1 Basics

1.1 Install chevreulProcess

R is an open-source statistical environment which can be easily modified to enhance its functionality via packages. chevreulProcess is a R package available via the Bioconductor repository for packages. R can be installed on any operating system from CRAN after which you can install chevreulProcess by using the following commands in your R session:

if (!requireNamespace("BiocManager", quietly = TRUE)) {
    install.packages("BiocManager")
}

BiocManager::install("chevreulProcess")

1.2 Required knowledge

The chevreulProcess package is designed for single-cell RNA sequencing data. The functions included within this package are derived from other packages that have implemented the infrastructure needed for RNA-seq data processing and analysis. Packages that have been instrumental in the development of chevreulProcess include, Biocpkg("SummarizedExperiment") and Biocpkg("scater").

1.3 Asking for help

R and Bioconductor have a steep learning curve so it is critical to learn where to ask for help. The Bioconductor support site is the main resource for getting help: remember to use the chevreulProcess tag and check the older posts.

2 Quick start to using chevreulProcess

The chevreulProcess package contains functions to preprocess, cluster, visualize, and perform other analyses on scRNA-seq data. It also contains a shiny app for easy visualization and analysis of scRNA data.

chvereul uses SingelCellExperiment (SCE) object type (from SingleCellExperiment) to store expression and other metadata from single-cell experiments.

This package features functions capable of:

  • Performing Clustering at a range of resolutions and Dimensional reduction of Raw Sequencing Data.
  • Visualizing scRNA data using different plotting functions.
  • Integration of multiple datasets for consistent analyses.
  • Cell cycle state regression and labeling.

library("chevreulProcess")

# Load the data
data("small_example_dataset")

R session information.

#> R Under development (unstable) (2025-01-20 r87609)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.1 LTS
#> 
#> Matrix products: default
#> BLAS:   /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so 
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0  LAPACK version 3.12.0
#> 
#> locale:
#>  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
#>  [3] LC_TIME=en_GB              LC_COLLATE=C              
#>  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
#>  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
#>  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
#> 
#> time zone: America/New_York
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats4    stats     graphics  grDevices utils     datasets  methods  
#> [8] base     
#> 
#> other attached packages:
#>  [1] chevreulProcess_0.99.27     scater_1.35.1              
#>  [3] ggplot2_3.5.1               scuttle_1.17.0             
#>  [5] SingleCellExperiment_1.29.1 SummarizedExperiment_1.37.0
#>  [7] Biobase_2.67.0              GenomicRanges_1.59.1       
#>  [9] GenomeInfoDb_1.43.4         IRanges_2.41.3             
#> [11] S4Vectors_0.45.4            BiocGenerics_0.53.6        
#> [13] generics_0.1.3              MatrixGenerics_1.19.1      
#> [15] matrixStats_1.5.0           BiocStyle_2.35.0           
#> 
#> loaded via a namespace (and not attached):
#>   [1] jsonlite_1.8.9            shape_1.4.6.1            
#>   [3] magrittr_2.0.3            ggbeeswarm_0.7.2         
#>   [5] GenomicFeatures_1.59.1    rmarkdown_2.29           
#>   [7] GlobalOptions_0.1.2       fs_1.6.5                 
#>   [9] BiocIO_1.17.1             vctrs_0.6.5              
#>  [11] memoise_2.0.1             Rsamtools_2.23.1         
#>  [13] DelayedMatrixStats_1.29.1 RCurl_1.98-1.16          
#>  [15] htmltools_0.5.8.1         S4Arrays_1.7.3           
#>  [17] curl_6.2.0                BiocNeighbors_2.1.2      
#>  [19] SparseArray_1.7.5         sass_0.4.9               
#>  [21] bslib_0.9.0               cachem_1.1.0             
#>  [23] ResidualMatrix_1.17.0     GenomicAlignments_1.43.0 
#>  [25] igraph_2.1.4              lifecycle_1.0.4          
#>  [27] pkgconfig_2.0.3           rsvd_1.0.5               
#>  [29] Matrix_1.7-2              R6_2.6.0                 
#>  [31] fastmap_1.2.0             GenomeInfoDbData_1.2.13  
#>  [33] digest_0.6.37             colorspace_2.1-1         
#>  [35] AnnotationDbi_1.69.0      dqrng_0.4.1              
#>  [37] irlba_2.3.5.1             RSQLite_2.3.9            
#>  [39] beachmat_2.23.6           httr_1.4.7               
#>  [41] abind_1.4-8               compiler_4.5.0           
#>  [43] bit64_4.6.0-1             withr_3.0.2              
#>  [45] BiocParallel_1.41.0       viridis_0.6.5            
#>  [47] DBI_1.2.3                 DelayedArray_0.33.5      
#>  [49] rjson_0.2.23              bluster_1.17.0           
#>  [51] tools_4.5.0               vipor_0.4.7              
#>  [53] beeswarm_0.4.0            glue_1.8.0               
#>  [55] restfulr_0.0.15           batchelor_1.23.0         
#>  [57] grid_4.5.0                cluster_2.1.8            
#>  [59] megadepth_1.17.0          gtable_0.3.6             
#>  [61] tzdb_0.4.0                ensembldb_2.31.0         
#>  [63] hms_1.1.3                 metapod_1.15.0           
#>  [65] BiocSingular_1.23.0       ScaledMatrix_1.15.0      
#>  [67] XVector_0.47.2            stringr_1.5.1            
#>  [69] ggrepel_0.9.6             pillar_1.10.1            
#>  [71] limma_3.63.3              circlize_0.4.16          
#>  [73] dplyr_1.1.4               lattice_0.22-6           
#>  [75] rtracklayer_1.67.0        bit_4.5.0.1              
#>  [77] tidyselect_1.2.1          locfit_1.5-9.11          
#>  [79] Biostrings_2.75.3         knitr_1.49               
#>  [81] gridExtra_2.3             bookdown_0.42            
#>  [83] ProtGenerics_1.39.2       edgeR_4.5.2              
#>  [85] cmdfun_1.0.2              xfun_0.50                
#>  [87] statmod_1.5.0             stringi_1.8.4            
#>  [89] UCSC.utils_1.3.1          EnsDb.Hsapiens.v86_2.99.0
#>  [91] lazyeval_0.2.2            yaml_2.3.10              
#>  [93] evaluate_1.0.3            codetools_0.2-20         
#>  [95] tibble_3.2.1              BiocManager_1.30.25      
#>  [97] cli_3.6.3                 munsell_0.5.1            
#>  [99] jquerylib_0.1.4           Rcpp_1.0.14              
#> [101] png_0.1-8                 XML_3.99-0.18            
#> [103] parallel_4.5.0            readr_2.1.5              
#> [105] blob_1.2.4                AnnotationFilter_1.31.0  
#> [107] scran_1.35.0              sparseMatrixStats_1.19.0 
#> [109] bitops_1.0-9              viridisLite_0.4.2        
#> [111] scales_1.3.0              purrr_1.0.4              
#> [113] crayon_1.5.3              rlang_1.1.5              
#> [115] KEGGREST_1.47.0