SingleMoleculeFootprinting is an R package for Single Molecule Footprinting (SMF) data.
Starting from an aligned bam file, we show how to
For installation, the user can use the following:
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("SingleMoleculeFootprinting")
For compatibility with our analysis tools, we recommend the user to
perform genomic alignments using the qAlign
function from QuasR as exemplified in the chunk below.
For detailed pre-processing instructions we refer to steps 179 to 186 of
Kleinendorst &
Barzaghi et al., 2021
clObj <- makeCluster(40)
prj <- QuasR::qAlign(
sampleFile = sampleFile,
genome = "BSgenome.Mmusculus.UCSC.mm10",
aligner = "Rbowtie",
projectName = "prj",
paired = "fr",
bisulfite = "undir",
alignmentParameter = "-e 70 -X 1000 -k 2 --best -strata",
alignmentsDir = "./",
cacheDir = tempdir(),
clObj = clObj
)
stopCluster(clObj)
SingleMoleculeFootprinting inherits QuasR’s
sampleFile
style of feeding .bam files. For
instructions, refer to the qAlign
documentation.
Here we show how our sampleFile looks like.
N.b.: This vignette and some functions of
SingleMoleculeFootprinting depend on data available through the
data package SingleMoleculeFootprintingData.
For user-friendliness, this data is fetched during the installation of
SingleMoleculeFootprinting and stored in
tempdir()
.
Please make sure that tempdir()
has enough storage capacity
(~1 Gb). You can check this by running
ExperimentHub::getExperimentHubOption(arg = "CACHE")
and if
needed change the location by running
ExperimentHub::setExperimentHubOption(arg = "CACHE", value = "/your/favourite/location")
.
sampleFile = paste0(CacheDir, "/NRF1Pair_sampleFile.txt")
knitr::kable(suppressMessages(readr::read_delim(sampleFile, delim = "\t")))
FileName | SampleName |
---|---|
/home/biocbuild/.cache/R/ExperimentHub/NRF1pair.bam | NRF1pair_DE_ |
For generic sequencing QCs, we refer to QuasR’s qQCreport
.
If a bait capture step was included to enrich for regulatory regions,
it is useful to check how efficiently that worked.
Here we calculate the ratio of molecules overlapping the enrichment
targets over the total. A Bait capture efficiency below 70% might be
problematic.
In that case we refer to the troubleshooting section of our Kleinendorst &
Barzaghi et al., 2021.
The bisulfite conversion step, chemically converts un-methylated
cytosines to thymines. This process has a margin of error.
Here we ask what is the percentage of converted cytosines among those
which shouldn’t be methylated, i.e. those outside of CpG or
GpC contexts. Normally, we expect a conversion rate of
~95%.
N.b.: this function runs much slower than the one above, which is why we
prefer to check this metric for chr19 only.
It is useful to compare the distribution of cytosine methylation rates across replicates.
RegionOfInterest = GRanges(BSgenome.Mmusculus.UCSC.mm10@seqinfo["chr19"])
CallContextMethylation(
sampleFile = sampleFile,
samples = samples,
genome = BSgenome.Mmusculus.UCSC.mm10,
RegionOfInterest = RegionOfInterest,
coverage = 20,
ConvRate.thr = NULL,
returnSM = FALSE,
clObj = NULL,
verbose = FALSE
) -> Methylation
Methylation %>%
elementMetadata() %>%
as.data.frame() %>%
dplyr::select(grep("_MethRate", colnames(.))) -> MethylationRate_matrix
png("../inst/extdata/MethRateCorr_AllCs.png", units = "cm", res = 100, width = 20, height = 20)
pairs(
MethylationRate_matrix,
upper.panel = panel.cor,
diag.panel = panel.hist,
lower.panel = panel.jet,
labels = gsub("SMF_MM_|DE_|_MethRate", "", colnames(MethylationRate_matrix))
)
dev.off()
knitr::include_graphics(system.file("extdata", "MethRateCorr_AllCs.png", package="SingleMoleculeFootprinting"))
It is also useful, especially in the case of single enzyme treatments, to split the genomics contexts of cytosines based on the MTase used.
Methylation %>%
elementMetadata() %>%
as.data.frame() %>%
filter(GenomicContext %in% c("DGCHN", "GCH")) %>%
dplyr::select(grep("_MethRate", colnames(.))) -> MethylationRate_matrix_GCH
png("../inst/extdata/MethRateCorr_GCHs.png", units = "cm", res = 100, width = 20, height = 20)
pairs(MethylationRate_matrix_GCH, upper.panel = panel.cor, diag.panel = panel.hist, lower.panel = panel.jet, labels = colnames(MethylationRate_matrix_GCH))
dev.off()
Methylation %>%
elementMetadata() %>%
as.data.frame() %>%
filter(GenomicContext %in% c("NWCGW", "HCG")) %>%
dplyr::select(grep("_MethRate", colnames(.))) -> MethylationRate_matrix_HCG
png("../inst/extdata/MethRateCorr_HCGs.png", units = "cm", res = 100, width = 20, height = 20)
pairs(MethylationRate_matrix_HCG, upper.panel = panel.cor, diag.panel = panel.hist, lower.panel = panel.jet, labels = colnames(MethylationRate_matrix_HCG))
dev.off()
Before investing in deep sequencing, it is advisable to shallowly
sequence libraries to assess the footprinting quality of the
libraries.
However the per-cytosine coverage obtained at shallow sequencing is
insufficient to estimate methylation rates for individual
cytosines.
A solution is to pile up molecules covering cytosines from genomic loci
that are known to behave similarly and compute a “composite” methylation
rate.
Such composite methylation rate allows to assess the quality of
footprinting at low coverage.
The following chunk exemplifies how to proceed.
First we want to call methylation for the new low depth samples, paying
attention to setting the parameter coverage=1
.
Then we want to call methylation for a reference high coverage
sample.
Finally, we can use the wrapper function
CompositeMethylationCorrelation
to extract composite
methylation rates.
N.b.: the methylation calling step is quite computationally demanding
for full genomes, so we ran this in the background and reported the
results only.
RegionOfInterest = GRanges(BSgenome.Mmusculus.UCSC.mm10@seqinfo["chr19"])
CallContextMethylation(
sampleFile = sampleFile_LowCoverage,
samples = samples_LowCoverage,
genome = BSgenome.Mmusculus.UCSC.mm10,
RegionOfInterest = RegionOfInterest,
coverage = 1,
ConvRate.thr = NULL,
returnSM = FALSE,
clObj = NULL,
verbose = FALSE
)$DGCHN -> LowCoverageMethylation
CallContextMethylation(
sampleFile = sampleFile_HighCoverage_reference,
samples = samples_HighCoverage_reference,
genome = BSgenome.Mmusculus.UCSC.mm10,
RegionOfInterest = RegionOfInterest,
coverage = 20,
ConvRate.thr = NULL,
returnSM = FALSE,
clObj = NULL,
verbose = FALSE
)$DGCHN -> HighCoverageMethylation
CompositeMethylationCorrelation(
LowCoverage = LowCoverageMethylation,
LowCoverage_samples = samples_LowCoverage,
HighCoverage = HighCoverageMethylation,
HighCoverage_samples = samples_HighCoverage_reference,
bins = 50,
returnDF = TRUE,
returnPlot = TRUE,
RMSE = TRUE,
return_RMSE_DF = TRUE,
return_RMSE_plot = TRUE
) -> results
The methylation distribution plot reveals that replicates SMF_MM_NP_NO_R3_MiSeq and SMF_MM_NP_NO_R3_MiSeq deviate fairly from the reference high coverage sample.
results <- qs::qread(system.file("extdata", "low_coverage_methylation_correlation.qs",
package="SingleMoleculeFootprinting"))
results$MethylationDistribution_plot +
scale_color_manual(
values = c("#00BFC4", "#00BFC4", "#00BFC4", "#F8766D", "#F8766D"),
breaks = c("SMF_MM_TKO_as_NO_R_NextSeq", "SMF_MM_NP_NO_R1_MiSeq", "SMF_MM_NP_NO_R2_MiSeq",
"SMF_MM_NP_NO_R3_MiSeq", "SMF_MM_NP_NO_R4_MiSeq"))
The root mean square error plot quantifies this deviation confirming the poorer quality of these replicates.
The function CallContextMethylation
provides a
high-level wrapper to go from alignments to average per-cytosine
methylation rates (bulk level) and single molecule methylation
matrix.
Under the hood, the function performs the following operations:
ExperimentType | substring | RelevanContext | Notes |
---|---|---|---|
Single enzyme SMF | _NO_ | DGCHN & NWCGW | Methylation info is reported separately for each context |
Double enzyme SMF | _DE_ | GCH + HCG | Methylation information is aggregated across the contexts |
No enzyme (endogenous mCpG only) | _SS_ | CG | - |
samples <- suppressMessages(unique(readr::read_delim(sampleFile, delim = "\t")$SampleName))
RegionOfInterest <- GRanges("chr6", IRanges(88106000, 88106500))
CallContextMethylation(
sampleFile = sampleFile,
samples = samples,
genome = BSgenome.Mmusculus.UCSC.mm10,
RegionOfInterest = RegionOfInterest,
coverage = 20,
returnSM = FALSE,
ConvRate.thr = NULL,
verbose = TRUE,
clObj = NULL # N.b.: when returnSM = TRUE, clObj should be set to NULL
) -> Methylation
## Setting QuasR project
## all necessary alignment files found
## Calling methylation at all Cytosines
## checking if RegionOfInterest contains information at all
## Discard immediately the cytosines not covered in any sample
## Subsetting Cytosines by permissive genomic context (GC, HCG)
## Collapsing strands
## Filtering Cs for coverage
## Detected experiment type: DE
## Subsetting Cytosines by strict genomic context (GCH, GCG, HCG) based on the detected experiment type: DE
## Merging matrixes
The output messages can be suppressed setting the argument
verbose=FALSE
.
CallContextMethylation
returns a GRanges
object summarizing the methylation rate (bulk) at each cytosine (one
cytosine per row)
head(Methylation)
## GRanges object with 6 ranges and 3 metadata columns:
## seqnames ranges strand | NRF1pair_DE__Coverage NRF1pair_DE__MethRate
## <Rle> <IRanges> <Rle> | <integer> <numeric>
## [1] chr6 88106098 + | 5323 0.866992
## [2] chr6 88106113 + | 5319 0.741117
## [3] chr6 88106115 + | 5322 0.897595
## [4] chr6 88106119 + | 5322 0.838407
## [5] chr6 88106126 + | 5321 0.543319
## [6] chr6 88106139 + | 5322 0.400601
## GenomicContext
## <character>
## [1] GCH
## [2] GCG
## [3] GCG
## [4] GCH
## [5] HCG
## [6] GCH
## -------
## seqinfo: 239 sequences (1 circular) from mm10 genome
When returnSM=TRUE
, Methylation
additionally returns a list of sparse single molecule methylation
matrixes, one per sample
CallContextMethylation(
sampleFile = sampleFile,
samples = samples,
genome = BSgenome.Mmusculus.UCSC.mm10,
RegionOfInterest = RegionOfInterest,
coverage = 20,
returnSM = TRUE,
ConvRate.thr = NULL,
verbose = FALSE,
clObj = NULL # N.b.: when returnSM = TRUE, clObj should be set to NULL
) -> Methylation
## all necessary alignment files found
## 5334 reads found mapping to the - strand, collapsing to +
## 5334 reads found mapping to the - strand, collapsing to +
## Detected experiment type: DE
Methylation[[2]]$NRF1pair_DE_[1:10,20:30]
## 10 x 11 sparse Matrix of class "dgCMatrix"
## [[ suppressing 11 column names '88106236', '88106240', '88106243' ... ]]
##
## M00758:819:000000000-CB7NB:1:1101:10081:9865 1 2 1 2 1 1 1 1 1 . 2
## M00758:819:000000000-CB7NB:1:1101:10119:12887 1 1 1 1 1 1 1 1 1 . 2
## M00758:819:000000000-CB7NB:1:1101:10172:5248 2 1 1 1 1 1 1 1 1 . 1
## M00758:819:000000000-CB7NB:1:1101:10214:24193 2 1 1 2 1 1 2 1 1 1 1
## M00758:819:000000000-CB7NB:1:1101:10219:24481 2 2 1 2 2 2 2 2 2 . 2
## M00758:819:000000000-CB7NB:1:1101:10408:27375 2 2 1 2 2 2 2 2 2 2 2
## M00758:819:000000000-CB7NB:1:1101:10428:10873 2 2 2 2 2 2 2 2 2 2 2
## M00758:819:000000000-CB7NB:1:1101:10428:22900 2 2 2 2 2 2 2 2 2 2 2
## M00758:819:000000000-CB7NB:1:1101:10453:11606 2 2 2 1 1 1 1 1 1 1 2
## M00758:819:000000000-CB7NB:1:1101:10489:13730 1 2 1 1 1 1 1 1 1 . 2
Before moving to single molecule analysis, it is useful to plot the
SMF signal in bulk (1 - methylation rate), using the function
PlotAvgSMF
.
PlotAvgSMF(
MethGR = Methylation[[1]],
RegionOfInterest = RegionOfInterest
)
## No sorted reads passed...plotting counts from all reads
It is possible add information to this plot such as the genomic context of cytosines.
PlotAvgSMF(
MethGR = Methylation[[1]],
RegionOfInterest = RegionOfInterest,
ShowContext = TRUE
)
## No sorted reads passed...plotting counts from all reads
The user can also plot annotated TF binding sites by feeding the
argument TFBSs with a GRanges object.
N.b.: the GRanges should contain at least one metadata column named
TF which is used to annotate the TFBSs in the plot. An example
of suitable GRanges is shown below:
TFBSs = qs::qread(system.file("extdata", "TFBSs_1.qs", package="SingleMoleculeFootprinting"))
TFBSs
## GRanges object with 2 ranges and 1 metadata column:
## seqnames ranges strand | TF
## <Rle> <IRanges> <Rle> | <character>
## TFBS_4305215 chr6 88106216-88106226 - | NRF1
## TFBS_4305216 chr6 88106253-88106263 - | NRF1
## -------
## seqinfo: 66 sequences (1 circular) from mm10 genome
N.b.: the GRanges should be subset for the binding sites overlapping the RegionOfInterest, as follows:
PlotAvgSMF(
MethGR = Methylation[[1]],
RegionOfInterest = RegionOfInterest,
TFBSs = plyranges::filter_by_overlaps(TFBSs, RegionOfInterest)
)
## No sorted reads passed...plotting counts from all reads
Ultimately, PlotAvgSMF
returns a ggplot
object, that can be customized using the ggplot grammar as follows.
PlotAvgSMF(
MethGR = Methylation[[1]],
RegionOfInterest = RegionOfInterest,
) -> smf_plot
## No sorted reads passed...plotting counts from all reads
user_annotation = data.frame(xmin = 88106300, xmax = 88106500, label = "nucleosome")
smf_plot +
geom_line(linewidth = 1.5) +
geom_point(size = 3) +
geom_rect(data = user_annotation, aes(xmin=xmin, xmax=xmax, ymin=-0.09, ymax=-0.04), inherit.aes = FALSE) +
ggrepel::geom_text_repel(data = user_annotation, aes(x=xmin, y=-0.02, label=label), inherit.aes = FALSE) +
scale_y_continuous(breaks = c(0,1), limits = c(-.25,1)) +
scale_x_continuous(breaks = c(start(RegionOfInterest),end(RegionOfInterest)), limits = c(start(RegionOfInterest),end(RegionOfInterest))) +
theme_bw()
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.
## Scale for x is already present.
## Adding another scale for x, which will replace the existing scale.
The function PlotSM
can be used to plot corresponding
single molecule.
PlotSM(
MethSM = Methylation[[2]],
RegionOfInterest = RegionOfInterest,
sorting.strategy = "None"
)
## No sorting passed or specified, will plot unsorted reads
Not much information can be derived from this visualisation.
One useful first step is to perform hierarchical clustering. This can be
useful to spot PCR artifacts in amplicon data (n.b. reads will be
down-sampled to 500).
Hierarchical clustering can be performed by setting the parameter
SortedReads = "HC"
PlotSM(
MethSM = Methylation[[2]],
RegionOfInterest = RegionOfInterest,
sorting.strategy = "hierarchical.clustering"
)
## Perfoming hierarchical clustering on single molecules before plotting
This amplicon is not particularly affected by PCR artifacts. Had than been the case, this heatmap would show large blocks of perfectly duplicated methylation patterns across molecules.
In Baderna & Barzaghi et al., 2024, two F1 mESC lines where obtained by crossing the reference laboratory strain Bl6 with Cast and Spret respectively.
In such cases of genetic variation SMF data, it is useful to plot
SNPs disrupting TFBSs. This can be done by using a GRanges object.
N.b.: this GRanges should be already subset for the SNPs overlapping the
region of interest.
N.b.: this GRanges should have two metadata columns named R
and A
, indicating the sequence interested by SNPs or
indels.
A suitable example follows
SNPs = qs::qread(system.file("extdata", "SNPs_1.qs", package="SingleMoleculeFootprinting"))
SNPs
## GRanges object with 5 ranges and 2 metadata columns:
## seqnames ranges strand | R A
## <Rle> <IRanges> <Rle> | <character> <character>
## [1] chr16 8470596 * | T C
## [2] chr16 8470781 * | C A
## [3] chr16 8470876 * | G C
## [4] chr16 8470975 * | T C
## [5] chr16 8470538 * | CT C
## -------
## seqinfo: 21 sequences from an unspecified genome; no seqlengths
This GRanges should be passed to the SNPs
argument of
the PlotAvgSMF
function
Methylation = qs::qread(system.file("extdata", "Methylation_1.qs", package="SingleMoleculeFootprinting"))
TFBSs = qs::qread(system.file("extdata", "TFBSs_2.qs", package="SingleMoleculeFootprinting"))
RegionOfInterest = GRanges("chr16", IRanges(8470511,8471010))
PlotAvgSMF(
MethGR = Methylation,
RegionOfInterest = RegionOfInterest,
TFBSs = TFBSs,
SNPs = SNPs
)
## No sorted reads passed...plotting counts from all reads
Occasionally a variant will interest the genomic contexts recognized
by the MTase enzymes.
In that case the MTase will still target that cytosine on one allele,
but not the other.
This causes artifacts in SMF signals, whereby the mutated cytosine
context will appear fully unmethylated (SMF=1).
Methylation = qs::qread(system.file("extdata", "Methylation_2.qs", package="SingleMoleculeFootprinting"))
TFBSs = qs::qread(system.file("extdata", "TFBSs_1.qs", package="SingleMoleculeFootprinting"))
SNPs = qs::qread(system.file("extdata", "SNPs_2.qs", package="SingleMoleculeFootprinting"))
RegionOfInterest = GRanges("chr6", IRanges(88106000, 88106500))
PlotAvgSMF(
MethGR = Methylation,
RegionOfInterest = RegionOfInterest,
TFBSs = TFBSs,
SNPs = SNPs
) +
geom_vline(xintercept = start(SNPs[5]), linetype = 2, color = "grey")
## No sorted reads passed...plotting counts from all reads
It is important to filter out those cytosines in both alleles. This
can be done using the function MaskSNPs
.
This function takes as arguments the Methylation
object to
filter and a GRanges object of CytosinesToMask
.
CytosinesToMask
has, for each cytosines, the information of
whether it is disrupted by SNPs in the Cast or Spret genomes.
CytosinesToMask = qs::qread(system.file("extdata", "cytosines_to_mask.qs", package="SingleMoleculeFootprinting"))
CytosinesToMask
## GRanges object with 64 ranges and 3 metadata columns:
## seqnames ranges strand | GenomicContext DisruptedInCast
## <Rle> <IRanges> <Rle> | <character> <logical>
## [1] chr6 88106003 * | DGCH FALSE
## [2] chr6 88106012 * | GCG FALSE
## [3] chr6 88106018 * | DGCH FALSE
## [4] chr6 88106023 * | DGCH FALSE
## [5] chr6 88106028 * | GCG FALSE
## ... ... ... ... . ... ...
## [60] chr6 88106435 * | DGCH FALSE
## [61] chr6 88106445 * | DGCH FALSE
## [62] chr6 88106456 * | DGCH FALSE
## [63] chr6 88106493 * | DGCH TRUE
## [64] chr6 88106496 * | DGCH FALSE
## DisruptedInSpret
## <logical>
## [1] FALSE
## [2] FALSE
## [3] FALSE
## [4] FALSE
## [5] TRUE
## ... ...
## [60] FALSE
## [61] FALSE
## [62] FALSE
## [63] FALSE
## [64] FALSE
## -------
## seqinfo: 21 sequences from an unspecified genome; no seqlengths
The full genomic annotation of disrupted cytosines can be found at
# RESUME HERE
.
N.b.: the SampleStringMatch
argument should be set to
correspond to a string match for
colnames(elementMetadata(Methylation))
MaskSNPs(
Methylation = Methylation,
CytosinesToMask = CytosinesToMask,
MaskSMmat = FALSE,
SampleStringMatch = list(Cast = "_CTKO", Spret = "_STKO"),
Experiment = "DE"
) -> Methylation_masked
## Masking GRanges in DE mode
## Skipping SM matrix
PlotAvgSMF(
MethGR = Methylation_masked,
RegionOfInterest = RegionOfInterest,
TFBSs = TFBSs,
SNPs = SNPs
) +
geom_vline(xintercept = start(SNPs[5]), linetype = 2, color = "grey")
## No sorted reads passed...plotting counts from all reads
It can be useful to plot composite data by piling up heterologous
features, such as multiple binding sites for a TF.
It is advisable to select a subset of motifs, such as the top 500 motifs
ranked by ChIP-seq score. That is generally sufficient.
Here we exemplify how to do that for the top 500 REST bound motifs.
TopMotifs = qs::qread(system.file("extdata", "Top_bound_REST.qs", package="SingleMoleculeFootprinting"))
CollectCompositeData(
sampleFile = sampleFile,
samples = samples,
genome = BSgenome.Mmusculus.UCSC.mm10,
TFBSs = TopMotifs,
window = 1000,
coverage = 20,
ConvRate.thr = NULL,
cores = 16
) -> CompositeData
png("../inst/extdata/rest_composite.png", units = "cm", res = 100, width = 24, height = 16)
CompositePlot(CompositeData = CompositeData, span = 0.1, TF = "Rest")
dev.off()
N.b.: the CollectCompositeData
function takes several
minutes to run, therefore we advice parallelizing computations using the
argument cores
. For 500 motifs, between 4
and
16
cores are suitable.
## R Under development (unstable) (2024-10-21 r87258)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] ggplot2_3.5.1 SingleMoleculeFootprintingData_1.13.0
## [3] BSgenome.Mmusculus.UCSC.mm10_1.4.3 BSgenome_1.75.0
## [5] rtracklayer_1.67.0 BiocIO_1.17.0
## [7] Biostrings_2.75.0 XVector_0.47.0
## [9] GenomicRanges_1.59.0 GenomeInfoDb_1.43.0
## [11] IRanges_2.41.0 S4Vectors_0.45.0
## [13] BiocGenerics_0.53.0 SingleMoleculeFootprinting_2.1.0
##
## loaded via a namespace (and not attached):
## [1] RColorBrewer_1.1-3 jsonlite_1.8.9
## [3] magrittr_2.0.3 GenomicFeatures_1.59.0
## [5] farver_2.1.2 rmarkdown_2.28
## [7] zlibbioc_1.53.0 vctrs_0.6.5
## [9] memoise_2.0.1 Rsamtools_2.23.0
## [11] RCurl_1.98-1.16 QuasR_1.47.0
## [13] ggpointdensity_0.1.0 htmltools_0.5.8.1
## [15] S4Arrays_1.7.1 progress_1.2.3
## [17] AnnotationHub_3.15.0 curl_5.2.3
## [19] SparseArray_1.7.0 sass_0.4.9
## [21] bslib_0.8.0 plyr_1.8.9
## [23] httr2_1.0.5 cachem_1.1.0
## [25] GenomicAlignments_1.43.0 mime_0.12
## [27] lifecycle_1.0.4 pkgconfig_2.0.3
## [29] Matrix_1.7-1 R6_2.5.1
## [31] fastmap_1.2.0 GenomeInfoDbData_1.2.13
## [33] MatrixGenerics_1.19.0 digest_0.6.37
## [35] colorspace_2.1-1 ShortRead_1.65.0
## [37] patchwork_1.3.0 AnnotationDbi_1.69.0
## [39] ExperimentHub_2.15.0 RSQLite_2.3.7
## [41] hwriter_1.3.2.1 labeling_0.4.3
## [43] filelock_1.0.3 fansi_1.0.6
## [45] httr_1.4.7 abind_1.4-8
## [47] compiler_4.5.0 Rbowtie_1.47.0
## [49] withr_3.0.2 bit64_4.5.2
## [51] BiocParallel_1.41.0 viridis_0.6.5
## [53] DBI_1.2.3 qs_0.27.2
## [55] highr_0.11 biomaRt_2.63.0
## [57] rappdirs_0.3.3 DelayedArray_0.33.1
## [59] rjson_0.2.23 tools_4.5.0
## [61] glue_1.8.0 restfulr_0.0.15
## [63] grid_4.5.0 generics_0.1.3
## [65] gtable_0.3.6 tzdb_0.4.0
## [67] tidyr_1.3.1 RApiSerialize_0.1.4
## [69] hms_1.1.3 xml2_1.3.6
## [71] stringfish_0.16.0 utf8_1.2.4
## [73] BiocVersion_3.21.1 ggrepel_0.9.6
## [75] pillar_1.9.0 stringr_1.5.1
## [77] vroom_1.6.5 dplyr_1.1.4
## [79] BiocFileCache_2.15.0 lattice_0.22-6
## [81] bit_4.5.0 deldir_2.0-4
## [83] tidyselect_1.2.1 knitr_1.48
## [85] gridExtra_2.3 SummarizedExperiment_1.37.0
## [87] xfun_0.48 Biobase_2.67.0
## [89] matrixStats_1.4.1 stringi_1.8.4
## [91] UCSC.utils_1.3.0 yaml_2.3.10
## [93] evaluate_1.0.1 codetools_0.2-20
## [95] interp_1.1-6 GenomicFiles_1.43.0
## [97] archive_1.1.9 tibble_3.2.1
## [99] BiocManager_1.30.25 cli_3.6.3
## [101] RcppParallel_5.1.9 munsell_0.5.1
## [103] jquerylib_0.1.4 Rcpp_1.0.13
## [105] dbplyr_2.5.0 tidyverse_2.0.0
## [107] png_0.1-8 XML_3.99-0.17
## [109] readr_2.1.5 blob_1.2.4
## [111] prettyunits_1.2.0 latticeExtra_0.6-30
## [113] jpeg_0.1-10 plyranges_1.27.0
## [115] bitops_1.0-9 pwalign_1.3.0
## [117] txdbmaker_1.3.0 viridisLite_0.4.2
## [119] VariantAnnotation_1.53.0 scales_1.3.0
## [121] purrr_1.0.2 crayon_1.5.3
## [123] rlang_1.1.4 KEGGREST_1.47.0