data.

A second problem with small sample sizes is the large range over which the gene
set PDF must be sampled. Whereas a t-distribution with 25 degrees of freedom is
sampled from (−10, 10), a distribution with four degrees of freedom must be sampled
from (−416, 416). When using the default number of points (n.points=4096), this
can result in inadequate sampling of the distribution and inaccurate estimates of path-
way significance. In order to prevent this, you must increase the n.points parameter
when running the aggregateGeneSet function (this is done automatically when using
the qusage function if the degrees of freedom are below 5). However, note that the run
time of aggregateGeneSet increases linearly with the number of points, so increasing this
parameter may significantly slow down the algorithm.
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4 The qusage Algorithm
The qusage algorithm involves two basic steps: 1) Calculating gene-level comparisons,
and 2) Aggregating gene-level data for each gene set. In addition, there is one optional
(but highly recommended) step, 3) determining the Variance Inflation Factor (VIF),
which corrects for gene-gene correlations in the gene sets. In section 3, we discussed how
to use the qusage algorithm to run all three steps together with the default parameters.
Below, we discuss each function and their parameters in detail, and look at examples of
how to run each function separately.

4.1 Calculating Gene Level Comparisons

This section describes the makeComparison function, which is the first step in the qusage
algorithm. This function defines the t-distributions for every gene in eset by calculating
the fold change and standard deviation between two groups of samples. The function
has three required parameters: eset, labels, and contrast, which were described in
section 3. A pairVector can also be provided to specify that the comparisons should
be done in a paired manner (see section 3.2). The makeComparison function will return
a QSarray object containing information on the means and standard deviations of each
gene, which will be used in the subsequent functions to calculate pathway enrichment.

var.equal
There are two main algorithms used to calculate a t-distribution from two groups

of samples, known as the "Pooled Variance" and "Welch’s approximate" approach. In
the first method (the pooled variance approach), the variances of the two groups are
assumed to be equal, and the difference in the mean expression values is modeled as
a Student’s t distribution. The second method, proposed by B. L. Welch (Biometrika,
1947), is also based on a Student’s t distribution, but relaxes the assumption of equal
variances. Most recent gene expression studies take the first approach and assume that
the variances of the two groups are equal. For example, this assumption underlies the
individual gene statistics in the widely used LIMMA package in Bioconductor.

The pooled variance approach can slightly improve sensitivity (if the equal variance
assumption holds), and is easily compatible with linear models and ANOVA. However,
this approach can be extremely biased when the assumption of equal variances is broken,
which we find is often the case in many real gene expression data sets. By default,
the makeComparison function will assume unequal variances, but this behavior can be
changed by specifying the parameter var.equal = TRUE. If var.equal is set to TRUE,
the t-distribution is actually calculated using the linear model approach implemented
by LIMMA. This may be appealing in some cases, because using LIMMA’s linear model
framework makes more complicated contrasts possible, while also making it possible to
use LIMMA’s framework for the Bayesian estimation of gene variances, as described
below.
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bayesEstimation
If var.equal is set to TRUE and LIMMA is used to calculate the t-distributions, we

can use some of the additional features of LIMMA when calculating the parameters for
each gene. The bayesEstimation parameter is used by LIMMA to optionally apply
a bayesian step in the estimation of the pooled variances of each gene. This bayesian
step is designed to shrink the variances of the genes on the chip towards a common
value. In some cases, this may help to give slightly more stable values for the variances,
especially in cases where there are very few samples. The Bayesian step also prevents
any genes from having a variance of 0, which would otherwise lead to divergence of the
t-distribution. For complete details of how the bayesian estimation step works, refer to
the documentation of the LIMMA package.

min.variance.factor
If var.equal is set to FALSE, the min.variance.factor can be used as an alternative

to the Bayesian estimation step described above. The min.variance.factor is designed to
add a very small value to the variance of each gene on the chip in order to prevent any
variances from being set to 0. The default, which is set to 10−8, is small enough that it
will not impact the variance of expressed genes, but will prevent the t-distribution from
diverging on genes with variance 0.

4.2 Aggregating gene-level data into gene set PDFs

The second step of the qusage algorithm is the aggregation step, which convolutes indi-
vidual gene t-distributions into a single PDF for each gene set. This step is performed by
the aggregateGeneSet function. The function has two required parameters: a QSarray
object such as the one returned by makeComparison (see section 4.1), and a list of
geneSets. As mentioned in section 3, the geneSets parameter can either be a character
vector containing a single gene set, or a list of character vectors representing multiple
different gene sets.

This function also contains an option to change the number of points that the con-
voluted PDF is sampled over. By default the parameter n.points is set to 212, or 4096
points, which will give very accurate p-values in most cases. Sampling at more points
will increase the accuracy of the resulting p-values, but will also linearly increase the
amount of time needed to calculate the result. In many cases, as few as 1/4 this number
of points can be used without seriously affecting the accuracy of the resulting p-values.

The PDF for each individual gene set is generated by using numerical convolution
applied to the individual gene PDFs. Briefly, a Fast Fourier Transform (FFT) is calcu-
lated for each individual gene PDF to arrive at a k-component vector. The product of
each component across all of the genes is then taken to arrive at a new k-component
vector for the gene set. The real part of the resulting product is then transformed back
to a PDF using a reverse FFT, and assured to be normalized and centered around zero.
The mean of the combined PDF is simply the mean fold change of the individual genes.
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The range for sampling is determined by the lowest degrees of freedom of the individual
genes, such that at most 10−8 of the cumulative distribution at the tails are excluded
(i.e., assumed to be 0). For example, when ν = 3, the range is (−480, 480), and when
ν = 120, the range is (−6, 6).

Technically, the output of this step is the PDF of the sum of differences in expressions
over all genes in the gene set under the assumption that the genes are independent. In
order to estimate the mean differential expression PDF, this distribution is scaled by
a factor of 1/N , where N is the number of genes in the gene set. The resulting PDFs
of the input gene sets are stored as a matrix in path.PDF slot of the returned QSarray
object. However, the x-coordinates for these PDFs are not stored in the QSarray object,
and must be calculated using the getXcoords function.

4.3 The Variance Inflation Factor

The expression measurements of individual genes in a set are almost always correlated.
As such, it is important to take these correlations into account when testing for gene set
enrichment. In qusage, we build off of a technique proposed by Wu et al. (Nucleic Acids
Res, 2012), which calculates a Variance Inflation Factor (VIF) for each gene set based
on the correlation of the genes in that set. This method, referred to as CAMERA, uses
the linear model framework created by LIMMA to calculate gene-gene correlations, but
consequently it must assume equal variance not only between all groups in the dataset,
but also across each gene in the gene set. While this assumption leads to a slightly
more computationally efficient VIF calculation, it is not valid for most gene sets, and its
violation can greatly impact specificity. In the qusage paper (Yaari et al., NAR, 2013),
we show that this assumption of equal variances leads to over-estimation of the VIF,
and consequently an overall loss of power.

Although our recommendation is to use the qusage algorithm for calculating the
VIF, the calcVIF function includes the option to use either the CAMERA method
(as implemented in the limma package in R) or the qusage method. If the parameter
useCAMERA=TRUE is specified when running calcVIF, the CAMERA method will be
used when calculating the VIF for each gene set. By default, this will only be used if
var.equal was set to TRUE during the original call to makeComparison.

useAllData
The calcVIF algorithm contains an additional parameter, useAllData, which spec-

ifies whether all of the groups in eset should be used when calculating the VIF using
the qusage algorithm, or if only the two groups used in the original comparison should
be used. By default (useAllData=TRUE), all of the data will be used to calculate the
VIF. In most cases, using more data will increase the accuracy of the VIF calculation,
especially in cases where individual groups are very small. However, it may not always
be valid to include all of the data when calculating gene-gene correlations (e.g. if the
data set contains expression values from more than one species), so it may be useful to
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limit what groups are used in the VIF calculation. Note that this parameter is only used
if useCAMERA is FALSE, as the CAMERA algorithm automatically uses all data in the
eset provided.
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5 Using qusage with Generalized Linear Mixed Mod-
els

The qusage methodology was extended by Turner et al (BMC Bioinformatics 2015) to
incorporate general linear mixed models available from the nlme package. The function
qgen is now available through the qusage package to implement the extension. The main
difference lies in that the t-statistic information in qusage are based on two sample t-tests
that cannot incorporate additional covariates to adjust the fold change estimates due to
potential confounders that can exist within observational studies. The qgen algorithm
uses the t-statistic information derived from a linear mixed model and estimates the
VIFs using the raw residuals rather than group labelings as this can yield biased VIF
estimates.

5.1 The qgen function

Although the general structure of the qgen function is similar to qusage, there are more
inputs required in order for the user to incorporate added complexity in the statistical
modeling step.

With default settings, qgen takes six inputs: eset, design,fixed, contrast.factor,
contrast, & geneSets, however, additional inputs are often necessary to handle re-
peated measures data through random and correlations.

1. eset

This variable is a matrix of log2 gene expression measurements, with rows of genes
and columns of samples. For best results, we recommend that this dataset be
trimmed to remove genes with very low expression.

For this example, we’ll use the entire dataset from the study by Huang Y et al.
(GEO ID: GSE30550), which looks at gene expression in 17 patients across a
large number of time points in hours before and after exposure to the influenza
virus. In addition to time points, each patient’s condition is also defined as either
"asymptomatic" (asx) or "symptomatic" (sx) to the exposure.

> dim(eset.full)

[1] 4147 252

> eset.full[1:5,1:5]

GSM757899 GSM757900 GSM757901 GSM757902 GSM757903
AKT3 4.600442 4.436855 4.338744 4.494653 4.332082
ACOT8 8.235681 8.272591 8.242254 8.518036 7.970552
GNPDA1 8.074555 8.165120 8.364384 8.420914 8.405667
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CDH2 4.673311 4.835745 4.625260 4.687651 5.486241
TANK 9.039308 8.843692 9.186436 9.328579 8.508230

2. design

Rather than using a labels vector describing the group structure in eset, a
dataframe must be provided that contains the information needed for the linear
mixed model. This can contain the fixed effect factors such as groups, continuous
explanatory variables, as well as donor specific identifiers and time points neces-
sary to model repeated measure through random effects or residual side covariance
structures. It is strongly recommended that an addition column is included cor-
responding to the sample names of eset. With this information, qgen checks for
any discrepancies that exist between eset and design. Any samples that do not
exist in both files are removed. If such an identifier is not specified using the
design.sampleid option, qgen assumes that the order in the design file corre-
sponds to the order of the samples given in eset. Here are the first few rows of
the design file for FluEset:

> head(flu.meta)

SampleID Subject Hours Hours.Numeric Condition Gender Age
2 GSM757899 flu001 0 0 sx Female 29
3 GSM757900 flu001 5 5 sx Female 29
4 GSM757901 flu001 12 12 sx Female 29
5 GSM757902 flu001 21 21 sx Female 29
6 GSM757903 flu001 29 29 sx Female 29
7 GSM757904 flu001 36 36 sx Female 29

3. fixed

Fixed is a one sided formula specifying the fixed effects the user wishes to include in
the linear model. Typical linear models are of the two sided formula y X1+X2+X3,
but since the response variable is defined by the expression values of eset, only the
right hand side is needed and take the general form, X1+X2+X3.

For this example the primary interest is determining if there are changes over time
with respect to the baseline values both for the asymptomatic and symptomatic
groups. Additional sample information such as age and gender could also be in-
cluded to account for any additional source of variability or if they were confounded
with primary variables of interest. We include fixed effects for subject’s condition,
time, and their interaction as well as including both age and gender.

> fixedeffects <- ~Hours+Condition+Condition*Hours+Age+Gender
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4. contrast.factor

This one-sided fromula refers to one of the fixed effects components in the fixed
input that tells qgen what contrast the user is interested in making a comparison.
So if the user wishes to compare symptomatic versus asymptomatic regardless of
time, then the user would simply provide ∼Hours. If the user would like to com-
pare symptomatic versus asymptomatic at hour 77 then the user would provide
the interaction component ∼Hours*Condition. For our example we wish to com-
pare changes at Hour 77 versus Hour 0 among the symptomatic group only, this
corresponds to:

> con.fac <- ~Condition*Hours

5. contrast

This is a character string that serves the same purpose in the original qusage
function. It specifies which levels of contrast.factor the user wishes to compare.
This is usually of the form "TrtA - TrtB". Since our comparison involves the
combination of two factor levels, the levels just need to be concatenated in the
corresponding order. So to compare Hour 77 vs Hour 0 among the symptomatic
group, the corresponding contrast can be written as:

> contrast = "sx77 - sx0"

The one-sided formula in contrast.factor, and the corresponding statement in con-
trast are fed directly to the makeContrasts of the limma package to obtain the
appropriate sequence of 0’s and 1’s for the contrast. One caveat to the naming
convention of contrast is that the names in contrast must be valid R names. So if
one were to specify the contrast.factor= Hours*Condition and contrast= "45Symp
- 0Symp", an error will return as makeContrasts only allows factor level names
to be valid R names and cannot start with a numeric value.

6. geneSets

This is exactly the same as for the original qusage function, either a vector de-
scribing a single gene set, or a list of vectors representing a group of gene sets. For
this example, we will continue to use the IFN-stimulated genes which looks like
this:

> ISG.geneSet[1:10]

[1] "ADAR" "ADM" "ALDH1A1" "ANKFY1" "APOL1" "APOL2"
[7] "APOL6" "ARG2" "ARHGEF3" "ATF3"
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Notice that both this vector and the rownames of our eset are using gene symbols.
We could have just as easily used the original Affymetrix probe IDs or even con-
verted everything to REFSEQ IDs. The only requirement is that the rownames of
eset match the symbols used in geneSets. If they are in a different format, you
will receive an error stating that all of your gene sets are of size 0.

With these 6 parameters specified, qgen will run the analysis using ordinary least
squares regression (the default unless additional options are specified).

5.2 Qgen with random effects

The real power of this approach is running models that can handle the repeated measures
nature of the study design. This can be done by specifying either the random parameter,
the correlation parameter, or a combination of both. Both of these options are directly
fed to the linear model functions provided in the nlme package. See lme and gls functions
for additional details.

In order to generate a model with random effects, an optional formula must be
supplied to random. For a simple repeated measures study design such as this, the form
is usually 1|g where g specifies the donor or subject ids. To run the qgen analysis using
a random effect, the following command can be called:

> qusage.result.random<-qgen(eset.full,flu.meta,
+ fixed=fixedeffects,
+ contrast.factor=con.fac,
+ contrast=contrast,
+ geneSets=ISG.geneSet,
+ random=~1|Subject,
+ design.sampleid="SampleID")

All samples present in design
Samples in Design and Expression Match
Running row by row modeling.
Percent Complete:10%...20%...30%...40%...50%...60%...70%...80%...90%...100%...
Aggregating gene data for gene sets.Done.
Calculating VIF's on residual matrix.
Q-Gen analysis complete.

The results of this analysis can then be examined using the same functions described
in section 3.

> qsTable(qusage.result.random)

pathway.name log.fold.change p.Value FDR
1 geneSets 0.7989711 0 0
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5.3 Qgen with correlations

An optional nlme corStruct object to specify within group correlation structure through
the residual covariance matrix and is passed directly to the lme function within the nlme
package. There are many modeling options for the user to pick from if this is desired,
we strongly urge reading the documentation within the nlme package on CorStruct
objects. As an example suppose we assume that the correlations that exist over the
repeated measure time points die off over time exponentially. The corresponding model
to incorporate this strategy would yield

> corStruct = corExp(value=3,~Hours.Numeric|Subject)
> corStruct
> qusage.result.corstruct<-qgen(eset.full,flu.meta,
+ fixed=fixedeffects,
+ contrast.factor=con.fac,
+ contrast=contrast,
+ geneSets=ISG.geneSet,
+ correlation=corStruct,
+ design.sampleid="SampleID")

The results of both the correlation analysis and the random effects analysis can be
compared directly, revealing that in both cases, there seems to be an approximately
(20.8 = 1.75)-fold increase in the expression of ISGs at day 77 of infection. However, in
this case, taking random effects into account leads to a more significant p-value, resulting
from lower variance in the estimate.

> plotDensityCurves(qusage.result.random, main="ISG_geneSet",
+ xlim=c(0,1.2), xlab="Day 77 - Day 0", col="red")
> plotDensityCurves(qusage.result.corstruct, col="blue",add=T)

5.3.1 Additional qgen details

The computational speed of qgen depends on a couple of factors, in particular, the
complexity of the linear model, the total number of genes within the gene sets, the total
number of genesets, and the total number of samples. To save computational time, qgen
only performs the linear model on probes that are directly included within the gene sets
as genes not included will not be used in the analysis. For the previous random effect
model example, if one would to run qgen with 260 gene sets comprising of 12,000 genes,
the algorithm from start to finish will take approximately 9 minutes.

The qgen function provides a series of checks and provides various warnings and
errors if any of the above mentioned options are not syntactically correct or if other
obvious discrepancies exists. It must be noted, that in some situations, some probes
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may have little to no variation due to processing or low intensity thresholds. In these
cases, the linear mixed model may not converge to the maximum likelihood estimates.
Currently, probes that do not convergence are removed from the analysis and a warning
is presented. qgen returns a QSarray object, therefore, any additional functions that
apply to the original qusage result object such as plot and qsTable can be applied to
results obtained from qgen.

The VIF estimation techniques are implemented by the method provided by Turner
et al. (BMC Bioinformatics 2015). In certain situations when the number of random
effect replicates are low, an alternative VIF estimation is preferred to maintain type-I
error estimation. qgen checks for these situations and automatically conducts the correct
VIF estimation when it can. However, sometimes the technique will not be available
due to the study design or the model is more complex than the scenarios provided by
the authors. In cases such as this, a warning is produced letting the user know that the
VIF estimate will use the original conditional residual approach and the type-I error rate
may not be conserved. We suggest a simulation study could provide insight on whether
or not there is a concern. Additional approaches similar to that of Turner et al. (BMC
Bioinformatics 2015) could be incorporated to handle these situations in future updates.

24



6 Meta-Analysis with qusage
QuSAGE meta-analysis enables gene set analysis from multiple studies to be combined
into a single estimation of gene set activity. This is done by using numerical convolution
to combine the probability density functions (PDFs) of each data set into a single PDF.

To illustrate how QuSAGE meta-analysis works, we analyzed gene expression data
from young individuals in two Influenza vaccination response data sets (GSE59635 and
GSE59654). The goal of the analysis was to detect gene sets associated with successful
vaccination responses. For this analysis, we will use the blood transcription modules
(BTMs) described in Li et al. (Nat Immunol., 2014).

In data set GSE59635, there are 8 young subjects (3 low-responders and 5 high-
responders to the vaccine). Each subject has day 0 (pre-vaccination) and day 7 (post-
vaccination) blood samples.

> head(fluVaccine$phenoData[["GSE59635"]])

subjectId responder bloodDrawDay
1 SUB113000 low d0
2 SUB112995 high d0
3 SUB113008 high d0
4 SUB113014 high d0
5 SUB113009 low d0
6 SUB113005 high d0

In data set GSE59654, there are 11 young subjects (7 low-responders and 4 high-
responders to the vaccine). Similarly, each subject has day 0 (pre-vaccination) and day
7 (post-vaccination) blood samples.

> head(fluVaccine$phenoData[["GSE59654"]])

subjectId responder bloodDrawDay
1 SUB120445 low d0
2 SUB120420 low d0
3 SUB120472 low d0
4 SUB120450 low d0
5 SUB120452 low d0
6 SUB120459 high d0

Using this data, QuSAGE was first used to carry out a two-way comparison (see
section 3.3 for details) between low-responders and high-responders on each data set
independently. We will do this by looping over each dataset with an lapply statement.
Note that for this analysis, we’re increasing the number of points (n.points) above the
default due to low numbers of samples:
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> qs.results.list = lapply(c("GSE59635", "GSE59654"), function(n){
+ eset = fluVaccine$esets[[n]]
+ phenoData = fluVaccine$phenoData[[n]]
+ labels = paste(phenoData$responder, phenoData$bloodDrawDay,
+ sep = ".")
+ ##run QuSAGE
+ qusage(eset, labels, "(high.d7-high.d0)-(low.d7-low.d0)",
+ BTM.geneSets, pairVector=phenoData$subjectId, n.points=2^14)
+ })

Calculating gene-by-gene comparisons...Done.
Aggregating gene data for gene sets......................................................................Done.
Calculating variance inflation factors...Done.
Calculating gene-by-gene comparisons...Done.
Aggregating gene data for gene sets.
Low sample size detected. n.points should be increased for better accuracy......................................................................Done.
Calculating variance inflation factors...Done.
Calculating gene-by-gene comparisons...Done.
Aggregating gene data for gene sets.
Low sample size detected. n.points should be increased for better accuracy......................................................................Done.
Calculating variance inflation factors...Done.
Calculating gene-by-gene comparisons...Done.
Aggregating gene data for gene sets......................................................................Done.
Calculating variance inflation factors...Done.

Next, QuSAGE meta-analysis was applied on the two resulting QSarray objects (one
from each study). Each distrisbution is first weighted by the number of samples in each
dataset, and then the two distributions are combined using numerical convolution.

> combined = combinePDFs(qs.results.list)

P-values for each module can then be calculated the same way as for any other
QSarray object.

> head(pdf.pVal(combined))

[1] 0.3349195 0.6062477 0.9832672 0.5280885 0.8995834 0.8614029

It turns out that "plasma cells, immunoglobulins (M156.1)" was one of top ranked
gene modules from this QuSAGE meta-analysis. This module is significantly more up-
regulated (day 7 vs. day 0) in high-responders compared to low-responders to flu vacci-
nation. To plot this result, we can use the plotCombinedPDF function, as shown below.
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> plotCombinedPDF(combined, path.index=235)
> legend("topleft", legend=c("GSE59635", "GSE59654", "Meta-analysis"),
+ lty=1, col=c("red", "blue","black"))
>
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7 Plotting Functions
The qusage package contains a number of functions designed to easily and intuitively
visualize the results stored in a QSarray object. Many of these functions were demon-
strated in section 3, but in the following sections we will highlight the variety of options
available when plotting the diverse data generated when running the qusage algorithm.

7.1 plotDensityCurves

The plotDensityCurves function is the simplest way to plot the data in a QSarray
object. By default, this function generates a very simple plot containing probability
density curves for each of the gene sets included in the qusage run. The density (y-
axis) data for each PDF is stored in the path.pdf slot of the QSarray object, and the
x-coordinates for the PDF are calculated on the fly using the getXcoords function (see
below for details on this method).

We’ve seen PDF plots before in section 3, but a slightly more customized version of
the plot with multiple PDFs can be seen below:

> ##select the best 5 gene sets
> p.vals = pdf.pVal(qs.results.msig)
> topSets = order(p.vals)[1:5]
> ##plot
> plotDensityCurves(qs.results.msig, path.index=topSets, col=1:5,
+ lwd=2, xlab=expression(log[2](Activity)))
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Because this function is simply an extension of the basic plot function, these plots
can be heavily customized. This customization can be accomplished both through the
basic plotting parameters, such as xlab, ylab, main and the parameters passed on
to par, and via some parameters which are specific to plotDensityCurves. The add
parameter can also be specified to overlay a second plot over an existing one.

The function-specific parameters are listed below.

• path.index This parameter controls which PDFs are plotted and the order that
they are plotted in. It can be specified as either a numeric vector or a vector of
names matching the gene sets.

• zeroLine By default, a vertical dashed line is added to the plot at 0 in order to
give a visual indication of how significant the gene set is. In order to suppress the
addition of this line, the parameter zeroLine=FALSE can be specified.

• addVIF Much like the other functions in qusage, this function gives you the option
to specify whether the VIF should be used in calculating the PDF. By default,
if the VIF has been calculated, it will always be included, but this behavior can
be suppressed by explicity specifying addVIF=FALSE. While this will improve how
significant your PDFs appear, it is strongly reccommended that the VIF is included
whenever possible, as it is the only way to account for gene-gene correlations in a
gene set.

The plotDensityCurves function is a useful way to visualize the PDF of a gene
set, but in some cases it may be necessary to access the x and y coordinates of these
PDFs individually. The information required to create these plots is all stored in the
QSarray object, but some processing is necessary to get coordinates in the correct format
for plotting. Although the y-coordinates can generally be used as-is when taken from
the path.pdf matrix, the x-coordinates are not stored in the qusage object. Instead,
the getXcoords function calculates x-coordinates for each point n using the following
formula:

xn = (−1 +
2(n− 1)

Npts − 1
)× r ×

√
V IF + µ̂path

where Npts is the total number of points, r is the range used for the numerical
convolution (see section 4.2), V IF is the Variance Inflation Factor, and µ̂path is the
mean fold change of the pathway.

Although the x- and y- coordinates can be extracted by hand from a qusage object,
by far the easiest way to access this information is with the plotDensityCurves function
itself. As mentioned in section 3, the plotDensityCurves function silently returns the
x- and y-coordinates of each PDF being plotted. This data is returned as a list of data
frames, with each individual data frame containing the x- and y-coordinates for the PDF
of a single gene set.
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An example of how to use this data for a custom plot is shown below. In this case,
we will use the results from running qusage on the ISG set, stored in the qs.results
object, to generate a Cumulative Distribution Function, or CDF.

> ##get coordinates
> coord.list = plotDensityCurves(qs.results, plot=FALSE)
> coords = coord.list[[1]]
> x=coords$x
> ##Calculate the CDF as the integral of the PDF at each point.
> y = cumsum(coords$y)/sum(coords$y)
> plot(x,y, type="l", xlim=calcBayesCI(qs.results,low=0.001)[,1])
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7.2 plotGeneSetDistributions

The plotGeneSetDistributions function is a method designed to visualize the PDFs
of each individual gene in a gene set. As seen in section 3.3.1, the resulting plot is a
useful and intuitive way to view how individual genes contribute to the overall PDF of
the gene set. To generate a default plot, plotGeneSetDistributions can be called as
shown below:

> plotGeneSetDistributions(qs.results)
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The default gene set distribution plot is composed of two parts: a plot of the gene and
gene set PDFs, and a barcode plot representing the mean of the individual genes. Both
portions of the plot can be customized using the parameters in plotGeneSetDistributions
and with the generic parameters that can be passed on to plot.

PDFs
The PDF plot is, in essence, an extension of the plotDensityCurves function dis-

cussed in section 7.1. The plot includes the average PDF for the entire gene set, which is
calculated in the same way as discussed in section 7.1, as well as PDFs for each individ-
ual gene in the pathway. Because the mean and SD of each gene was calculated using a
t-test, the individual gene PDFs are generated as t-distributions with parameters mean,
standard deviation, and degrees of freedom defined by the values stored in QSarray.

plotGeneSetDistributions contains a number of parameters which are useful for
customizing the PDF plots. These parameters are listed below:
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• colorScheme This parameter is used to establish a color scheme for the individual
gene PDFs. The default color scheme, sdHeat, will automatically color-code the
gene PDFs by their standard deviations, with hotter colors being used for smaller
standard deviations. In contrast, the "rainbow" color scheme will use a repeating
series of colors, so that individual curves can be easily distinguished from their
neighbors. Although these two options are the only automatically generated op-
tions, the colorScheme parameter can also accept a custom color scheme, which
can be provided as a vector of colors. For a single gene set distribution plot, this
can be useful for highlighting the PDFs of specific genes of interest. However, it
is important to note that the order that the colors are used in is not the same as
the order of genes in the original gene set. All gene sets are reordered when they
are stored in the QSarray$pathways slot, and the vector provided to colorScheme
will be used in this order.

• alpha This parameter controls the alpha channel of the individual gene PDFs.
It is only used if the "sdHeat" or "rainbow" colorSchemes are used. Making the
PDFs slightly transparent can be especially useful when there are a large number
of genes, and the individual pdfs have a significant amount of overlap.

• normalizePeaks This parameter is used to control the heights of the individual
gene PDFs. By default, the PDF heights will be scaled to correctly represent the
density of the PDF, but in some cases, keeping the PDFs at a fixed height may
make the picture easier to understand. If normalizePeaks is set to TRUE, the
height of the individual gene PDFs will be scaled to be exactly the same.

• lwds This parameter controls the line widths for the PDFs. The first parameter
controls the individual gene PDFs, and the second controls the gene set PDFs.

Barcode Plot
The barcode plot is a visual way of marking where the peaks of an individual gene

PDF (i.e. the mean fold change of the genes) are located. By default, the barcode will
be added as a series of vertical black lines directly below the PDF plot. The appearance
of this plot can be controlled by three different parameters:

• addBarcod

This boolean parameter controls the plotting of the barcode. If addBarcode is set
to FALSE, the barcode will not be added to the plot.

• barcode.col

This parameter controls the color of the vertical bars. This parameter can either
be a single color or a vector with individual colors for each gene in the gene set. As
with colorScheme, it is important to note that the order of the genes in the gene
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set is not the same as the input parameters. All gene sets are reordered when they
are stored in the QSarray$pathways slot, and the vector provided to colorScheme
will be used in this order.

• barcode.hei

This parameter controls the height of the barcode plot. This can be specified as a
single numeric value representing the height of the bar as a fraction of the height
of the main plotting region.

7.2.1 Comparing two gene sets

In cases where you want to compare two gene set distribution plots, the plotGeneSetDistributions
function can automatically plot the results from a second gene set directly below the
first. This can be done in two ways. First, to compare two different gene sets, a vector of
length 2 can be provided to path.index, representing the two gene sets to be compared
from QSarray1. Second, to compare two different runs of qusage, a second QSarray
object can be provided via the QSarray2 parameter. In this case, if path.index is of
length 1, the single gene set specified will be pulled from both QSarray objects, making
it easy to compare the activity of the gene set between runs. If both QSarray objects
are provided and path.index is of length 2, then the first gene set will be pulled from
QSarray1, and the second from QSarray2.

7.2.2 Custom Example: Highlighting genes of interest

As an example of customizing the density curves plot, we will once again look at the
activity of the "CYTOSOLIC DNA SENSING" pathway in our dataset. Perhaps the gene
we are most interested in is CXCL10, and we would like to see how this specific gene
compares to the others in the gene set. In order to do this, we will highlight the PDF
for CXCL10 in red, and plot the rest of the gene PDFs in grey.

> path = 125 ##the CYTOSOLIC_DNA_SENSING pathway
> path.gene.i = sx.results$pathways[[path]] ##the genes are stored as indexes
> path.genes = rownames(eset)[path.gene.i]
> cols = rep("#33333399",length(path.genes))
> ##make the IFNA genes red, and the IFNB genes blue.
> cols[path.genes=="CXCL10"] = "#FF0000"
> plotGeneSetDistributions(sx.results,asx.results,path.index=125,
+ groupLabel=c("Symptomatic","Asymptomatic"),
+ colorScheme=cols, barcode.col=cols)
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7.3 plotCIs

As an alternative to plotting the entire PDF of a pathway, the qusage package also
provides a function, plotCIs, which is designed to plot just the mean and 95% confidence
interval of a pathway. An example of this function was seen in section 3.1, and the
resulting plot is re-created below.
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The default CI plot displays the mean fold change and 95% confidence interval of all
the pathways contained in a QSarray object. The confidence intervals for each pathway
are calculated using the calcBayesCI function, and the amount of overlap with the
zero line can be used to estimate the significance of the gene set. In addition, each
point is color coded by significance using the p-values calculated with pdf.pVal, and
both the p-values and the CIs are corrected for multiple hypothesis testing using the
methods defined in p.adjust. This plot can also be heavily customized using any of the
additional parameters listed below.

• path.index This parameter controls which PDFs are plotted and the order that
they are plotted in. It can be specified as either a numeric vector or a vector of
names matching the gene sets. By default, the order of these pathways does not
matter, but if sort.by is set to "none", the pathways will be plotted in the order
provided.

35



• sort.by This parameter accepts a string (either "mean", "p", or "none") indicat-
ing how the pathways should be ordered. If sort.by="mean" or "p", the pathways
will be ordered by their means and p-values, respectively. Else, if sort.by="none",
the pathways will not be rearranged at all, and the order provided in path.index
will be retained. The last option is most useful when plotting the results of two
qusage runs in one plot, when it is necessary to ensure both plots have the same
order.

• lowerBound, upperBound These parameters are passed on to calcBayesCI for use
in calculating the confidence interval. The default, lowerBound=0.025, upperBound=0.975,
represents a two-sided 95% confidence interval.

• use.p.colors This parameter controls the coloring of the error bars for the plot.
By default (use.p.colors=TRUE), the bars will automatically be colored different
shades of red and green based on the significance of their respective p-values (e.g.
a p-value of 0.05 would result in a dark red bar, and a p-value of 0.0001 would
result in a bright red bar).

• col This is a vector of colors which can be provided to define the color of the
points. If use.p.colors=FALSE is specified, these colors will also be used for the
error bars.

• p.breaks This is a numeric vector indicating where the breaks in the p-value color
scheme should be placed. By default, breaks will be at 0.001, 0.005, 0.01, 0.05,
& 0.1, meaning that a p-value between 0.05 and 0.1 will be a darker color than
a p-value between 0.01 and 0.05. If you just wanted all significant p-values to be
colored the same, you would simply set p.breaks=0.05

• p.adjust.method The method to use to adjust the p-values. Must be one of the
methods in p.adjust.methods.

• addLegend This is a logical parameter specifying if a legend for the p-value color
scheme be plotted. If true, the values from p.breaks will be plotted alongside their
respective colors in the top right hand corner.

• lowerColorBar Options for plotting a color bar below each point. Automatically
generated color bars have not yet been implemented, but custom bars can be
created using the "lowerColorBar.cols" parameter.

• lowerColorBar.cols This is a vector of colors to plot as a bar along the bottom
of the plot. This can be useful if there’s other information you wish to include in
the plot, such as a p-value for a second comparison, or a visual representation of
another test statistic from a different program.

• addGrid This boolean parameter controls the addition of dashed lines behind the
plot which help to follow a point down to its x-axis label.
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• x.labels This is a character vector of the same length as path.index giving the
names of the pathways. By default, plotCIs will use the names stored in QSarray.

• cex.xaxis This parameter controls the character expansion of the x-axis separate
from the overall cex. The value supplied will be multiplied by the current plot’s
cex to determine the size of the x-axis text

• shift This is a number between 0 and 1 decribing the amount to shift points with
respects to the guiding lines and axis labels. This is primarily used when add=TRUE
and you do not want the two plots to directly overlap.

• add This boolean parameter is used to overlay a second plot over one that was
previously generated. If add=TRUE, the bar plots will be added on to the existing
plotting region.
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8 The QSarray object
The QSarray object is designed to hold the results of the various functions and algorithms
that make up the qusage package. Exactly what information is contained in a QSarray
object is dependent upon which functions have been used to create the object. A new
QSarray object can also be created by calling the QSarray() function. A list of all
possible fields and their descriptions are included below.

• mean, SD, dof - Vectors containing the means, standard deviations, and degrees
of freedom for each gene as output by makeComparison (see section 4.1). Together
they describe the t-distribution of each gene in the dataset.

• n.samples - The number of samples used in the comparison. If the QSarray object
is the result of a call to combinePDF, this will be a numeric vector detailing the
number of samples in each input QSarray.

• path.PDF - This is a matrix which contains the density values for the PDF of
each gene set provided to aggregateGeneSet. The number of rows of path.PDF
is determined by the n.points parameter, which by default is 4096.

• path.mean - A numeric vector containing the mean fold change of each gene set
provided to aggregateGeneSet.

• ranges - The (uncorrected) range that each PDF was calculated over. If the VIF
is not used to correct the range, the x-coordinates of the PDF are the sequence of
n.points from path.mean-ranges to path.mean+ranges

• path.size - A vector containing the number of features in each pathway that
mapped to the input data.

• vif - A vector containing the Variance Inflation Factor for each pathway, as cal-
culated by calcVIF.

• pathways - A version of the input geneSets, represented as a list of numeric
vectors which map to the rows of eset which contain features in that gene set.

• labels, contrast, pairVector, var.method, n.points - Copies of the input
parameters which are used in future calculations.

• design - A design matrix for the linear model fitting in LIMMA. Only created if
limma is used in makeComparison (see section 4.1)

• QSlist - If the QSarray is the result of a call to combinePDF (see chapter 6), the
QSlist will contain the list of QSarray objects used during the meta-analysis.
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