
Package ‘variancePartition’
December 25, 2024

Type Package

Title Quantify and interpret drivers of variation in multilevel gene
expression experiments

Version 1.37.1

Date 2024-11-12

Maintainer Gabriel E. Hoffman <gabriel.hoffman@mssm.edu>

Description Quantify and interpret multiple sources of biological and technical variation in gene ex-
pression experiments. Uses a linear mixed model to quantify variation in gene expression at-
tributable to individual, tissue, time point, or technical variables. Includes dream differential ex-
pression analysis for repeated measures.

VignetteBuilder knitr

License GPL-2

Encoding UTF-8

URL http://bioconductor.org/packages/variancePartition,

https://DiseaseNeuroGenomics.github.io/variancePartition

BugReports https://github.com/DiseaseNeuroGenomics/variancePartition/issues

Suggests BiocStyle, knitr, pander, rmarkdown, edgeR, dendextend,
tximport, tximportData, ballgown, DESeq2, RUnit, cowplot,
Rfast, zenith, statmod, BiocGenerics, r2glmm, readr

biocViews RNASeq, GeneExpression, GeneSetEnrichment,
DifferentialExpression, BatchEffect, QualityControl,
Regression, Epigenetics, FunctionalGenomics, Transcriptomics,
Normalization, Preprocessing, Microarray, ImmunoOncology,
Software

Depends R (>= 4.3.0), ggplot2, limma, BiocParallel

Imports MASS, pbkrtest (>= 0.4-4), lmerTest, Matrix (>= 1.4.0),
iterators, gplots, corpcor, matrixStats, RhpcBLASctl, reshape2,
remaCor (>= 0.0.15), fANCOVA, aod, scales, Rdpack, rlang, lme4
(>= 1.1.33), grDevices, graphics, Biobase, methods, utils,
stats

1

http://bioconductor.org/packages/variancePartition
https://DiseaseNeuroGenomics.github.io/variancePartition
https://github.com/DiseaseNeuroGenomics/variancePartition/issues

2 Contents

RoxygenNote 7.3.1

RdMacros Rdpack

git_url https://git.bioconductor.org/packages/variancePartition

git_branch devel

git_last_commit f3d7711

git_last_commit_date 2024-11-07

Repository Bioconductor 3.21

Date/Publication 2024-12-24

Author Gabriel Hoffman [aut, cre] (ORCID:
<https://orcid.org/0000-0002-0957-0224>)

Contents
.getAllUniContrasts . 3
.isMixedModelFormula . 4
.standard_transform . 4
applyQualityWeights . 5
as.data.frame.varPartResults . 5
as.matrix,varPartResults-method . 6
augmentPriorCount . 7
BIC.MArrayLM . 8
BIC.MArrayLM2 . 9
calcVarPart . 9
canCorPairs . 11
classifyTestsF . 12
classifyTestsF,MArrayLM2-method . 13
colinearityScore . 14
deviation . 15
diffVar . 16
dream . 18
dscchisq . 21
eBayes,MArrayLM2-method . 21
ESS . 22
extractVarPart . 24
fitExtractVarPartModel . 25
fitVarPartModel . 28
getContrast . 32
getTreat . 34
get_prediction . 35
ggColorHue . 36
hatvalues,MArrayLM-method . 36
isRunableFormula . 37
logLik.MArrayLM . 37
logLik.MArrayLM2 . 38
makeContrastsDream . 38

https://orcid.org/0000-0002-0957-0224

.getAllUniContrasts 3

MArrayLM2-class . 40
mvTest . 40
mvTest_input-class . 43
plotCompareP . 44
plotContrasts . 45
plotCorrMatrix . 46
plotCorrStructure . 47
plotPercentBars . 48
plotStratify . 50
plotStratifyBy . 52
plotVarianceEstimates . 53
plotVarPart . 54
rdf . 56
rdf.merMod . 56
rdf_from_matrices . 57
reOnly . 58
residuals,MArrayLM-method . 58
residuals,MArrayLM2-method . 59
residuals,VarParFitList-method . 59
residuals.MArrayLM2 . 60
shrinkageMetric . 61
sortCols . 61
topTable . 63
VarParCIList-class . 64
VarParFitList-class . 65
varParFrac-class . 65
varPartConfInf . 65
varPartData . 67
varPartDEdata . 68
varPartResults-class . 68
vcov,MArrayLM-method . 69
vcov,MArrayLM2-method . 69
vcovSqrt . 70
voomWithDreamWeights . 71
[.MArrayLM2 . 73

Index 74

.getAllUniContrasts Get all univariate contrasts

Description

Get all univariate contrasts

Usage

.getAllUniContrasts(formula, data)

4 .standard_transform

Arguments

formula specifies variables for the linear (mixed) model. Must only specify covariates,
since the rows of exprObj are automatically used as a response. e.g.: ~ a + b +
(1|c) Formulas with only fixed effects also work

data data.frame with columns corresponding to formula

Value

Matrix testing each variable one at a time. Contrasts are on rows

.isMixedModelFormula Check if model contains a random effect

Description

Check if model contains a random effect

Usage

.isMixedModelFormula(formula)

Arguments

formula model formula

.standard_transform Compute standard post-processing values

Description

These values are typically computed by eBayes

Usage

.standard_transform(fit, sigma = fit$sigma)

Arguments

fit result of dream (MArrayLM2)

sigma vector of standard errors used to compute t-statistic. Can be maximum likeli-
hood estimates, or posterior means

Value

MArrayLM2 object with values computed

applyQualityWeights 5

applyQualityWeights Apply pre-specified sample weights

Description

Apply pre-specified sample weights by scaling existing precision weights

Usage

applyQualityWeights(vobj, weights)

Arguments

vobj EList from voom or voomWithDreamWeights.

weights sample level weights

Details

Apply pre-specified sample-level weights to the existing precision weights estimated from the data.
While the limma::voomWithQualityWeights function of Lui et al. (2015) estimates the sample-
level weights from voom fit, here the weights are fixed beforehand.

References

Liu R, Holik AZ, Su S, Jansz N, Chen K, Leong HS, Blewitt ME, Asselin-Labat M, Smyth GK,
Ritchie ME (2015). “Why weight? Modelling sample and observational level variability improves
power in RNA-seq analyses.” Nucleic acids research, 43(15), e97–e97.

See Also

limma::voomWithQualityWeights

as.data.frame.varPartResults

Convert to data.frame

Description

Convert varPartResults to data.frame

Usage

S3 method for class 'varPartResults'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)

6 as.matrix,varPartResults-method

Arguments

x varPartResults
row.names pass thru to generic
optional pass thru to generic
... other arguments.

Value

data.frame

Examples

load library
library(variancePartition)

load simulated data:
geneExpr: matrix of gene expression values
info: information/metadata about each sample
data(varPartData)

Specify variables to consider
Age is continuous so we model it as a fixed effect
Individual and Tissue are both categorical, so we model them as random effects
form <- ~ Age + (1 | Individual) + (1 | Tissue)

Fit model
varPart <- fitExtractVarPartModel(geneExpr[1:5,], form, info)

convert to matrix
as.data.frame(varPart)

as.matrix,varPartResults-method

Convert to matrix

Description

Convert varPartResults to matrix

Usage

S4 method for signature 'varPartResults'
as.matrix(x, ...)

Arguments

x varPartResults
... other arguments.

augmentPriorCount 7

Value

matrix

Examples

load library
library(variancePartition)

load simulated data:
geneExpr: matrix of gene expression values
info: information/metadata about each sample
data(varPartData)

Specify variables to consider
Age is continuous so we model it as a fixed effect
Individual and Tissue are both categorical, so we model them as random effects
form <- ~ Age + (1 | Individual) + (1 | Tissue)

Fit model
varPart <- fitExtractVarPartModel(geneExpr[1:5,], form, info)

convert to matrix
as.matrix(varPart)

augmentPriorCount Augment observed read counts with prior count

Description

Augment observed read counts with prior count since log of zero counts is undefined. The prior
count added to each sample is scaled so that no variance is introduced

Usage

augmentPriorCount(
counts,
lib.size = colSums2(counts),
prior.count = 0.5,
scaledByLib = FALSE

)

Arguments

counts matrix of read counts with genes as rows and samples as columns
lib.size library sizes, the sum of all ready for each sample
prior.count average prior count added to each sample.
scaledByLib if TRUE, scale pseudocount by lib.size. Else to standard constant pseudocount

addition

8 BIC.MArrayLM

Details

Adding prior counts removes the issue of evaluating the log of zero counts, and stabilizes the log
transform when counts are very small. However, adding a constant prior count to all samples can
introduced an artifact. Consider two samples each with zero counts for a given gene, but one as a
library size of 1k and the other of 50k. After applying the prior count values become pc / 1k and
pc / 50k. It appears that there is variance in the expression of this gene, even though no counts are
observed. This is driven only by variation in the library size, which does not reflect biology. This
issue is most problematic for small counts.

Instead, we make the reasonable assumption that a gene does not have expression variance unless
supported sufficiently by counts in the numerator. Consider adding a different prior count to each
sample so that genes with zero counts end up woth zero variance. This corresponds to adding
prior.count * lib.size[i] / mean(lib.size) to sample i.

This is done in the backend of edgeR::cpm(), but this function allows users to apply it more
generally.

Value

matrix with augmented counts

See Also

edgeR::cpm()

Examples

library(edgeR)

data(varPartDEdata)

normalize RNA-seq counts
dge <- DGEList(counts = countMatrix)
dge <- calcNormFactors(dge)

countsAugmented <- augmentPriorCount(dge$counts, dge$samples$lib.size, 1)

BIC.MArrayLM BIC from model fit

Description

BIC from model fit

Usage

S3 method for class 'MArrayLM'
BIC(object, vobj, ...)

BIC.MArrayLM2 9

Arguments

object result of lmFit() or dream()

vobj EList used to fit model

... See ?stats::BIC

BIC.MArrayLM2 BIC from model fit

Description

BIC from model fit using edf

Usage

S3 method for class 'MArrayLM2'
BIC(object, vobj, ...)

Arguments

object result of dream()

vobj EList used to fit model

... See ?stats::BIC

calcVarPart Compute variance statistics

Description

Compute fraction of variation attributable to each variable in regression model. Also interpretable
as the intra-class correlation after correcting for all other variables in the model.

Usage

calcVarPart(fit, returnFractions = TRUE, ...)

S4 method for signature 'lm'
calcVarPart(fit, returnFractions = TRUE, ...)

S4 method for signature 'lmerMod'
calcVarPart(fit, returnFractions = TRUE, ...)

S4 method for signature 'glm'
calcVarPart(fit, returnFractions = TRUE, ...)

10 calcVarPart

S4 method for signature 'negbin'
calcVarPart(fit, returnFractions = TRUE, ...)

S4 method for signature 'glmerMod'
calcVarPart(fit, returnFractions = TRUE, ...)

Arguments

fit model fit from lm() or lmer()
returnFractions

default: TRUE. If TRUE return fractions that sum to 1. Else return unscaled
variance components.

... additional arguments (not currently used)

Details

For linear model, variance fractions are computed based on the sum of squares explained by each
component. For the linear mixed model, the variance fractions are computed by variance component
estimates for random effects and sum of squares for fixed effects.

For a generalized linear model, the variance fraction also includes the contribution of the link func-
tion so that fractions are reported on the linear (i.e. link) scale rather than the observed (i.e. re-
sponse) scale. For linear regression with an identity link, fractions are the same on both scales.
But for logit or probit links, the fractions are not well defined on the observed scale due to the
transformation imposed by the link function.

The variance implied by the link function is the variance of the corresponding distribution:

logit -> logistic distribution -> variance is pi^2/3

probit -> standard normal distribution -> variance is 1

For the Poisson distribution with rate λ, the variance is log(1 + 1/λ).

For the negative binomial distribution with rate λ and shape θ, the variance is log(1 + 1/λ+ 1/θ).

Variance decomposition is reviewed by Nakagawa and Schielzeth (2012), and expanded to other
GLMs by Nakagawa, Johnson and Schielzeth (2017). See McKelvey and Zavoina (1975) for early
work on applying to GLMs. Also see DeMaris (2002)

We note that Nagelkerke’s pseudo R^2 evaluates the variance explained by the full model. Instead,
a variance partitioning approach evaluates the variance explained by each term in the model, so that
the sum of each systematic plus random term sums to 1 (Hoffman and Schadt, 2016; Nakagawa and
Schielzeth, 2012).

Value

fraction of variance explained / ICC for each variable in the regression model

References

Nakagawa S, Johnson PC, Schielzeth H (2017). “The coefficient of determination R 2 and intra-
class correlation coefficient from generalized linear mixed-effects models revisited and expanded.”
Journal of the Royal Society Interface, 14(134), 20170213.

canCorPairs 11

Nakagawa S, Schielzeth H (2013). “A general and simple method for obtaining R2 from generalized
linear mixed-effects models.” Methods in ecology and evolution, 4(2), 133–142.

McKelvey RD, Zavoina W (1975). “A statistical model for the analysis of ordinal level dependent
variables.” Journal of mathematical sociology, 4(1), 103–120.

DeMaris A (2002). “Explained variance in logistic regression: A Monte Carlo study of proposed
measures.” Sociological Methods & Research, 31(1), 27–74.

Hoffman GE, Schadt EE (2016). “variancePartition: interpreting drivers of variation in complex
gene expression studies.” BMC bioinformatics, 17(1), 1–13.

Examples

library(lme4)
data(varPartData)

Linear mixed model
fit <- lmer(geneExpr[1,] ~ (1 | Tissue) + Age, info)
calcVarPart(fit)

Linear model
Note that the two models produce slightly different results
This is expected: they are different statistical estimates
of the same underlying value
fit <- lm(geneExpr[1,] ~ Tissue + Age, info)
calcVarPart(fit)

canCorPairs canCorPairs

Description

Assess correlation between all pairs of variables in a formula

Usage

canCorPairs(formula, data, showWarnings = TRUE)

Arguments

formula standard additive linear model formula (doesn’t support random effects cur-
rently, so just change the syntax)

data data.frame with the data for the variables in the formula

showWarnings default to true

12 classifyTestsF

Details

Canonical Correlation Analysis (CCA) is similar to correlation between two vectors, except that
CCA can accommodate matricies as well. For a pair of variables, canCorPairs assesses the degree to
which they co-vary and contain the same information. Variables in the formula can be a continuous
variable or a discrete variable expanded to a matrix (which is done in the backend of a regression
model). For a pair of variables, canCorPairs uses CCA to compute the correlation between these
variables and returns the pairwise correlation matrix.

Statistically, let rho be the array of correlation values returned by the standard R function cancor to
compute CCA. canCorPairs() returns sqrt(mean(rho^2)), which is the fraction of the maximum
possible correlation. When comparing a two vectors, or a vector and a matrix, this gives the save
value as the absolute correlation. When comparing two sets of categorical variables (i.e. expanded
to two matricies), this is equivalent to Cramer’s V statistic.

Note that CCA returns correlation values between 0 and 1.

Value

Matrix of correlation values between all pairs of variables.

Examples

load library
library(variancePartition)

load simulated data:
data(varPartData)

specify formula
form <- ~ Individual + Tissue + Batch + Age + Height

Compute Canonical Correlation Analysis (CCA)
between all pairs of variables
returns absolute correlation value
C <- canCorPairs(form, info)

Plot correlation matrix
plotCorrMatrix(C)

classifyTestsF Multiple Testing Genewise Across Contrasts

Description

For each gene, classify a series of related t-statistics as up, down or not significant.

Usage

classifyTestsF(object, ...)

classifyTestsF,MArrayLM2-method 13

Arguments

object numeric matrix of t-statistics or an ’MArrayLM2’ object from which the t-
statistics may be extracted.

... additional arguments

Details

Works like limma::classifyTestsF, except object can have a list of covariance matrices object$cov.coefficients.list,
instead of just one in object$cov.coefficients

See Also

limma::classifyTestsF

classifyTestsF,MArrayLM2-method

Multiple Testing Genewise Across Contrasts

Description

For each gene, classify a series of related t-statistics as up, down or not significant.

Usage

S4 method for signature 'MArrayLM2'
classifyTestsF(
object,
cor.matrix = NULL,
df = Inf,
p.value = 0.01,
fstat.only = FALSE

)

Arguments

object numeric matrix of t-statistics or an ’MArrayLM2’ object from which the t-
statistics may be extracted.

cor.matrix covariance matrix of each row of t-statistics. Defaults to the identity matrix.

df numeric vector giving the degrees of freedom for the t-statistics. May have
length 1 or length equal to the number of rows of tstat.

p.value numeric value between 0 and 1 giving the desired size of the test

fstat.only logical, if ’TRUE’ then return the overall F-statistic as for ’FStat’ instead of
classifying the test results

14 colinearityScore

Details

Works like limma::classifyTestsF, except object can have a list of covariance matrices object$cov.coefficients.list,
instead of just one in object$cov.coefficients

See Also

limma::classifyTestsF

colinearityScore Collinearity score

Description

Collinearity score for a regression model indicating if variables are too highly correlated to give
meaningful results

Usage

colinearityScore(fit)

Arguments

fit regression model fit from lm() or lmer()

Value

Returns the collinearity score between 0 and 1, where a score > 0.999 means the degree of collinear-
ity is too high. This function reports the correlation matrix between coefficient estimates for fixed
effects. The collinearity score is the maximum absolute correlation value of this matrix. Note
that the values are the correlation between the parameter estimates, and not between the variables
themselves.

Examples

load library
library(variancePartition)

load simulated data:
data(varPartData)
#
form <- ~ Age + (1 | Individual) + (1 | Tissue)

res <- fitVarPartModel(geneExpr[1:10,], form, info)

evaluate the collinearity score on the first model fit
this reports the correlation matrix between coefficients estimates
for fixed effects
the collinearity score is the maximum absolute correlation value

deviation 15

If the collinearity score > .999 then the variance partition
estimates may be problematic
In that case, a least one variable should be omitted
colinearityScore(res[[1]])

deviation Deviation from expectation for each observation

Description

Given a model fit for each features, residuals are computed and transformed based on an absolute
value or squaring transform.

Usage

deviation(fit, method = c("AD", "SQ"), scale = c("leverage", "none"))

S4 method for signature 'MArrayLM'
deviation(fit, method = c("AD", "SQ"), scale = c("leverage", "none"))

Arguments

fit model fit from dream()

method transform the residuals using absolute deviation ("AD") or squared deviation
("SQ").

scale scale each observation by "leverage", or no scaling ("none")

Value

matrix of deviations from expection for each observation

See Also

diffVar()

Examples

library(variancePartition)
library(edgeR)
data(varPartDEdata)

filter genes by number of counts
isexpr <- rowSums(cpm(countMatrix) > 0.1) >= 5

Standard usage of limma/voom
dge <- DGEList(countMatrix[isexpr,])
dge <- calcNormFactors(dge)

16 diffVar

make this vignette faster by analyzing a subset of genes
dge <- dge[1:1000,]

regression formula
form <- ~Disease

estimate precision weights
vobj <- voomWithDreamWeights(dge, form, metadata)

fit dream model
fit <- dream(vobj, form, metadata)
fit <- eBayes(fit)

Compute deviation from expection for each observation
using model residuals
z <- deviation(fit)
z[1:4, 1:4]

diffVar Test differential variance

Description

Test the association between a covariate of interest and the response’s deviation from expectation.

Usage

diffVar(
fit,
method = c("AD", "SQ"),
scale = c("leverage", "none"),
BPPARAM = SerialParam(),
...

)

S4 method for signature 'MArrayLM'
diffVar(
fit,
method = c("AD", "SQ"),
scale = c("leverage", "none"),
BPPARAM = SerialParam(),
...

)

diffVar 17

Arguments

fit model fit from dream()

method transform the residuals using absolute deviation ("AD") or squared deviation
("SQ").

scale scale each observation by "leverage", or no scaling ("none")

BPPARAM parameters for parallel evaluation

... other parameters passed to dream()

Details

This method performs a test of differential variance between two subsets of the data, in a way that
generalizes to multiple categories, continuous variables and metrics of spread beyond variance. For
the two category test, this method is simular to Levene’s test. This model was adapted from Phipson,
et al (2014), extended to linear mixed models, and adapted to be compatible with dream().

This method is composed of multiple steps where 1) a typical linear (mixed) model is fit with
dream(), 2) residuals are computed and transformed based on an absolute value or squaring trans-
form, 3) a second regression is performed with dream() to test if a variable is associated with in-
creased deviation from expectation. Both regression take advantage of the dream() linear (mixed)
modelling framework followed by empirical Bayes shrinkage that extends the limma::voom()
framework.

Note that diffVar() takes the results of the first regression as a parameter to use as a starting point.

Value

MArrayLM object storing differential results to be passed to topTable()

References

Phipson B, Oshlack A (2014). “DiffVar: a new method for detecting differential variability with
application to methylation in cancer and aging.” Genome biology, 15(9), 1–16.

See Also

missMethyl::diffVar(), car::leveneTest()

Examples

library(variancePartition)
library(edgeR)
data(varPartDEdata)

filter genes by number of counts
isexpr <- rowSums(cpm(countMatrix) > 0.1) >= 5

Standard usage of limma/voom
dge <- DGEList(countMatrix[isexpr,])
dge <- calcNormFactors(dge)

18 dream

make this vignette faster by analyzing a subset of genes
dge <- dge[1:1000,]

regression formula
form <- ~Disease

estimate precision weights
vobj <- voomWithDreamWeights(dge, form, metadata)

fit dream model
fit <- dream(vobj, form, metadata)
fit <- eBayes(fit)

fit differential variance model
res <- diffVar(fit)

extract results for differential variance based on Disease
topTable(res, coef = "Disease1", number = 3)

Box plot of top hit
Since ASCL3 has a negative logFC,
the deviation from expectation is *smaller* in
Disease==1 compared to baseline.
gene <- "ENST00000325884.1 gene=ASCL3"
boxplot(vobj$E[gene,] ~ metadata$Disease, main = gene)

dream Differential expression with linear mixed model

Description

Fit linear mixed model for differential expression and preform hypothesis test on fixed effects as
specified in the contrast matrix L

Usage

dream(
exprObj,
formula,
data,
L,
ddf = c("adaptive", "Satterthwaite", "Kenward-Roger"),
useWeights = TRUE,
control = vpcontrol,
hideErrorsInBackend = FALSE,
REML = TRUE,
BPPARAM = SerialParam(),
...

)

dream 19

Arguments

exprObj matrix of expression data (g genes x n samples), or ExpressionSet, or EList
returned by voom() from the limma package

formula specifies variables for the linear (mixed) model. Must only specify covariates,
since the rows of exprObj are automatically used as a response. e.g.: ~ a + b
+ (1|c) Formulas with only fixed effects also work, and lmFit() followed by
contrasts.fit() are run.

data data.frame with columns corresponding to formula

L contrast matrix specifying a linear combination of fixed effects to test

ddf Specifiy "Satterthwaite" or "Kenward-Roger" method to estimate effective degress
of freedom for hypothesis testing in the linear mixed model. Note that Kenward-
Roger is more accurate, but is *much* slower. Satterthwaite is a good enough
approximation for most datasets. "adaptive" (Default) uses KR for <= 20 sam-
ples.

useWeights if TRUE, analysis uses heteroskedastic error estimates from voom(). Value is
ignored unless exprObj is an EList() from voom() or weightsMatrix is spec-
ified

control control settings for lmer()
hideErrorsInBackend

default FALSE. If TRUE, hide errors in attr(.,"errors") and attr(.,"error.initial")

REML use restricted maximum likelihood to fit linear mixed model. default is TRUE.
See Details.

BPPARAM parameters for parallel evaluation

... Additional arguments for lmer() or lm()

Details

A linear (mixed) model is fit for each gene in exprObj, using formula to specify variables in the
regression (Hoffman and Roussos, 2021). If categorical variables are modeled as random effects
(as is recommended), then a linear mixed model us used. For example if formula is ~ a + b + (1|c),
then the model is

fit <- lmer(exprObj[j,] ~ a + b + (1|c), data=data)

useWeights=TRUE causes weightsMatrix[j,] to be included as weights in the regression model.

Note: Fitting the model for 20,000 genes can be computationally intensive. To accelerate computa-
tion, models can be fit in parallel using BiocParallel to run code in parallel. Parallel processing
must be enabled before calling this function. See below.

The regression model is fit for each gene separately. Samples with missing values in either gene
expression or metadata are omitted by the underlying call to lmer.

Hypothesis tests and degrees of freedom are producted by lmerTest and pbkrtest pacakges

While REML=TRUE is required by lmerTest when ddf=’Kenward-Roger’, ddf=’Satterthwaite’ can
be used with REML as TRUE or FALSE. Since the Kenward-Roger method gave the best power with an
accurate control of false positive rate in our simulations, and since the Satterthwaite method with
REML=TRUE gives p-values that are slightly closer to the Kenward-Roger p-values, REML=TRUE is
the default. See Vignette "3) Theory and practice of random effects and REML"

20 dream

Value

MArrayLM2 object (just like MArrayLM from limma), and the directly estimated p-value (without
eBayes)

References

Hoffman GE, Roussos P (2021). “dream: Powerful differential expression analysis for repeated
measures designs.” Bioinformatics, 37(2), 192–201.

Examples

library(variancePartition)

load simulated data:
geneExpr: matrix of *normalized* gene expression values
info: information/metadata about each sample
data(varPartData)

form <- ~ Batch + (1 | Individual) + (1 | Tissue)

Fit linear mixed model for each gene
run on just 10 genes for time
NOTE: dream() runs on *normalized* data
fit <- dream(geneExpr[1:10,], form, info)
fit <- eBayes(fit)

view top genes
topTable(fit, coef = "Batch2", number = 3)

get contrast matrix testing if the coefficient for Batch3 is
different from coefficient for Batch2
Name this comparison as 'compare_3_2'
The variable of interest must be a fixed effect
L <- makeContrastsDream(form, info, contrasts = c(compare_3_2 = "Batch3 - Batch2"))

plot contrasts
plotContrasts(L)

Fit linear mixed model for each gene
run on just 10 genes for time
fit2 <- dream(geneExpr[1:10,], form, info, L)
fit2 <- eBayes(fit2)

view top genes for this contrast
topTable(fit2, coef = "compare_3_2", number = 3)

Parallel processing using multiple cores with reduced memory usage
param <- SnowParam(4, "SOCK", progressbar = TRUE)
fit3 <- dream(geneExpr[1:10,], form, info, L, BPPARAM = param)
fit3 <- eBayes(fit3)

Fit fixed effect model for each gene

dscchisq 21

Use lmFit in the backend
form <- ~Batch
fit4 <- dream(geneExpr[1:10,], form, info, L)
fit4 <- eBayes(fit4)

view top genes
topTable(fit4, coef = "compare_3_2", number = 3)

Compute residuals using dream
residuals(fit4)[1:4, 1:4]

dscchisq Scaled chi-square

Description

Scaled chi-square density using a gamma distribution

Usage

dscchisq(x, a, b)

Arguments

x vector of quantiles.
a scale
b degrees of freedom

eBayes,MArrayLM2-method

eBayes for MArrayLM2

Description

eBayes for result of linear mixed model for with dream() using residual degrees of freedom ap-
proximated with rdf.merMod()

Usage

S4 method for signature 'MArrayLM2'
eBayes(
fit,
proportion = 0.01,
stdev.coef.lim = c(0.1, 4),
trend = FALSE,
robust = FALSE,
winsor.tail.p = c(0.05, 0.1)

)

22 ESS

Arguments

fit fit

proportion proportion

stdev.coef.lim stdev.coef.lim

trend trend

robust robust

winsor.tail.p winsor.tail.p

Value

results of eBayes using approximated residual degrees of freedom

See Also

dream rdf.merMod

ESS Effective sample size

Description

Compute effective sample size based on correlation structure in linear mixed model

Usage

ESS(fit, method = "full")

S4 method for signature 'lmerMod'
ESS(fit, method = "full")

Arguments

fit model fit from lmer()

method "full" uses the full correlation structure of the model. The "approximate" method
makes the simplifying assumption that the study has a mean of m samples in
each of k groups, and computes m based on the study design. When the study
design is evenly balanced (i.e. the assumption is met), this gives the same results
as the "full" method.

ESS 23

Details

Effective sample size calculations are based on:

Liu, G., and Liang, K. Y. (1997). Sample size calculations for studies with correlated observations.
Biometrics, 53(3), 937-47.

"full" method: if

Vx = var(Y ;x)

is the variance-covariance matrix of Y, the response, based on the covariate x, then the effective
sample size corresponding to this covariate is

Σi,j(V
−1
x)i,j

. In R notation, this is: sum(solve(V_x)). In practice, this can be evaluted as sum(w), where R

"approximate" method: Letting m be the mean number of samples per group,

k

be the number of groups, and

ρ

be the intraclass correlation, the effective sample size is

mk/(1 + ρ(m− 1))

Note that these values are equal when there are exactly m samples in each group. If m is only an
average then this an approximation.

Value

effective sample size for each random effect in the model

Examples

library(lme4)
data(varPartData)

Linear mixed model
fit <- lmer(geneExpr[1,] ~ (1 | Individual) + (1 | Tissue) + Age, info)

Effective sample size
ESS(fit)

24 extractVarPart

extractVarPart Extract variance statistics

Description

Extract variance statistics from list of models fit with lm() or lmer()

Usage

extractVarPart(modelList, ...)

Arguments

modelList list of lmer() model fits

... other arguments

Value

data.frame of fraction of variance explained by each variable, after correcting for all others.

Examples

library(variancePartition)

library(BiocParallel)

load simulated data:
geneExpr: matrix of gene expression values
info: information/metadata about each sample
data(varPartData)

Specify variables to consider
Age is continuous so we model it as a fixed effect
Individual and Tissue are both categorical, so we model them as random effects
form <- ~ Age + (1 | Individual) + (1 | Tissue)

Step 1: fit linear mixed model on gene expresson
If categoritical variables are specified, a linear mixed model is used
If all variables are modeled as continuous, a linear model is used
each entry in results is a regression model fit on a single gene
Step 2: extract variance fractions from each model fit
for each gene, returns fraction of variation attributable to each variable
Interpretation: the variance explained by each variable
after correction for all other variables
varPart <- fitExtractVarPartModel(geneExpr, form, info)

violin plot of contribution of each variable to total variance
plotVarPart(sortCols(varPart))

Advanced:

fitExtractVarPartModel 25

Fit model and extract variance in two separate steps
Step 1: fit model for each gene, store model fit for each gene in a list
results <- fitVarPartModel(geneExpr, form, info)

Step 2: extract variance fractions
varPart <- extractVarPart(results)

fitExtractVarPartModel

Fit linear (mixed) model, report variance fractions

Description

Fit linear (mixed) model to estimate contribution of multiple sources of variation while simultane-
ously correcting for all other variables. Report fraction of variance attributable to each variable

Usage

fitExtractVarPartModel(
exprObj,
formula,
data,
REML = FALSE,
useWeights = TRUE,
control = vpcontrol,
hideErrorsInBackend = FALSE,
showWarnings = TRUE,
BPPARAM = SerialParam(),
...

)

S4 method for signature 'matrix'
fitExtractVarPartModel(
exprObj,
formula,
data,
REML = FALSE,
useWeights = TRUE,
control = vpcontrol,
hideErrorsInBackend = FALSE,
showWarnings = TRUE,
BPPARAM = SerialParam(),
...

)

S4 method for signature 'data.frame'

26 fitExtractVarPartModel

fitExtractVarPartModel(
exprObj,
formula,
data,
REML = FALSE,
useWeights = TRUE,
control = vpcontrol,
hideErrorsInBackend = FALSE,
showWarnings = TRUE,
BPPARAM = SerialParam(),
...

)

S4 method for signature 'EList'
fitExtractVarPartModel(
exprObj,
formula,
data,
REML = FALSE,
useWeights = TRUE,
control = vpcontrol,
hideErrorsInBackend = FALSE,
showWarnings = TRUE,
BPPARAM = SerialParam(),
...

)

S4 method for signature 'ExpressionSet'
fitExtractVarPartModel(
exprObj,
formula,
data,
REML = FALSE,
useWeights = TRUE,
control = vpcontrol,
hideErrorsInBackend = FALSE,
showWarnings = TRUE,
BPPARAM = SerialParam(),
...

)

S4 method for signature 'sparseMatrix'
fitExtractVarPartModel(
exprObj,
formula,
data,
REML = FALSE,
useWeights = TRUE,

fitExtractVarPartModel 27

control = vpcontrol,
hideErrorsInBackend = FALSE,
showWarnings = TRUE,
BPPARAM = SerialParam(),
...

)

Arguments

exprObj matrix of expression data (g genes x n samples), or ExpressionSet, or EList
returned by voom() from the limma package

formula specifies variables for the linear (mixed) model. Must only specify covariates,
since the rows of exprObj are automatically used as a response. e.g.: ~ a + b +
(1|c)

data data.frame with columns corresponding to formula

REML use restricted maximum likelihood to fit linear mixed model. default is FALSE.
See Details.

useWeights if TRUE, analysis uses heteroskedastic error estimates from voom(). Value is
ignored unless exprObj is an EList() from voom() or weightsMatrix is spec-
ified

control control settings for lmer()
hideErrorsInBackend

default FALSE. If TRUE, hide errors in attr(.,"errors") and attr(.,"error.initial")

showWarnings default TRUE. Indicate model failures

BPPARAM parameters for parallel evaluation

... Additional arguments for lmer() or lm()

Details

A linear (mixed) model is fit for each gene in exprObj, using formula to specify variables in the
regression. If categorical variables are modeled as random effects (as is recommended), then a
linear mixed model us used. For example if formula is ~ a + b + (1|c), then the model is

fit <- lmer(exprObj[j,] ~ a + b + (1|c), data=data)

If there are no random effects, so formula is ~ a + b + c, a ’standard’ linear model is used:

fit <- lm(exprObj[j,] ~ a + b + c, data=data)

In both cases, useWeights=TRUE causes weightsMatrix[j,] to be included as weights in the
regression model.

Note: Fitting the model for 20,000 genes can be computationally intensive. To accelerate computa-
tion, models can be fit in parallel using BiocParallel to run in parallel. Parallel processing must
be enabled before calling this function. See below.

The regression model is fit for each gene separately. Samples with missing values in either gene
expression or metadata are omitted by the underlying call to lm/lmer.

REML=FALSE uses maximum likelihood to estimate variance fractions. This approach produced un-
biased estimates, while REML=TRUE can show substantial bias. See Vignette "3) Theory and practice
of random effects and REML"

28 fitVarPartModel

Value

list() of where each entry is a model fit produced by lmer() or lm()

Examples

load library
library(variancePartition)

library(BiocParallel)

load simulated data:
geneExpr: matrix of gene expression values
info: information/metadata about each sample
data(varPartData)

Specify variables to consider
Age is continuous so we model it as a fixed effect
Individual and Tissue are both categorical, so we model them as random effects
form <- ~ Age + (1 | Individual) + (1 | Tissue)

Step 1: fit linear mixed model on gene expression
If categorical variables are specified, a linear mixed model is used
If all variables are modeled as continuous, a linear model is used
each entry in results is a regression model fit on a single gene
Step 2: extract variance fractions from each model fit
for each gene, returns fraction of variation attributable to each variable
Interpretation: the variance explained by each variable
after correction for all other variables
varPart <- fitExtractVarPartModel(geneExpr, form, info)

violin plot of contribution of each variable to total variance
plotVarPart(sortCols(varPart))

Note: fitExtractVarPartModel also accepts ExpressionSet
data(sample.ExpressionSet, package = "Biobase")

ExpressionSet example
form <- ~ (1 | sex) + (1 | type) + score
info2 <- Biobase::pData(sample.ExpressionSet)
varPart2 <- fitExtractVarPartModel(sample.ExpressionSet, form, info2)

fitVarPartModel Fit linear (mixed) model

Description

Fit linear (mixed) model to estimate contribution of multiple sources of variation while simultane-
ously correcting for all other variables.

fitVarPartModel 29

Usage

fitVarPartModel(
exprObj,
formula,
data,
REML = FALSE,
useWeights = TRUE,
fxn = identity,
control = vpcontrol,
hideErrorsInBackend = FALSE,
showWarnings = TRUE,
BPPARAM = SerialParam(),
...

)

S4 method for signature 'matrix'
fitVarPartModel(
exprObj,
formula,
data,
REML = FALSE,
useWeights = TRUE,
fxn = identity,
control = vpcontrol,
hideErrorsInBackend = FALSE,
showWarnings = TRUE,
BPPARAM = SerialParam(),
...

)

S4 method for signature 'data.frame'
fitVarPartModel(
exprObj,
formula,
data,
REML = FALSE,
useWeights = TRUE,
fxn = identity,
control = vpcontrol,
hideErrorsInBackend = FALSE,
showWarnings = TRUE,
BPPARAM = SerialParam(),
...

)

S4 method for signature 'EList'
fitVarPartModel(
exprObj,

30 fitVarPartModel

formula,
data,
REML = FALSE,
useWeights = TRUE,
fxn = identity,
control = vpcontrol,
hideErrorsInBackend = FALSE,
showWarnings = TRUE,
BPPARAM = SerialParam(),
...

)

S4 method for signature 'ExpressionSet'
fitVarPartModel(
exprObj,
formula,
data,
REML = FALSE,
useWeights = TRUE,
fxn = identity,
control = vpcontrol,
hideErrorsInBackend = FALSE,
showWarnings = TRUE,
BPPARAM = SerialParam(),
...

)

S4 method for signature 'sparseMatrix'
fitVarPartModel(
exprObj,
formula,
data,
REML = FALSE,
useWeights = TRUE,
fxn = identity,
control = vpcontrol,
hideErrorsInBackend = FALSE,
showWarnings = TRUE,
BPPARAM = SerialParam(),
...

)

Arguments

exprObj matrix of expression data (g genes x n samples), or ExpressionSet, or EList
returned by voom() from the limma package

formula specifies variables for the linear (mixed) model. Must only specify covariates,
since the rows of exprObj are automatically used as a response. e.g.: ~ a + b +

fitVarPartModel 31

(1|c)

data data.frame with columns corresponding to formula

REML use restricted maximum likelihood to fit linear mixed model. default is FALSE.
See Details.

useWeights if TRUE, analysis uses heteroskedastic error estimates from voom(). Value is
ignored unless exprObj is an EList() from voom() or weightsMatrix is spec-
ified

fxn apply function to model fit for each gene. Defaults to identify function so it
returns the model fit itself

control control settings for lmer()

hideErrorsInBackend

default FALSE. If TRUE, hide errors in attr(.,"errors") and attr(.,"error.initial")

showWarnings default TRUE. Indicate model failures

BPPARAM parameters for parallel evaluation

... Additional arguments for lmer() or lm()

Details

A linear (mixed) model is fit for each gene in exprObj, using formula to specify variables in the
regression. If categorical variables are modeled as random effects (as is recommended), then a
linear mixed model us used. For example if formula is ~ a + b + (1|c), then the model is

fit <- lmer(exprObj[j,] ~ a + b + (1|c), data=data)

If there are no random effects, so formula is ~ a + b + c, a ’standard’ linear model is used:

fit <- lm(exprObj[j,] ~ a + b + c, data=data)

In both cases, useWeights=TRUE causes weightsMatrix[j,] to be included as weights in the
regression model.

Note: Fitting the model for 20,000 genes can be computationally intensive. To accelerate computa-
tion, models can be fit in parallel using BiocParallel to run in parallel. Parallel processing must
be enabled before calling this function. See below.

The regression model is fit for each gene separately. Samples with missing values in either gene
expression or metadata are omitted by the underlying call to lm/lmer.

Since this function returns a list of each model fit, using this function is slower and uses more
memory than fitExtractVarPartModel().

REML=FALSE uses maximum likelihood to estimate variance fractions. This approach produced un-
biased estimates, while REML=TRUE can show substantial bias. See Vignette "3) Theory and practice
of random effects and REML"

Value

list() of where each entry is a model fit produced by lmer() or lm()

32 getContrast

Examples

load library
library(variancePartition)

library(BiocParallel)

load simulated data:
geneExpr: matrix of gene expression values
info: information/metadata about each sample
data(varPartData)

Specify variables to consider
Age is continuous so we model it as a fixed effect
Individual and Tissue are both categorical, so we model them as random effects
form <- ~ Age + (1 | Individual) + (1 | Tissue)

Step 1: fit linear mixed model on gene expression
If categorical variables are specified, a linear mixed model is used
If all variables are modeled as continuous, a linear model is used
each entry in results is a regression model fit on a single gene
Step 2: extract variance fractions from each model fit
for each gene, returns fraction of variation attributable to each variable
Interpretation: the variance explained by each variable
after correction for all other variables
varPart <- fitExtractVarPartModel(geneExpr, form, info)

violin plot of contribution of each variable to total variance
also sort columns
plotVarPart(sortCols(varPart))

Advanced:
Fit model and extract variance in two separate steps
Step 1: fit model for each gene, store model fit for each gene in a list
results <- fitVarPartModel(geneExpr, form, info)

Step 2: extract variance fractions
varPart <- extractVarPart(results)

Note: fitVarPartModel also accepts ExpressionSet
data(sample.ExpressionSet, package = "Biobase")

ExpressionSet example
form <- ~ (1 | sex) + (1 | type) + score
info2 <- Biobase::pData(sample.ExpressionSet)
results2 <- fitVarPartModel(sample.ExpressionSet, form, info2)

getContrast Extract contrast matrix for linear mixed model

getContrast 33

Description

Extract contrast matrix, L, testing a single variable. Contrasts involving more than one variable can
be constructed by modifying L directly

Usage

getContrast(exprObj, formula, data, coefficient)

Arguments

exprObj matrix of expression data (g genes x n samples), or ExpressionSet, or EList
returned by voom() from the limma package

formula specifies variables for the linear (mixed) model. Must only specify covariates,
since the rows of exprObj are automatically used as a response. e.g.: ~ a + b +
(1|c) Formulas with only fixed effects also work

data data.frame with columns corresponding to formula

coefficient the coefficient to use in the hypothesis test

Value

Contrast matrix testing one variable

Examples

load simulated data:
geneExpr: matrix of gene expression values
info: information/metadata about each sample
data(varPartData)

get contrast matrix testing if the coefficient for Batch2 is zero
The variable of interest must be a fixed effect
form <- ~ Batch + (1 | Individual) + (1 | Tissue)
L <- getContrast(geneExpr, form, info, "Batch3")

get contrast matrix testing if Batch3 - Batch2 = 0
form <- ~ Batch + (1 | Individual) + (1 | Tissue)
L <- getContrast(geneExpr, form, info, c("Batch3", "Batch2"))

To test against Batch1 use the formula:
~ 0 + Batch + (1|Individual) + (1|Tissue)
to estimate Batch1 directly instead of using it as the baseline

34 getTreat

getTreat Test if coefficient is different from a specified value

Description

Test if coefficient is different from a specified value

Usage

getTreat(fit, lfc = log2(1.2), coef = 1, number = 10, sort.by = "p")

S4 method for signature 'MArrayLM'
getTreat(fit, lfc = log2(1.2), coef = 1, number = 10, sort.by = "p")

S4 method for signature 'MArrayLM2'
getTreat(fit, lfc = log2(1.2), coef = 1, number = 10, sort.by = "p")

Arguments

fit fit

lfc a minimum log2-fold-change below which changes not considered scientifically
meaningful

coef which coefficient to test

number number of genes to return

sort.by column to sort by

Value

results of getTreat

Examples

data(varPartData)

form <- ~ Age + Batch + (1 | Individual) + (1 | Tissue)

fit <- dream(geneExpr, form, info)
fit <- eBayes(fit)

coef <- "Age"

Evaluate treat()/topTreat() in a way that works seamlessly for dream()
getTreat(fit, lfc = log2(1.03), coef, sort.by = "none", number = 3)

get_prediction 35

get_prediction Compute predicted value of formula for linear (mixed) model

Description

Compute predicted value of formula for linear (mixed) model for with lm or lmer

Usage

get_prediction(fit, formula)

S4 method for signature 'lmerMod'
get_prediction(fit, formula)

S4 method for signature 'lm'
get_prediction(fit, formula)

Arguments

fit model fit with lm or lmer

formula formula of fixed and random effects to predict

Details

Similar motivation as lme4:::predict.merMod(), but that function cannot use just a subset of the
fixed effects: it either uses none or all. Note that the intercept is included in the formula by default.
To exclude it from the prediction use ~ 0 + ... syntax

Value

Predicted values from formula using parameter estimates from fit linear (mixed) model

Examples

library(lme4)

Linear model
fit <- lm(Reaction ~ Days, sleepstudy)

prediction of intercept
get_prediction(fit, ~1)

prediction of Days without intercept
get_prediction(fit, ~ 0 + Days)

Linear mixed model

fit model

36 hatvalues,MArrayLM-method

fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)

predict Days, but exclude intercept
get_prediction(fm1, ~ 0 + Days)

predict Days and (Days | Subject) random effect, but exclude intercept
get_prediction(fm1, ~ 0 + Days + (Days | Subject))

ggColorHue Default colors for ggplot

Description

Return an array of n colors the same as the default used by ggplot2

Usage

ggColorHue(n)

Arguments

n number of colors

Value

array of colors of length n

Examples

ggColorHue(4)

hatvalues,MArrayLM-method

Compute hatvalues

Description

Compute hatvalues from dream fit

Usage

S4 method for signature 'MArrayLM'
hatvalues(model, vobj, ...)

S4 method for signature 'MArrayLM2'
hatvalues(model, ...)

isRunableFormula 37

Arguments

model model fit from dream()

vobj EList returned by voom() or voomWithDreamWeights().

... other arguments, currently ignored

isRunableFormula Test if formula is full rank on this dataset

Description

Test if formula is full rank on this dataset

Usage

isRunableFormula(exprObj, formula, data)

Arguments

exprObj expression object

formula formula

data data

logLik.MArrayLM Log-likelihood from model fit

Description

Log-likelihood from model fit

Usage

S3 method for class 'MArrayLM'
logLik(object, vobj, ...)

Arguments

object result of lmFit() or dream()

vobj EList used to fit model

... See ?stats::logLik

38 makeContrastsDream

logLik.MArrayLM2 Log-likelihood from model fit

Description

Log-likelihood from model fit

Usage

S3 method for class 'MArrayLM2'
logLik(object, ...)

Arguments

object result of lmFit() or dream()

... See ?stats::logLik

makeContrastsDream Construct Matrix of Custom Contrasts

Description

Construct the contrast matrix corresponding to specified contrasts of a set of parameters. Each
specified set of contrast weights must sum to 1.

Usage

makeContrastsDream(
formula,
data,
...,
contrasts = NULL,
suppressWarnings = FALSE,
nullOnError = FALSE

)

Arguments

formula specifies variables for the linear (mixed) model. Must only specify covariates,
since the rows of exprObj are automatically used as a response. e.g.: ~ a + b +
(1|c) Formulas with only fixed effects also work

data data.frame with columns corresponding to formula

... expressions, or character strings which can be parsed to expressions, specifying
contrasts

makeContrastsDream 39

contrasts character vector specifying contrasts
suppressWarnings

(default FALSE). suppress warnings for univariate contrasts

nullOnError (default FALSE). When a contrast entry is invalid, throw warning and return
NULL for that contrast entry

Details

This function expresses contrasts between a set of parameters as a numeric matrix. The parameters
are usually the coefficients from a linear (mixed) model fit, so the matrix specifies which compar-
isons between the coefficients are to be extracted from the fit. The output from this function is
usually used as input to dream().

This function creates a matrix storing the contrasts weights that are applied to each coefficient.

Consider a variable v with levels c('A', 'B', 'C'). A contrast comparing A and B is 'vA - vB'
and tests whether the difference between these levels is different than zero. Coded for the 3 levels
this has weights c(1, -1, 0). In order to compare A to the other levels, the contrast is 'vA - (vB
+ vC)/2' so that A is compared to the average of the other two levels. This is encoded as c(1,
-0.5, -0.5). This type of proper matching in testing multiple levels is enforced by ensuring that
the contrast weights sum to 1. Based on standard regression theory only weighted sums of the
estimated coefficients are supported.

This function is inspired by limma::makeContrasts() but is designed to be compatible with linear
mixed models for dream()

Names in ... and contrasts will be used as column names in the returned value.

Value

matrix of linear contrasts between regression coefficients

See Also

plotContrasts()

Examples

load library
library(variancePartition)

library(BiocParallel)

load simulated data:
geneExpr: matrix of gene expression values
info: information/metadata about each sample
data(varPartData)

form <- ~ 0 + Batch + (1 | Individual) + (1 | Tissue)

Define contrasts
Note that for each contrass, the weights sum to 1
L <- makeContrastsDream(form, info, contrasts = c(Batch1_vs_2 = "Batch1 - Batch2", Batch3_vs_4 = "Batch3 - Batch4", Batch1_vs_34 = "Batch1 - (Batch3 + Batch4)/2"))

40 mvTest

show contrasts matrix
L

Plot to visualize contrasts matrix
plotContrasts(L)

Fit linear mixed model for each gene
run on just 10 genes for time
fit <- dream(geneExpr[1:10,], form, info, L = L)

examine contrasts after fitting
head(coef(fit))

show results from first contrast
topTable(fit, coef = "Batch1_vs_2")

show results from second contrast
topTable(fit, coef = "Batch3_vs_4")

show results from third contrast
topTable(fit, coef = "Batch1_vs_34")

MArrayLM2-class Class MArrayLM2

Description

Class MArrayLM2

mvTest Multivariate tests on results from dream()

Description

Evaluate multivariate tests on results from dream() using vcov() to compute the covariance be-
tween estimated regression coefficients across multiple responses. A joint test to see if the coeffi-
cients are jointly different from zero is performed using meta-analysis methods that account for the
covariance.

Usage

mvTest(
fit,
vobj,
features,

mvTest 41

coef,
method = c("FE.empirical", "FE", "RE2C", "tstat", "hotelling", "sidak", "fisher"),
shrink.cov = TRUE,
BPPARAM = SerialParam(),
...

)

S4 method for signature 'MArrayLM,EList,vector'
mvTest(
fit,
vobj,
features,
coef,
method = c("FE.empirical", "FE", "RE2C", "tstat", "hotelling", "sidak", "fisher"),
shrink.cov = TRUE,
BPPARAM = SerialParam(),
...

)

S4 method for signature 'MArrayLM,EList,missing'
mvTest(
fit,
vobj,
features,
coef,
method = c("FE.empirical", "FE", "RE2C", "tstat", "hotelling", "sidak", "fisher"),
shrink.cov = TRUE,
BPPARAM = SerialParam(),
...

)

S4 method for signature 'MArrayLM,EList,list'
mvTest(
fit,
vobj,
features,
coef,
method = c("FE.empirical", "FE", "RE2C", "tstat", "hotelling", "sidak", "fisher"),
shrink.cov = TRUE,
BPPARAM = SerialParam(),
...

)

S4 method for signature 'mvTest_input,ANY,ANY'
mvTest(
fit,
vobj,
features,

42 mvTest

coef,
method = c("FE.empirical", "FE", "RE2C", "tstat", "hotelling", "sidak", "fisher"),
shrink.cov = TRUE,
BPPARAM = SerialParam(),
...

)

S4 method for signature 'MArrayLM,matrix,ANY'
mvTest(
fit,
vobj,
features,
coef,
method = c("FE.empirical", "FE", "RE2C", "tstat", "hotelling", "sidak", "fisher"),
shrink.cov = TRUE,
BPPARAM = SerialParam(),
...

)

Arguments

fit MArrayLM or MArrayLM2 returned by dream()

vobj matrix or EList object returned by voom()

features a) indeces or names of features to perform multivariate test on, b) list of indeces
or names. If missing, perform joint test on all features.

coef name of coefficient or contrast to be tested

method statistical method used to perform multivariate test. See details. 'FE' is a fixed
effect test that models the covariance between coefficients. 'FE.empirical'
use compute empirical p-values by sampling from the null distribution and fit-
ting with a gamma. 'RE2C' is a random effect test of heterogeneity of the es-
timated coefficients that models the covariance between coefficients, and also
incorporates a fixed effects test too. 'tstat' combines the t-statistics and mod-
els the covariance between coefficients. 'hotelling' performs the Hotelling
T2 test. 'sidak' returns the smallest p-value and accounting for the number of
tests. 'fisher' combines the p-value using Fisher’s method assuming indepen-
dent tests.

shrink.cov shrink the covariance matrix between coefficients using the Schafer-Strimmer
method

BPPARAM parameters for parallel evaluation

... other arugments

Details

See package remaCor for details about the remaCor::RE2C() test, and see remaCor::LS() for
details about the fixed effect test. When only 1 feature is selected, the original p-value is returned
and the test statistic is set to NA.

mvTest_input-class 43

For the "RE2C" test, the final test statistic is the sum of a test statistic for the mean effect (stat.FE)
and heterogeneity across effects (stat.het). mvTest() returns 0 if stat.het is negative in ex-
tremely rare cases.

Value

Returns a data.frame with the statistics from each test, the pvalue from the test, n_features,
method, and lambda from the Schafer-Strimmer method to shrink the estimated covariance. When
shrink.cov=FALSE, lambda = 0.

Examples

library(variancePartition)
library(edgeR)
library(BiocParallel)

data(varPartDEdata)

normalize RNA-seq counts
dge <- DGEList(counts = countMatrix)
dge <- calcNormFactors(dge)

specify formula with random effect for Individual
form <- ~ Disease + (1 | Individual)

compute observation weights
vobj <- voomWithDreamWeights(dge[1:20,], form, metadata)

fit dream model
fit <- dream(vobj, form, metadata)
fit <- eBayes(fit)

Multivariate test of features 1 and 2
mvTest(fit, vobj, 1:2, coef = "Disease1")

Test multiple sets of features
lst <- list(a = 1:2, b = 3:4)
mvTest(fit, vobj, lst, coef = "Disease1", BPPARAM = SnowParam(2))

mvTest_input-class Class mvTest_input

Description

Class mvTest_input work is with iterRowsSplit()

44 plotCompareP

plotCompareP Compare p-values from two analyses

Description

Plot -log10 p-values from two analyses and color based on donor component from variancePartition
analysis

Usage

plotCompareP(
p1,
p2,
vpDonor,
dupcorvalue,
fraction = 0.2,
xlabel = bquote(duplicateCorrelation ~ (-log[10] ~ p)),
ylabel = bquote(dream ~ (-log[10] ~ p))

)

Arguments

p1 p-value from first analysis

p2 p-value from second analysis

vpDonor donor component for each gene from variancePartition analysis

dupcorvalue scalar donor component from duplicateCorrelation

fraction fraction of highest/lowest values to use for best fit lines

xlabel for x-axis

ylabel label for y-axis

Value

ggplot2 plot

Examples

load library
library(variancePartition)

library(BiocParallel)

load simulated data:
geneExpr: matrix of gene expression values
info: information/metadata about each sample
data(varPartData)

plotContrasts 45

Perform very simple analysis for demonstration

Analysis 1
form <- ~Batch
fit <- dream(geneExpr, form, info)
fit <- eBayes(fit)
res <- topTable(fit, number = Inf, coef = "Batch3")

Analysis 2
form <- ~ Batch + (1 | Tissue)
fit2 <- dream(geneExpr, form, info)
res2 <- topTable(fit2, number = Inf, coef = "Batch3")

Compare p-values
plotCompareP(res$P.Value, res2$P.Value, runif(nrow(res)), .3)

plotContrasts Plot representation of contrast matrix

Description

Plot contrast matrix to clarify interpretation of hypothesis tests with linear contrasts

Usage

plotContrasts(L)

Arguments

L contrast matrix

Details

This plot shows the contrasts weights that are applied to each coefficient.

Consider a variable v with levels c('A', 'B', 'C'). A contrast comparing A and B is 'vA - vB'
and tests whether the difference between these levels is different than zero. Coded for the 3 levels
this has weights c(1, -1, 0). In order to compare A to the other levels, the contrast is 'vA - (vB
+ vC)/2' so that A is compared to the average of the other two levels. This is encoded as c(1,
-0.5, -0.5). This type of proper matching in testing multiple levels is enforced by ensuring that
the contrast weights sum to 1. Based on standard regression theory only weighted sums of the
estimated coefficients are supported.

Value

ggplot2 object

46 plotCorrMatrix

See Also

makeContrastsDream()

Examples

load library
library(variancePartition)

load simulated data:
geneExpr: matrix of gene expression values
info: information/metadata about each sample
data(varPartData)

1) get contrast matrix testing if the coefficient for Batch2 is different from Batch3
form <- ~ Batch + (1 | Individual) + (1 | Tissue)
L <- makeContrastsDream(form, info, contrasts = c(Batch_3_vs_2 = "Batch3 - Batch2"))

plot contrasts
plotContrasts(L)

plotCorrMatrix plotCorrMatrix

Description

Plot correlation matrix

Usage

plotCorrMatrix(
C,
dendrogram = "both",
sort = TRUE,
margins = c(13, 13),
key.xlab = "correlation",
...

)

Arguments

C correlation matrix: R or R^2 matrix

dendrogram character string indicating whether to draw ’both’ or none’

sort sort rows and columns based on clustering

margins spacing of plot

key.xlab label of color gradient

... additional arguments to heatmap.2

plotCorrStructure 47

Details

Plots image of correlation matrix using customized call to heatmap.2

Value

Image of correlation matrix

Examples

simulate simple matrix of 10 variables
mat <- matrix(rnorm(1000), ncol = 10)

compute correlation matrix
C <- cor(mat)

plot correlations
plotCorrMatrix(C)

plot squared correlations
plotCorrMatrix(C^2, dendrogram = "none")

plotCorrStructure plotCorrStructure

Description

Plot correlation structure of a gene based on random effects

Usage

plotCorrStructure(
fit,
varNames = names(coef(fit)),
reorder = TRUE,
pal = colorRampPalette(c("white", "red", "darkred")),
hclust.method = "complete"

)

Arguments

fit linear mixed model fit of a gene produced by lmer() or fitVarPartModel()
varNames variables in the metadata for which the correlation structure should be shown.

Variables must be random effects
reorder how to reorder the rows/columns of the correlation matrix. reorder=FALSE

gives no reorder. reorder=TRUE reorders based on hclust. reorder can also be
an array of indices to reorder the samples manually

pal color palette
hclust.method clustering methods for hclust

48 plotPercentBars

Value

Image of correlation structure between each pair of experiments for a single gene

Examples

load library
library(variancePartition)

library(BiocParallel)

load simulated data:
data(varPartData)

specify formula
form <- ~ Age + (1 | Individual) + (1 | Tissue)

fit and return linear mixed models for each gene
fitList <- fitVarPartModel(geneExpr[1:10,], form, info)

Focus on the first gene
fit <- fitList[[1]]

plot correlation sturcture based on Individual, reordering samples with hclust
plotCorrStructure(fit, "Individual")

don't reorder
plotCorrStructure(fit, "Individual", reorder = FALSE)

plot correlation sturcture based on Tissue, reordering samples with hclust
plotCorrStructure(fit, "Tissue")

don't reorder
plotCorrStructure(fit, "Tissue", FALSE)

plot correlation structure based on all random effects
reorder manually by Tissue and Individual
idx <- order(info$Tissue, info$Individual)
plotCorrStructure(fit, reorder = idx)

plot correlation structure based on all random effects
reorder manually by Individual, then Tissue
idx <- order(info$Individual, info$Tissue)
plotCorrStructure(fit, reorder = idx)

plotPercentBars Bar plot of gene fractions

Description

Bar plot of fractions for a subset of genes

plotPercentBars 49

Usage

plotPercentBars(
x,
col = c(ggColorHue(ncol(x) - 1), "grey85"),
genes = rownames(x),
width = NULL,
...

)

S4 method for signature 'matrix'
plotPercentBars(
x,
col = c(ggColorHue(ncol(x) - 1), "grey85"),
genes = rownames(x),
width = NULL,
...

)

S4 method for signature 'data.frame'
plotPercentBars(
x,
col = c(ggColorHue(ncol(x) - 1), "grey85"),
genes = rownames(x),
width = NULL,
...

)

S4 method for signature 'varPartResults'
plotPercentBars(
x,
col = c(ggColorHue(ncol(x) - 1), "grey85"),
genes = rownames(x),
width = NULL,
...

)

Arguments

x object storing fractions

col color of bars for each variable

genes name of genes to plot

width specify width of bars

... other arguments

Value

Returns ggplot2 barplot

50 plotStratify

Examples

library(variancePartition)

library(BiocParallel)

load simulated data:
geneExpr: matrix of gene expression values
info: information/metadata about each sample
data(varPartData)

Specify variables to consider
form <- ~ Age + (1 | Individual) + (1 | Tissue)

Fit model
varPart <- fitExtractVarPartModel(geneExpr, form, info)

Bar plot for a subset of genes showing variance fractions
plotPercentBars(varPart[1:5,])

Move the legend to the top
plotPercentBars(varPart[1:5,]) + theme(legend.position = "top")

plotStratify plotStratify

Description

Plot gene expression stratified by another variable

Usage

plotStratify(
formula,
data,
xlab,
ylab,
main,
sortBy,
colorBy,
sort = TRUE,
text = NULL,
text.y = 1,
text.size = 5,
pts.cex = 1,
ylim = NULL,
legend = TRUE,
x.labels = FALSE

)

plotStratify 51

Arguments

formula specify variables shown in the x- and y-axes. Y-axis should be continuous vari-
able, x-axis should be discrete.

data data.frame storing continuous and discrete variables specified in formula

xlab label x-asis. Defaults to value of xval

ylab label y-asis. Defaults to value of yval

main main label

sortBy name of column in geneExpr to sort samples by. Defaults to xval

colorBy name of column in geneExpr to color box plots. Defaults to xval

sort if TRUE, sort boxplots by median value, else use default ordering

text plot text on the top left of the plot

text.y indicate position of the text on the y-axis as a fraction of the y-axis range

text.size size of text

pts.cex size of points

ylim specify range of y-axis

legend show legend

x.labels show x axis labels

Value

ggplot2 object

Examples

Note: This is a newer, more convient interface to plotStratifyBy()

load library
library(variancePartition)

load simulated data:
data(varPartData)

Create data.frame with expression and Tissue information for each sample
GE <- data.frame(Expression = geneExpr[1,], Tissue = info$Tissue)

Plot expression stratified by Tissue
plotStratify(Expression ~ Tissue, GE)

Omit legend and color boxes grey
plotStratify(Expression ~ Tissue, GE, colorBy = NULL)

Specify colors
col <- c(B = "green", A = "red", C = "yellow")
plotStratify(Expression ~ Tissue, GE, colorBy = col, sort = FALSE)

52 plotStratifyBy

plotStratifyBy plotStratifyBy

Description

Plot gene expression stratified by another variable

Usage

plotStratifyBy(
geneExpr,
xval,
yval,
xlab = xval,
ylab = yval,
main = NULL,
sortBy = xval,
colorBy = xval,
sort = TRUE,
text = NULL,
text.y = 1,
text.size = 5,
pts.cex = 1,
ylim = NULL,
legend = TRUE,
x.labels = FALSE

)

Arguments

geneExpr data.frame of gene expression values and another variable for each sample. If
there are multiple columns, the user can specify which one to use

xval name of column in geneExpr to be used along x-axis to stratify gene expression

yval name of column in geneExpr indicating gene expression

xlab label x-asis. Defaults to value of xval

ylab label y-asis. Defaults to value of yval

main main label

sortBy name of column in geneExpr to sort samples by. Defaults to xval

colorBy name of column in geneExpr to color box plots. Defaults to xval

sort if TRUE, sort boxplots by median value, else use default ordering

text plot text on the top left of the plot

text.y indicate position of the text on the y-axis as a fraction of the y-axis range

text.size size of text

plotVarianceEstimates 53

pts.cex size of points

ylim specify range of y-axis

legend show legend

x.labels show x axis labels

Value

ggplot2 object

Examples

load library
library(variancePartition)

load simulated data:
data(varPartData)

Create data.frame with expression and Tissue information for each sample
GE <- data.frame(Expression = geneExpr[1,], Tissue = info$Tissue)

Plot expression stratified by Tissue
plotStratifyBy(GE, "Tissue", "Expression")

Omit legend and color boxes grey
plotStratifyBy(GE, "Tissue", "Expression", colorBy = NULL)

Specify colors
col <- c(B = "green", A = "red", C = "yellow")
plotStratifyBy(GE, "Tissue", "Expression", colorBy = col, sort = FALSE)

plotVarianceEstimates Plot Variance Estimates

Description

Plot Variance Estimates

Usage

plotVarianceEstimates(
fit,
fitEB,
var_true = NULL,
xmax = quantile(fit$sigma^2, 0.999)

)

54 plotVarPart

Arguments

fit model fit from dream()

fitEB model fit from eBayes()

var_true array of true variance values from simulation (optional)

xmax maximum value on the x-axis

plotVarPart Violin plot of variance fractions

Description

Violin plot of variance fraction for each gene and each variable

Usage

plotVarPart(
obj,
col = c(ggColorHue(ncol(obj) - 1), "grey85"),
label.angle = 20,
main = "",
ylab = "",
convertToPercent = TRUE,
...

)

S4 method for signature 'matrix'
plotVarPart(
obj,
col = c(ggColorHue(ncol(obj) - 1), "grey85"),
label.angle = 20,
main = "",
ylab = "",
convertToPercent = TRUE,
...

)

S4 method for signature 'data.frame'
plotVarPart(
obj,
col = c(ggColorHue(ncol(obj) - 1), "grey85"),
label.angle = 20,
main = "",
ylab = "",
convertToPercent = TRUE,
...

plotVarPart 55

)

S4 method for signature 'varPartResults'
plotVarPart(
obj,
col = c(ggColorHue(ncol(obj) - 1), "grey85"),
label.angle = 20,
main = "",
ylab = "",
convertToPercent = TRUE,
...

)

Arguments

obj varParFrac object returned by fitExtractVarPart or extractVarPart

col vector of colors

label.angle angle of labels on x-axis

main title of plot

ylab text on y-axis
convertToPercent

multiply fractions by 100 to convert to percent values

... additional arguments

Value

Makes violin plots of variance components model. This function uses the graphics interface from
ggplot2. Warnings produced by this function usually ggplot2 warning that the window is too small.

Examples

load library
library(variancePartition)

library(BiocParallel)

load simulated data:
geneExpr: matrix of gene expression values
info: information/metadata about each sample
data(varPartData)

Specify variables to consider
Age is continuous so we model it as a fixed effect
Individual and Tissue are both categorical, so we model them as random effects
form <- ~ Age + (1 | Individual) + (1 | Tissue)

varPart <- fitExtractVarPartModel(geneExpr, form, info)

violin plot of contribution of each variable to total variance

56 rdf.merMod

plotVarPart(sortCols(varPart))

rdf Residual degrees of freedom

Description

Residual degrees of freedom

Usage

rdf(fit)

Arguments

fit model fit from lm(), glm(), lmer()

See Also

rdf.merMod

Examples

library(lme4)

fit <- lm(Reaction ~ Days, sleepstudy)
rdf(fit)

rdf.merMod Approximate residual degrees of freedom

Description

For a linear model with n samples and p covariates, RSS/σ2 ∼ χ2
ν where ν = n− p is the residual

degrees of freedom. In the case of a linear mixed model, the distribution is no longer exactly a
chi-square distribution, but can be approximated with a chi-square distribution.

Given the hat matrix, H , that maps between observed and fitted responses, the approximate residual
degrees of freedom is ν = tr((I − H)T (I − H)). For a linear model, this simplifies to the well
known form ν = n − p. In the more general case, such as a linear mixed model, the original form
simplifies only to n−2tr(H)+ tr(HH) and is an approximation rather than being exact. The third
term here is quadratic time in the number of samples, n, and can be computationally expensive to
evaluate for larger datasets. Here we develop a linear time algorithm that takes advantage of the fact
that H is low rank.

H is computed as ATA+BTB for A=CL and B=CR defined in the code. Since A and B are low rank,
there is no need to compute H directly. Instead, the terms tr(H) and tr(HH) can be computed
using the eigen decompositions of AAT and BBT which is linear time in the number of samples.

rdf_from_matrices 57

Usage

rdf.merMod(model, method = c("linear", "quadratic"))

Arguments

model An object of class merMod

method Use algorithm that is "linear" (default) or quadratic time in the number of sam-
ples

Details

Compute the approximate residual degrees of freedom from a linear mixed model.

Value

residual degrees of freedom

See Also

rdf_from_matrices

Examples

library(lme4)

Fit linear mixed model
fit <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)

Evaluate the approximate residual degrees of freedom
rdf.merMod(fit)

rdf_from_matrices Fast approximate residual degrees of freedom

Description

Defining H = ATA + BTB where A and B are low rank, compute n − 2tr(H) + tr(HH) in
O(np2) instead of O(n2p2).

Usage

rdf_from_matrices(A, B)

Arguments

A a matrix or sparseMatrix

B a matrix or sparseMatrix

58 residuals,MArrayLM-method

See Also

rdf.merMod

reOnly Adapted from lme4:::reOnly

Description

Adapted from lme4:::reOnly

Usage

reOnly(f, response = FALSE)

Arguments

f formula

response (FALSE) is there a response in the formula

residuals,MArrayLM-method

residuals for MArrayLM

Description

residuals for MArrayLM

Usage

S4 method for signature 'MArrayLM'
residuals(object, y, ..., type = c("response", "pearson"))

Arguments

object MArrayLM object from dream

y EList object used in dream()

... other arguments, currently ignored

type compute either response or pearson residuals

Value

results of residuals

residuals,MArrayLM2-method 59

residuals,MArrayLM2-method

residuals for MArrayLM2

Description

residuals for MArrayLM2

Usage

S4 method for signature 'MArrayLM2'
residuals(object, y, type = c("response", "pearson"), ...)

Arguments

object MArrayLM2 object from dream

y EList object used in dream()

type compute either response or pearson residuals

... other arguments, currently ignored

Value

results of residuals

residuals,VarParFitList-method

Residuals from model fit

Description

Extract residuals for each gene from model fit with fitVarPartModel()

Usage

S4 method for signature 'VarParFitList'
residuals(object, ...)

Arguments

object object produced by fitVarPartModel()

... other arguments.

Details

If model is fit with missing data, residuals returns NA for entries that were missing in the original
data

60 residuals.MArrayLM2

Value

Residuals extracted from model fits stored in object

Examples

load library
library(variancePartition)

library(BiocParallel)

load simulated data:
geneExpr: matrix of gene expression values
info: information/metadata about each sample
data(varPartData)

Specify variables to consider
Age is continuous so we model it as a fixed effect
Individual and Tissue are both categorical, so we model them as random effects
form <- ~ Age + (1 | Individual) + (1 | Tissue)

Fit model
modelFit <- fitVarPartModel(geneExpr, form, info)

Extract residuals of model fit
res <- residuals(modelFit)

residuals.MArrayLM2 Residuals for result of dream

Description

Residuals for result of dream

Usage

residuals.MArrayLM2(object, y, ..., type = c("response", "pearson"))

Arguments

object See ?stats::residuals

y EList object used in dream()

... See ?stats::residuals

type compute either response or pearson residuals

shrinkageMetric 61

shrinkageMetric Shrinkage metric for eBayes

Description

Evaluates the coefficient from the linear regression of s2.post ~ sigmaSq. When there is no shrink-
age, this value is 1. Values less than 1 indicate the amount of shrinkage.

Usage

shrinkageMetric(sigmaSq, s2.post)

Arguments

sigmaSq maximum likelihood residual variance for every gene

s2.post empirical Bayes posterior estimate of residual variance for every gene

Details

Shrinkage metric for eBayes quantifying the amount of shrinkage that is applied to shrink the max-
imum likelihood residual variance to the empirical Bayes posterior estimate

sortCols Sort variance partition statistics

Description

Sort columns returned by extractVarPart() or fitExtractVarPartModel()

Usage

sortCols(
x,
FUN = median,
decreasing = TRUE,
last = c("Residuals", "Measurement.error"),
...

)

S4 method for signature 'matrix'
sortCols(
x,
FUN = median,
decreasing = TRUE,
last = c("Residuals", "Measurement.error"),

62 sortCols

...
)

S4 method for signature 'data.frame'
sortCols(
x,
FUN = median,
decreasing = TRUE,
last = c("Residuals", "Measurement.error"),
...

)

S4 method for signature 'varPartResults'
sortCols(
x,
FUN = median,
decreasing = TRUE,
last = c("Residuals", "Measurement.error"),
...

)

Arguments

x object returned by extractVarPart() or fitExtractVarPartModel()

FUN function giving summary statistic to sort by. Defaults to median

decreasing logical. Should the sorting be increasing or decreasing?

last columns to be placed on the right, regardless of values in these columns

... other arguments to sort

Value

data.frame with columns sorted by mean value, with Residuals in last column

Examples

library(variancePartition)

library(BiocParallel)

load simulated data:
geneExpr: matrix of gene expression values
info: information/metadata about each sample
data(varPartData)

Specify variables to consider
Age is continuous so we model it as a fixed effect
Individual and Tissue are both categorical, so we model them as random effects
form <- ~ Age + (1 | Individual) + (1 | Tissue)

topTable 63

Step 1: fit linear mixed model on gene expression
If categorical variables are specified, a linear mixed model is used
If all variables are modeled as continuous, a linear model is used
each entry in results is a regression model fit on a single gene
Step 2: extract variance fractions from each model fit
for each gene, returns fraction of variation attributable to each variable
Interpretation: the variance explained by each variable
after correction for all other variables
varPart <- fitExtractVarPartModel(geneExpr, form, info)

violin plot of contribution of each variable to total variance
sort columns by median value
plotVarPart(sortCols(varPart))

topTable Table of Top Genes from Linear Model Fit

Description

topTable generic

topTable generic MArrayLM

topTable generic MArrayLM2

Usage

topTable(
fit,
coef = NULL,
number = 10,
genelist = fit$genes,
adjust.method = "BH",
sort.by = "B",
resort.by = NULL,
p.value = 1,
lfc = 0,
confint = FALSE

)

S4 method for signature 'MArrayLM'
topTable(
fit,
coef = NULL,
number = 10,
genelist = fit$genes,
adjust.method = "BH",
sort.by = "p",

64 VarParCIList-class

resort.by = NULL,
p.value = 1,
lfc = 0,
confint = FALSE

)

S4 method for signature 'MArrayLM2'
topTable(
fit,
coef = NULL,
number = 10,
genelist = fit$genes,
adjust.method = "BH",
sort.by = "p",
resort.by = NULL,
p.value = 1,
lfc = 0,
confint = FALSE

)

Arguments

fit fit
coef coef
number number
genelist genelist
adjust.method adjust.method
sort.by sort.by
resort.by resort.by
p.value p.value
lfc lfc
confint confint

Value

results of toptable

results of toptable

results of toptable

VarParCIList-class Class VarParCIList

Description

Class VarParCIList

VarParFitList-class 65

VarParFitList-class Class VarParFitList

Description

Class VarParFitList

varParFrac-class Class varParFrac

Description

Class varParFrac

varPartConfInf Linear mixed model confidence intervals

Description

Fit linear mixed model to estimate contribution of multiple sources of variation while simultane-
ously correcting for all other variables. Then perform parametric bootstrap sampling to get a 95%
confidence intervals for each variable for each gene.

Usage

varPartConfInf(
exprObj,
formula,
data,
REML = FALSE,
useWeights = TRUE,
control = vpcontrol,
nsim = 1000,
...

)

66 varPartConfInf

Arguments

exprObj matrix of expression data (g genes x n samples), or ExpressionSet, or EList
returned by voom() from the limma package

formula specifies variables for the linear (mixed) model. Must only specify covariates,
since the rows of exprObj are automatically used as a response. e.g.: ~ a + b +
(1|c)

data data.frame with columns corresponding to formula

REML use restricted maximum likelihood to fit linear mixed model. default is FALSE.
Strongly discourage against changing this option, but here for compatibility.

useWeights if TRUE, analysis uses heteroskedastic error estimates from voom(). Value is
ignored unless exprObj is an EList from voom() or weightsMatrix is specified

control control settings for lmer()

nsim number of bootstrap datasets

... Additional arguments for lmer() or lm()

Details

A linear mixed model is fit for each gene, and bootMer() is used to generate parametric bootstrap
confidence intervals. use.u=TRUE is used so that the û values from the random effects are used as
estimated and are not re-sampled. This gives confidence intervals as if additional data were gen-
erated from these same current samples. Conversely, use.u=FALSE assumes that this dataset is a
sample from a larger population. Thus it simulates û based on the estimated variance parameter.
This approach gives confidence intervals as if additional data were collected from the larger popu-
lation from which this dataset is sampled. Overall, use.u=TRUE gives smaller confidence intervals
that are appropriate in this case.

Value

list() of where each entry is the result for a gene. Each entry is a matrix of the 95% confidence
interval of the variance fraction for each variable

Examples

load library
library(variancePartition)

library(BiocParallel)

load simulated data:
geneExpr: matrix of gene expression values
info: information/metadata about each sample
data(varPartData)

Specify variables to consider
Age is continuous so we model it as a fixed effect
Individual and Tissue are both categorical, so we model them as random effects
form <- ~ Age + (1 | Individual) + (1 | Tissue)

varPartData 67

Compute bootstrap confidence intervals for each variable for each gene
resCI <- varPartConfInf(geneExpr[1:5,], form, info, nsim = 100)

varPartData Simulation dataset for examples

Description

A simulated dataset of gene expression and metadata

A simulated dataset of gene counts

A simulated dataset of gene counts

A simulated dataset of gene counts

Usage

data(varPartData)

data(varPartData)

data(varPartData)

data(varPartData)

Format

A dataset of 100 samples and 200 genes

A dataset of 100 samples and 200 genes

A dataset of 100 samples and 200 genes

A dataset of 100 samples and 200 genes

Details

• geneCounts gene expression in the form of RNA-seq counts

• geneExpr gene expression on a continuous scale

• info metadata about the study design

• geneCounts gene expression in the form of RNA-seq counts

• geneExpr gene expression on a continuous scale

• info metadata about the study design

• geneCounts gene expression in the form of RNA-seq counts

• geneExpr gene expression on a continuous scale

• info metadata about the study design

68 varPartResults-class

• geneCounts gene expression in the form of RNA-seq counts

• geneExpr gene expression on a continuous scale

• info metadata about the study design

varPartDEdata A simulated dataset of gene counts

Description

• geneCounts gene expression in the form of RNA-seq counts

• geneExpr gene expression on a continuous scale

• info metadata about the study design

• geneCounts gene expression in the form of RNA-seq counts

• geneExpr gene expression on a continuous scale

• info metadata about the study design

Usage

data(varPartData)

data(varPartData)

Format

A dataset of 24 samples and 19,364 genes

A dataset of 24 samples and 19,364 genes

varPartResults-class Class varPartResults

Description

Class varPartResults

vcov,MArrayLM-method 69

vcov,MArrayLM-method Co-variance matrix for dream() fit

Description

Define generic vcov() for result of lmFit() and dream()

Usage

S4 method for signature 'MArrayLM'
vcov(object, vobj, coef)

Arguments

object MArrayLM object return by lmFit() or dream()

vobj EList object returned by voom()

coef name of coefficient to be extracted

Value

variance-covariance matrix

vcov,MArrayLM2-method Co-variance matrix for dream() fit

Description

Define generic vcov() for result of lmFit() and dream()

Usage

S4 method for signature 'MArrayLM2'
vcov(object, vobj, coef)

Arguments

object MArrayLM object return by lmFit() or dream()

vobj EList object returned by voom()

coef name of coefficient to be extracted

Value

variance-covariance matrix

70 vcovSqrt

vcovSqrt Sqrt of co-variance matrix for dream() fit

Description

Define generic vcovSqrt() for result of lmFit() and dream()

Usage

vcovSqrt(object, vobj, coef, approx = TRUE)

S4 method for signature 'MArrayLM'
vcovSqrt(object, vobj, coef, approx = TRUE)

S4 method for signature 'MArrayLM2'
vcovSqrt(object, vobj, coef, approx = TRUE)

Arguments

object MArrayLM object return by lmFit() or dream()

vobj EList object returned by voom()

coef name of coefficient to be extracted

approx use fast approximation

Value

Computes factor of covariance matrix so that vcov(object) is the same as crossprod(vcovSqrt(object))

Examples

load simulated data:
geneExpr: matrix of *normalized* gene expression values
info: information/metadata about each sample
data(varPartData)

form <- ~Batch

fit <- dream(geneExpr[1:2,], form, info)
fit <- eBayes(fit)

Compute covariance directly
Sigma <- vcov(fit, geneExpr[1:2,])

Compute factor of covariance
S <- crossprod(vcovSqrt(fit, geneExpr[1:2,]))

voomWithDreamWeights 71

voomWithDreamWeights Transform RNA-Seq Data Ready for Linear Mixed Modelling with
dream()

Description

Transform count data to log2-counts per million (logCPM), estimate the mean-variance relationship
and use this to compute appropriate observation-level weights. The data are then ready for linear
mixed modelling with dream(). This method is the same as limma::voom(), except that it allows
random effects in the formula

Usage

voomWithDreamWeights(
counts,
formula,
data,
lib.size = NULL,
normalize.method = "none",
span = 0.5,
weights = NULL,
prior.count = 0.5,
prior.count.for.weights = prior.count,
plot = FALSE,
save.plot = TRUE,
rescaleWeightsAfter = FALSE,
scaledByLib = FALSE,
priorWeightsAsCounts = FALSE,
BPPARAM = SerialParam(),
...

)

Arguments

counts a numeric matrix containing raw counts, or an ExpressionSet containing raw
counts, or a DGEList object. Counts must be non-negative and NAs are not
permitted.

formula specifies variables for the linear (mixed) model. Must only specify covariates,
since the rows of exprObj are automatically used as a response. e.g.: ~ a + b
+ (1|c) Formulas with only fixed effects also work, and lmFit() followed by
contrasts.fit() are run.

data data.frame with columns corresponding to formula

lib.size numeric vector containing total library sizes for each sample. Defaults to the
normalized (effective) library sizes in counts if counts is a DGEList or to the
columnwise count totals if counts is a matrix.

72 voomWithDreamWeights

normalize.method

the microarray-style normalization method to be applied to the logCPM values
(if any). Choices are as for the method argument of normalizeBetweenArrays
when the data is single-channel. Any normalization factors found in counts will
still be used even if normalize.method="none".

span width of the lowess smoothing window as a proportion. Setting span="auto"
uses fANCOVA::loess.as() to estimate the tuning parameter from the data

weights Can be a numeric matrix of individual weights of same dimensions as the counts,
or a numeric vector of sample weights with length equal to ncol(counts)

prior.count average count to be added to each observation to avoid taking log of zero. The
count applied to each sample is normalized by library size so given equal log
CPM for a gene with zero counts across multiple samples

prior.count.for.weights

count added to regularize weights

plot logical, should a plot of the mean-variance trend be displayed?

save.plot logical, should the coordinates and line of the plot be saved in the output?
rescaleWeightsAfter

default = FALSE, should the output weights be scaled by the input weights

scaledByLib if TRUE, scale pseudocount by lib.size. Else to standard constant pseudocount
addition

priorWeightsAsCounts

if weights is NULL, set weights to be equal to counts, following delta method
for log2 CPM

BPPARAM parameters for parallel evaluation

... other arguments are passed to lmer.

Details

Adapted from voom() in limma v3.40.2

Value

An EList object just like the result of limma::voom()

See Also

limma::voom()

Examples

library(variancePartition)
library(edgeR)
library(BiocParallel)

data(varPartDEdata)

normalize RNA-seq counts

[.MArrayLM2 73

dge <- DGEList(counts = countMatrix)
dge <- calcNormFactors(dge)

specify formula with random effect for Individual
form <- ~ Disease + (1 | Individual)

compute observation weights
vobj <- voomWithDreamWeights(dge[1:20,], form, metadata)

fit dream model
res <- dream(vobj, form, metadata)
res <- eBayes(res)

extract results
topTable(res, coef = "Disease1", number = 3)

[.MArrayLM2 Subseting for MArrayLM2

Description

Enable subsetting on MArrayLM2 object. Same as for MArrayLM, but apply column subsetting to
df.residual and cov.coefficients.list

Arguments

object MArrayLM2

i row

j col

Value

subset

Index

∗ datasets
varPartData, 67
varPartDEdata, 68

∗ internal
.getAllUniContrasts, 3
.isMixedModelFormula, 4
.standard_transform, 4
[.MArrayLM2, 73

.getAllUniContrasts, 3

.isMixedModelFormula, 4

.standard_transform, 4
[.MArrayLM2, 73

applyQualityWeights, 5
as.data.frame.varPartResults, 5
as.matrix

(as.matrix,varPartResults-method),
6

as.matrix,varPartResults-method, 6
augmentPriorCount, 7

BIC.MArrayLM, 8
BIC.MArrayLM2, 9

calcVarPart, 9
calcVarPart,glm-method (calcVarPart), 9
calcVarPart,glmer-method (calcVarPart),

9
calcVarPart,glmerMod-method

(calcVarPart), 9
calcVarPart,lm-method (calcVarPart), 9
calcVarPart,lmerMod-method

(calcVarPart), 9
calcVarPart,negbin-method

(calcVarPart), 9
canCorPairs, 11
classifyTestsF, 12
classifyTestsF,MArrayLM2-method, 13
colinearityScore, 14
countMatrix (varPartDEdata), 68

deviation, 15
deviation,MArrayLM-method (deviation),

15
diffVar, 16
diffVar,MArrayLM-method (diffVar), 16
dream, 18
dscchisq, 21

eBayes,MArrayLM2-method, 21
ESS, 22
ESS,lmerMod-method (ESS), 22
extractVarPart, 24

fitExtractVarPartModel, 25
fitExtractVarPartModel,data.frame-method

(fitExtractVarPartModel), 25
fitExtractVarPartModel,EList-method

(fitExtractVarPartModel), 25
fitExtractVarPartModel,ExpressionSet-method

(fitExtractVarPartModel), 25
fitExtractVarPartModel,matrix-method

(fitExtractVarPartModel), 25
fitExtractVarPartModel,sparseMatrix-method

(fitExtractVarPartModel), 25
fitVarPartModel, 28
fitVarPartModel,data.frame-method

(fitVarPartModel), 28
fitVarPartModel,EList-method

(fitVarPartModel), 28
fitVarPartModel,ExpressionSet-method

(fitVarPartModel), 28
fitVarPartModel,matrix-method

(fitVarPartModel), 28
fitVarPartModel,sparseMatrix-method

(fitVarPartModel), 28

geneCounts (varPartData), 67
geneExpr (varPartData), 67
get_prediction, 35

74

INDEX 75

get_prediction,lm-method
(get_prediction), 35

get_prediction,lmerMod-method
(get_prediction), 35

getContrast, 32
getTreat, 34
getTreat,MArrayLM-method (getTreat), 34
getTreat,MArrayLM2-method (getTreat), 34
ggColorHue, 36

hatvalues,MArrayLM-method, 36
hatvalues,MArrayLM2-method

(hatvalues,MArrayLM-method), 36

info (varPartData), 67
isRunableFormula, 37

logLik.MArrayLM, 37
logLik.MArrayLM2, 38

makeContrastsDream, 38
MArrayLM2-class, 40
metadata (varPartDEdata), 68
mvTest, 40
mvTest,MArrayLM,EList,integer-method

(mvTest), 40
mvTest,MArrayLM,EList,list-method

(mvTest), 40
mvTest,MArrayLM,EList,missing-method

(mvTest), 40
mvTest,MArrayLM,EList,vector-method

(mvTest), 40
mvTest,MArrayLM,matrix,ANY-method

(mvTest), 40
mvTest,MArrayLM,matrix-method (mvTest),

40
mvTest,MArrayLM-method (vcovSqrt), 70
mvTest,MArrayLM2-method (vcovSqrt), 70
mvTest,mvTest_input,ANY,ANY-method

(mvTest), 40
mvTest,mvTest_input,method (mvTest), 40
mvTest_input-class, 43

plotCompareP, 44
plotContrasts, 45
plotCorrMatrix, 46
plotCorrStructure, 47
plotPercentBars, 48
plotPercentBars,data.frame-method

(plotPercentBars), 48

plotPercentBars,matrix-method
(plotPercentBars), 48

plotPercentBars,varPartResults-method
(plotPercentBars), 48

plotStratify, 50
plotStratifyBy, 52
plotVarianceEstimates, 53
plotVarPart, 54
plotVarPart,data.frame-method

(plotVarPart), 54
plotVarPart,matrix-method

(plotVarPart), 54
plotVarPart,varPartResults-method

(plotVarPart), 54

rdf, 56
rdf.merMod, 56
rdf_from_matrices, 57
reOnly, 58
residuals,MArrayLM-method, 58
residuals,MArrayLM2-method, 59
residuals,VarParFitList-method, 59
residuals.MArrayLM2, 60

shrinkageMetric, 61
sortCols, 61
sortCols,data.frame-method (sortCols),

61
sortCols,matrix-method (sortCols), 61
sortCols,varPartResults-method

(sortCols), 61
subset.MArrayLM2,MArrayLM2-method

([.MArrayLM2), 73

topTable, 63
topTable,MArrayLM-method (topTable), 63
toptable,MArrayLM-method (topTable), 63
topTable,MArrayLM2-method (topTable), 63
toptable,MArrayLM2-method (topTable), 63

VarParCIList-class, 64
VarParFitList-class, 65
varParFrac-class, 65
varPartConfInf, 65
varPartData, 67
varPartDEdata, 68
varPartResults-class, 68
vcov,MArrayLM-method, 69
vcov,MArrayLM2-method, 69

76 INDEX

vcovSqrt, 70
vcovSqrt,MArrayLM-method (vcovSqrt), 70
vcovSqrt,MArrayLM2-method (vcovSqrt), 70
voomWithDreamWeights, 71

	.getAllUniContrasts
	.isMixedModelFormula
	.standard_transform
	applyQualityWeights
	as.data.frame.varPartResults
	as.matrix,varPartResults-method
	augmentPriorCount
	BIC.MArrayLM
	BIC.MArrayLM2
	calcVarPart
	canCorPairs
	classifyTestsF
	classifyTestsF,MArrayLM2-method
	colinearityScore
	deviation
	diffVar
	dream
	dscchisq
	eBayes,MArrayLM2-method
	ESS
	extractVarPart
	fitExtractVarPartModel
	fitVarPartModel
	getContrast
	getTreat
	get_prediction
	ggColorHue
	hatvalues,MArrayLM-method
	isRunableFormula
	logLik.MArrayLM
	logLik.MArrayLM2
	makeContrastsDream
	MArrayLM2-class
	mvTest
	mvTest_input-class
	plotCompareP
	plotContrasts
	plotCorrMatrix
	plotCorrStructure
	plotPercentBars
	plotStratify
	plotStratifyBy
	plotVarianceEstimates
	plotVarPart
	rdf
	rdf.merMod
	rdf_from_matrices
	reOnly
	residuals,MArrayLM-method
	residuals,MArrayLM2-method
	residuals,VarParFitList-method
	residuals.MArrayLM2
	shrinkageMetric
	sortCols
	topTable
	VarParCIList-class
	VarParFitList-class
	varParFrac-class
	varPartConfInf
	varPartData
	varPartDEdata
	varPartResults-class
	vcov,MArrayLM-method
	vcov,MArrayLM2-method
	vcovSqrt
	voomWithDreamWeights
	[.MArrayLM2
	Index

