
ConsensusClusterPlus (Tutorial)

Matthew D. Wilkerson

October 29, 2024

1 Summary
ConsensusClusterPlus is a tool for unsupervised class discovery. This docu-
ment provides a tutorial of how to use ConsensusClusterPlus.

2 Brief description of Consensus Clustering

Consensus Clustering [1] is a method that provides quantitative evidence for
determining the number and membership of possible clusters within a dataset,
such as microarray gene expression. This method has gained popularity in can-
cer genomics, where new molecular subclasses of disease have been discovered
[3, 4]. The Consensus Clustering method involves subsampling from a set of
items, such as microarrays, and determines clusterings of specified cluster counts
(k). Then, pairwise consensus values, the proportion that two items occupied
the same cluster out of the number of times they occurred in the same subsam-
ple, are calculated and stored in a symmetrical consensus matrix for each k.
The consensus matrix is summarized in several graphical displays that enable a
user to decide upon a reasonable cluster number and membership. A web-based
version of Consensus Clustering is publicly available [5]. For a formal descrip-
tion, see [1].

ConsensusClusterPlus[2] implements the Consensus Clustering method in R
and extends it with new features and graphical outputs that can aid users in
class discovery.

3 Tutorial
There are three main steps to use ConsensusClusterPlus: preparing input
data, running the program, and generating cluster-consensus and item-consensus.

1



3.1 Preparing input data
The first step is to gather some data for cluster analysis. These data could be
the result of an experiment such as a mRNA expression microarray or immuno-
histochemical staining intensities. The input data format is a matrix where
columns are samples (items), rows are features and cells are numerical values.
For this tutorial, we use the ALL gene expression data from the ALL library.
You can see the matrix d is already in the proper format. The column and row
names, which correspond to the sample and gene names, will be maintained in
the output.

> library(ALL)
> data(ALL)
> d=exprs(ALL)
> d[1:5,1:5]

01005 01010 03002 04006 04007
1000_at 7.597323 7.479445 7.567593 7.384684 7.905312
1001_at 5.046194 4.932537 4.799294 4.922627 4.844565
1002_f_at 3.900466 4.208155 3.886169 4.206798 3.416923
1003_s_at 5.903856 6.169024 5.860459 6.116890 5.687997
1004_at 5.925260 5.912780 5.893209 6.170245 5.615210

For the purpose of selecting the most informative genes for class detection,
we reduce the dataset to the top 5,000 most variable genes, measured by median
absolute deviation. The choice of 5,000 genes and MAD can be substituted with
other statistical variability filters. Users can decide what type of filtering to use
or to skip filtering. Another choice would be to supply weights for sampling
genes see weightsFeatures in Additional Options.

> mads=apply(d,1,mad)
> d=d[rev(order(mads))[1:5000],]

If one wants to transform or normalize their data, they can easily do so using
other Bioconductor methods or a simple statement. We chose to use the default
settings of the agglomerative hierarchical clustering algorithm using Pearson
correlation distance, so it is appropriate to gene median center d using this
simple statement:

> d = sweep(d,1, apply(d,1,median,na.rm=T))

d is now ready for ConsensusClusterPlus analysis.

3.2 Running ConsensusClusterPlus

For this tutorial, we selected 80% item resampling (pItem), 80% gene resampling
(pFeature), a maximum evalulated k of 6 so that cluster counts of 2,3,4,5,6 are
evaluated (maxK), 50 resamplings (reps), agglomerative hierarchical clustering

2



algorithm (clusterAlg) upon 1- Pearson correlation distances (distance), gave
our output a title (title), and opted to have graphical results written to png
files. We also used a specific random seed so that this example is repeatable
(seed).

* Note: In practice, a much higher reps is recommended such as 1,000 and a
higher cluster count such as 20.

> library(ConsensusClusterPlus)
> title=tempdir()
> results = ConsensusClusterPlus(d,maxK=6,reps=50,pItem=0.8,pFeature=1,
+ title=title,clusterAlg="hc",distance="pearson",seed=1262118388.71279,plot="png")

The output of ConsensusClusterPlus is a list, in which the element of the
list corresponds to results from the kth cluster, for instance, results[[2]] is the
results result of k=2. The seed option specifies a random number seed and
is used here for reproducibility of this tutorial. These list elements have the
following elements:

> #consensusMatrix - the consensus matrix.
> #For .example, the top five rows and columns of results for k=2:
> results[[2]][["consensusMatrix"]][1:5,1:5]

[,1] [,2] [,3] [,4] [,5]
[1,] 1.0000000 1.0000000 0.8947368 1.0000000 1.000000
[2,] 1.0000000 1.0000000 0.9142857 1.0000000 1.000000
[3,] 0.8947368 0.9142857 1.0000000 0.8857143 0.969697
[4,] 1.0000000 1.0000000 0.8857143 1.0000000 1.000000
[5,] 1.0000000 1.0000000 0.9696970 1.0000000 1.000000

> #consensusTree - hclust object
> results[[2]][["consensusTree"]]

Call:
hclust(d = as.dist(1 - fm), method = finalLinkage)

Cluster method : average
Number of objects: 128

> #consensusClass - the sample classifications
> results[[2]][["consensusClass"]][1:5]

01005 01010 03002 04006 04007
1 1 1 1 1

>
> #ml - consensus matrix result
> #clrs - colors for cluster

See additional options section for further description of clustering algorithms
and distance metrics.

3



3.3 Generating cluster and item consensus
After executing ConsensusClusterPlus, one can optionally calculate cluster-
consensus and item-consensus results by:

> icl = calcICL(results,title=title,plot="png")

calcICL returns a list of two elements:

> icl[["clusterConsensus"]]

k cluster clusterConsensus
[1,] 2 1 0.7681668
[2,] 2 2 0.9788274
[3,] 3 1 0.6176820
[4,] 3 2 0.9190744
[5,] 3 3 1.0000000
[6,] 4 1 0.8446083
[7,] 4 2 0.9067267
[8,] 4 3 0.6612850
[9,] 4 4 1.0000000

[10,] 5 1 0.8175802
[11,] 5 2 0.9066489
[12,] 5 3 0.6062040
[13,] 5 4 0.8154580
[14,] 5 5 1.0000000
[15,] 6 1 0.7511726
[16,] 6 2 0.8802040
[17,] 6 3 0.7410730
[18,] 6 4 0.8154580
[19,] 6 5 0.7390864
[20,] 6 6 1.0000000

> icl[["itemConsensus"]][1:5,]

k cluster item itemConsensus
1 2 1 28031 0.6173782
2 2 1 28023 0.5797202
3 2 1 43012 0.5961974
4 2 1 28042 0.5644619
5 2 1 28047 0.6259350

4 Graphic Output Description
The output of ConsensusClusterPlus consists of graphics, which are written to
the screen, ’pdf’ file, or ’png’ files depending on the plot option; and numerical
data which can be optionally written to a CSV file depending on the writeTable

4



option. For large datasets, graphical displays can be quite large and plotting
the consensus dendrogram above the consensus matrices may not be possible.
If your dataset is large, the plot option ’pngBMP’ which does not produce the
consensus matrix dendrogram and uses the bitmap function rather png. Bitmap
is often available natively on linux systems but can potentially be installed on
other systems.

4.1 Consensus Matrices
The first graphic shows the consensus color legend.

The remaining graphics are heatmaps of the consensus matrices for k = 2, 3, 4,
5 [1]. The consensus matrices have items as both rows and columns, which are
microarrays in this example, and where consensus values range from 0 (never
clustered together) to 1 (always clustered together) marked by white to dark
blue. The consensus matrices are ordered by the consensus clustering which
is depicted as a dendrogram atop the heatmap. To aid analysis, the cluster
memberships are marked by colored rectangles between the dendrogram and
heatmap according to a legend within the graphic. This enables a user to com-
pare a clusters’ member count in the context of their consensus.

5



4.2 Consensus Cumulative Distribution Function (CDF)
Plot

This graphic shows the cumulative distribution functions [1] of the consensus
matrix for each k (indicated by colors), estimated by a histogram of 100 bins.
This figure allows a user to determine at what number of clusters, k, the CDF
reaches an approximate maximum, thus consensus and cluster confidence is at
a maximum at this k. See [1] for further details intepretation.

6



4.3 Delta Area Plot
This graphic shows the relative change in area under the CDF curve [1] com-
paring k and k − 1. For k = 2, there is no k -1, so the total area under the
curve rather than the relative increase is plotted. This plot allows a user to
determine the relative increase in consensus and determine k at which there is
no appreciable increase. See [1] for intepretation.

4.4 Tracking Plot
This graphic shows the cluster assignment of items (columns) for each k (rows)
by color. The colors correspond to the colors of the consensus matrix class
asssignments. Hatch marks below the plot indicate items/samples. This plot
provides a view of item cluster membership across different k and enables a user

7



to track the history of clusters relative to earlier clusters. Items that change
clusters often (changing colors within a column) are indicative of unstable mem-
bership. Clusters with an abundance of unstable members suggest an unstable
cluster.

4.5 Cluster-Consensus Plot
This graphic shows the cluster-consensus value of clusters at each k. This is the
mean of all pairwise consensus values between a cluster’s members. Cluster is
indicated by color following the same color scheme as the cluster matrices and
tracking plots. The bars are grouped by k which is marked on the horizontal
axis. High values indicate a cluster has high stability and low values indicate
a cluster has low stability. This plot enables a user to view the mean cluster-
consensus among clusters at a given k and compare values of clusters across
different k via the color scheme.

8



4.6 Item-Consensus Plot
Item-consensus values are the mean consensus of an item with all items in a
particular cluster. An item has k item-consensus values corresponding to each
cluster at a particular k. These values are depicted in barplots for each k. Sam-
ples are stacked bars. Item-consensus values are indicated by the heights of
the colored portion of the bars, whose color corresponds to the common color
scheme. Bars’ rectangles are ordered by increasing value from bottom to top.
The asterisks at the top indicate the consensus cluster for each item.

This plot provides a view of item-consensus across all other clusters at a given
k. This enables a user to see if a sample is a very "pure" member of a cluster or
if it shares high consensus to multiple clusters (large rectangles in a column of
multiple colors), suggesting that it is an unstable or "unpure" member. These
values could be used to select "core" samples similar to [4] that are highly rep-
resentative of a cluster. Further, this plot can aid cluster number decisions. For
instance, if a cluster consists mainly of members with very "unpure" items, then
this evidence could be used to support a maximum cluster number at 1 below
this k or this evidence could support that this cluster is an outlier cluster. De-
cisions such as these are best to be made by the user in conjunction with other
evidence such as consensus matrices, tracking plots, etc.

4.7 Additional details on options for ConsensusClusterPlus
function

• d This option specifies the data to be used in ConsensusClusterPlus. This
is typically a matrix of numerical expression values, of which an example is
provided in the Running ConsensusClusterPlus section of this document.
When provided with a data matrix as d, ConsensusClusterPlus recalcu-
lates a distance matrix during each iteration. This recalculation is required
if feature resampling is specified (pFeature less than 1). However with very

9



large datasets (1,000’s of items) and no feature resampling, this process
can be time consuming and unnecessary. Alternatively, a pre-computed
distance matrix can be provided as d, resulting in faster computation. An
example of using a dist object as input follow below.

> #example of providing a custom distance matrix as input:
> #dt = as.dist(1-cor(d,method="pearson"))
> #ConsensusClusterPlus(dt,maxK=4,reps=100,pItem=0.8,pFeature=1,title="example2",distance="pearson",clusterAlg="hc")

• distanceThis option describes the distance metric to be used. A character
value of one of the following metrics is accepted: pearson for (1 - Pearson
correlation), spearman for (1 - Spearman correlation), euclidean, binary,
maximum, canberra, minkowski. Alternatively a custom distance function
cab be supplied for this argument, which accepts a numerical matrix (items
as rows and features as columns) as input and returns a dist object.

> #example of providing a custom distance function:
> #myDistFunc = function(x){ dist(x,method="manhattan")}
> #ConsensusClusterPlus(d,maxK=4,reps=100,pItem=0.8,pFeature=1,title="example3",distance="myDistFunc",clusterAlg="pam")

• clusterAlg This option specifies the type of clustering algorithm to use:
"hc" for hierarchical clustering, "pam" for partioning around medoids,
"km" for kmeans. Alternatively, one can supply their own clustering func-
tion, which should accept a distance matrix and a cluster number as its
arguments and returns vector of cluster assignments having the same order
as the distance matrix columns. For example, this simple function exe-
cutes divisive clustering using the diana function from the cluster package
and returns the expected object. The last line shows an example of how
this could be used.

> #library(cluster)
> #dianaHook = function(this_dist,k){
> #tmp = diana(this_dist,diss=TRUE)
> #assignment = cutree(tmp,k)
> #return(assignment)
> #}
> #ConsensusClusterPlus(d,clusterAlg="dianaHook",distance="pearson",...)

• update on kmeans options "km" option performs kmeans clustering
directly on a data matrix, with items and features resampled.

• innerLinkage This option specifies the linkage method to use in itera-
tive agglomerative hierarchical clustering. Not applicable to other cluster
algorithms.

• finalLinkage This option specifies the linkage method to use in the final
agglomerative hierarchical clustering.

10



• distance This option specifies the distance metric to use: "pearson" for
1-Pearson correlation coefficient, "spearman" for 1-Spearman correlation
coefficient, "euclidean" for Euclidean distance.

• tmyPal character vector of ordered colors to use for consensus matrix. If
not specified, a series of white to blue colors is used.

• writeTable boolean. If TRUE, write consensus matrices, ICL, and log
to file.

• weightsFeature numerical vector of weights for sampling features. See
help for further details.

• weightsItem numerical vector of weights for sampling items. See help
for further details.

• verbose boolean. If TRUE, print messages to the screen to indicate
progress. This is useful for large datasets.

References
[1] Monti, S., Tamayo, P., Mesirov, J., Golub, T. (2003) Consensus Clustering:

A Resampling-Based Method for Class Discovery and Visualization of Gene
Expression Microarray Data. Machine Learning, 52, 91−118.

[2] Wilkerson, M.D., Hayes, D.N. (2010). ConsensusClusterPlus: a class discov-
ery tool with confidence assessments and item tracking. Bioinformatics, 2010
Jun 15;26(12):1572−3.

[3] Hayes, D.N, Monti, S., Parmigiani, G. et al. (2006) Gene Expression Profiling
Reveals Reproducible Human Lung Adenocarcinoma Subtypes in Multiple In-
dependent Patient Cohorts. Journal of Clinical Oncology, 24 (31) 5079−5090.

[4] Verhaak, R., Hoadley, K., et al. (2010) Integrated genomic analysis identifies
clinically relevant subtypes of glioblastoma characterized by abnormalities in
PDGFRA, IDH1, EGFR and NF1. Cancer Cell. 17,1-13.

[5] http://www.broadinstitute.org/cancer/software/genepattern/

4.8 Changes
• Version 1.0.1. Item-consensus calculation was corrected. Consensus ma-

trix heat maps are now guaranteed to correspond to the scale.

• Version 1.5.1. Version 1.0.1 changes were re-incorporated into Bioc 2.9,
2.8. Version 1.0.1 was part of Bioc 2.6, but not part of Bioc 2.7.

11



• Version 1.11.1. For large datasets, the input data (d) was modified to also
accept a distance matrix which reduces computation time, and plotBMP
was added a plot type so that large consensus matrices can be plot-
ted. Internal data structures were modified to increase speed. Distance
metric options expanded ("maximum", "manhattan", "canberra", "bi-
nary","minkowski" from dist) and custom distance function option added.
Partitioning Around Mediods clustering (from cluster package) was added
as a clustering algorithm. Kmeans invocation was changed to run on the
data matrix by default. Kmeans invocation on a distance matrix is now
possible by kmdist.

• Version Version 1.35.0 Added CITATION file, updated references, and
man pages.

• Version 1.51.1 Breif R code update for compatibilty with R 4.0. Depre-
cated kmdist clustering option.

12


