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Abstract

This is the vignette of the Bioconductor compliant package twilight . We describe our
implementation of a stochastic search algorithm to estimate the local false discovery rate.
In addition, the package provides functions to test for di�erential gene expression in the
common two-condition setting.
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Chapter 1

Introduction

In a typical microarray setting with gene expression data observed under two conditions,

the local false discovery rate describes the probability that a gene is not di�erentially

expressed between the two conditions given its corrresponding observed score or p-value

level. The resulting curve of p-values versus local false discovery rate o�ers an insight

into the twilight zone between clear di�erential and clear non-di�erential gene expres-

sion. The Bioconductor compliant package twilight contains two main functions: Function

twilight.pval performs a two-condition test on di�erences in means for a given input

matrix or expression set (ExpressionSet) and computes permutation based p-values. Func-

tion twilight performs the successive exclusion procedure described in Scheid and Spang

(2004) [4] to estimate local false discovery rates and e�ect size distributions. The package

is also described in a short application note [5]. From version 1.2.0 on, the package includes

a permutation �ltering algorithm introduced in Scheid and Spang (2006) [6].
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Chapter 2

Implemented functions

2.1 twilight.pval: Testing e�ect sizes

twilight.pval(xin, yin, method="fc", paired=FALSE, B=1000, yperm=NULL,

balance=FALSE, quant.ci=0.95, s0=NULL, verbose=TRUE)

The input object xin is either a pre-processed gene expression set of class ExpressionSet or

any data matrix where rows correspond to genes and columns to samples. Each sample was

taken under one of two distinct conditions, for example under treatment A or treatment

B. The functions in package twilight are not limited to microarray data only but can be

applied to any two-sample data matrix. However, it is necessary for both expression set or

numerical matrix that values are on additive scale like log or arsinh scale. The function

does not check or transform the data to additive scale. The input vector yin contains

condition labels of the samples. Vector yin has to be numeric and dichotomous. Note that

in terms of under - and over -expression, the samples of the higher labeled condition are

compared to the samples of the lower labeled condition.

We are given a preprocessed matrix for samples belonging to two distinct conditions A and

B, and gene expression values on additive scale. For gene i in the experiment (i = 1, . . . , N),

ᾱi is the mean expression under condition A and β̄i is the mean expression under condition

B. To test the null hypothesis of no di�erential gene expression, function twilight.pval

compares the mean expression levels ᾱi and β̄i. The current version o�ers three test

variants: The classical t-test uses score Ti with

Ti =
ᾱi − β̄i

si
, (2.1)

where si denotes the pooled standard deviation. The t-test is called with method="t".

The t-test score can be misleadingly high if si is very small. To overcome this problem,
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CHAPTER 2. IMPLEMENTED FUNCTIONS 4

the Z-test enlarges the denominator by a fudge factor s0 [8], [1]:

Zi =
ᾱi − β̄i
si + s0

. (2.2)

The Z-test is called with method="z". Fudge factor s0 is set to s0=NULL by default and

is only evaluated if method="z". In that case, it is the median of the pooled standard

deviations s1, . . . , sN . However, the fudge factor can be chosen manually. Note that if

method="z" is chosen with s0=0, the test call is altered to method="t", the t-test as

described above.

The third variant is based on log ratios only with score

Fi = ᾱi − β̄i. (2.3)

The distribution of scores Fi under the alternative is called e�ect size distribution. With

expression values on log or arsinh scale, exp(|Fi|) is an estimator for the fold change. We

call exp(|Fi|) the fold change equivalent score [4]. Note that the package contains a function
for plotting the e�ect size distribution which is only available if function twilight.pval

was run with method="fc", the fold change equivalent test.

Function twilight.pval handles paired and unpaired data. In the unpaired case (paired=FALSE),

only one microarray was hybridized for each patient, like in a treatment and control group

setting. In the paired case (paired=TRUE), we observed expression values of the same

patient under both conditions. The typical example are before and after treatment experi-

ments, where each patient's expression was measured twice. The input arguments xin and

yin do not need to be ordered in a speci�c manner. It is only necessary that samples within

each group have the same order, such that the �rst samples of the two groups represent

the �rst pair and so on. However, the order of the samples in xin has to equal the order

in yin.

As an example, we apply function twilight.pval on the training set of the leukemia data

of Golub et al. (1999) [3] as given in library(golubEsets). For normalization, apply the

variance-stabilizing method vsn in library(vsn) [2].

> data(Golub_Train)

> golubNorm <- justvsn(Golub_Train)

> id <- as.numeric(Golub_Train$ALL.AML) #$

There are 38 samples either expressing acute lymphoblastic leukemia (ALL) or acute

myeloid leukemia (AML). As the AML patients are labeled with �2� and ALL with �1�, we

compare AML to ALL expression.

> Golub_Train$ALL.AML #$
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[1] ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL

[18] ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL AML AML AML AML AML AML AML

[35] AML AML AML AML

Levels: ALL AML

> id

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

[36] 2 2 2

Additionally to computation of scores, empirical p-values are calculated. Argument B

speci�es the number of permutations with default set to B=1000. The distribution of

scores under the null hypothesis is estimated by computing test scores from the same input

matrix with randomly permuted class labels. These permutations are either balanced or

unbalanced, with default balance=FALSE. The permutation options are described in detail

in section 2.5. For computing empirical p-values, we count for each gene how many of all

absolute permutation scores exceed the absolute observed score, and divide by B·(number
of genes).

Permutation scores are also used to compute expected scores as described in Tusher et

al. (2001) [8]. In addition, we compute con�dence bounds for the maximum absolute

di�erence of each set of permutation scores to expected scores. The width of the con�dence

bound is chosen with quant.ci. With default quant.ci=0.95, the maximum absolute

di�erence of permutation to expected scores exceeded the con�dence bound in only 5% of

all permutations.

Using the optional argument yperm, a user-speci�ed permutation matrix can be passed to

the function. In that case, yperm has to be a binary matrix where each row is one vector

of permuted class labels. The label "1" in yperm corresponds to the higher labeled original

class. If the permutation matrix is speci�ed, no other permutation is done and argument

B will be ignored. Besides set.seed, argument yperm can be used to reproduce results by

�xing the matrix of random permutations. Please note that the �rst row of yperm must

be the input vector yin. Otherwise, the p-value calculation will be incorrect.

Continuing the example above, we perform a fold change test on the expression data in

golubNorm which was transformed to arsinh scale by normalization with vsn. We do a

quick example with few permutations.

> library(twilight)

> pval <- twilight.pval(golubNorm, id, B=100)

No complete enumeration. Prepare permutation matrix.

Compute vector of observed statistics.
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Compute expected scores and p-values. This will take approx. 2 seconds.

Compute q-values.

Compute values for confidence lines.

The function checks whether complete enumeration of all permutations is possible. Com-

plete enumeration is performed as long as the number of permutations does not exceed the

value set by B. Thus, if you want to turn o� the compulsive enumeration and use all possi-

ble permutations, you need to select a small B or simply keep the default B=1000. Details

on the enumeration functions are given in section 2.5. The values in the accompanying

data set expval were computed in the same manner as in the example above but with the

complete data set data(Golub_Merge) in library(golubEsets) and 1000 permutations.

> data(expval)

> expval

Twilight object with

7129 transcripts

observed and expected test statistics

p- and q-values

Estimated percentage of non-induced genes:

pi0

0.619148

Function call:

Test: fc. Paired: FALSE. Number of permutations: 1000. Balanced: FALSE.

The output object of function twilight.pval is of class twilight with several elements

stored in a list.

> class(expval)

[1] "twilight"

> names(expval)

[1] "result" "s0" "ci.line" "quant.ci" "lambda" "pi0"

[7] "boot.pi0" "boot.ci" "effect" "call"
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The element quant.ci contains the corresponding input value which is passed to the

plotting function. Element ci.line is used for plotting con�dence bounds and contains

the computed quantile of maximum absolute di�erences. The output dataframe result

contains a matrix with several columns.

> names(expval$result) #$

[1] "observed" "expected" "candidate" "pvalue" "qvalue"

[6] "fdr" "mean.fdr" "lower.fdr" "upper.fdr" "index"

The dataframe stores observed and expected scores and corresponding empirical p-values.
The genes are ordered by absolute observed test scores. Genes with observed score ex-
ceeding the con�dence bounds are marked as �1� in the binary vector result$candidate.
The output object is passed to function plot.twilight to produce a plot as in Tusher et
al. (2001) [8] with additional con�dence lines and genes marked as candidates, see Figure
2.1.

> expval$result[1:7,1:5] #$

observed expected candidate pvalue qvalue

M84526_at 3.990578 1.1091753 1 1.402721e-07 0.000619148

M27891_at 3.669657 0.9709790 1 2.805443e-07 0.000619148

M89957_at -3.153319 -1.1007286 1 4.208164e-07 0.000619148

X82240_rna1_at -3.111376 -0.9651917 1 5.610885e-07 0.000619148

U89922_s_at -2.954233 -0.8979189 1 7.013606e-07 0.000619148

M19507_at 2.925666 0.8936237 1 8.416328e-07 0.000619148

M11722_at -2.689999 -0.8471725 1 9.819049e-07 0.000619148

In addition, q-values and the estimated percentage of non-induced genes π0 are com-

puted as described in Remark B of Storey and Tibshirani (2003) [7]. These are stored

in result$qvalue (see above) and pi0. The remaing output elements of expval are left

free to be �lled by function twilight. With "qvalues", Figure 2.2 shows the plot of

q-values against the corresponding number of rejected hypotheses.

> expval$pi0 #$

[1] 0.619148

Column result$index contains the original gene ordering of the input object. With these

numbers, resorting of the result table is possible without knowing the original order of

the row names.
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Figure 2.1: Expected versus observed test scores. Deviation from
the diagonal line gives evidence for di�erential expression. The
red lines mark the 95% con�dence interval on the absolute di�er-
ence between oberved and expected scores. The plotting call is
plot(expval,which="scores",grayscale=F,legend=F).

Figure 2.2: Stairplot of q-values against the resulting size of the list of signi�-
cant genes. A list containing all genes with q ≤ q0 has an estimated global false
discovery rate of q0. The plotting call is plot(expval,which="qvalues").
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2.2 twilight.pval: Testing correlation

twilight.pval(xin, yin, method="fc", B=1000, yperm=NULL, quant.ci=0.95,

verbose=TRUE)

From version 1.1.0 on, function twilight.pval o�ers the computation of correlation scores

instead of e�ect size scores. Now, vector yin can be any clinical parameter consisting of nu-

merical values and having length equal to the number of samples. With method="pearson",

Pearson's coe�cient of correlation to yin is computed for every gene in xin. With

method="spearman", yin and the rows of xin are converted into ranks and Spearman's

rank correlation is computed.

Note that most input arguments of twilight.pval will be ignored. Only B takes e�ect

and causes the computation of p-values based on B random permutations of yin. A matrix

of user-speci�ed permutations can be passed on using argument yperm. Here, each row

has to contain a permutation of yin. Note that the values in yperm have to be changed

to ranks beforehand if Spearman correlation is to be computed. Please note that the �rst

row of yperm must be the input vector yin (probably changed into ranks). Otherwise, the

p-value calculation will be incorrect.

All successive analyses like expected scores, p- and q-values are kept as before. As an

illustration, we search for genes with high correlation to the highest scoring gene found in

the e�ect size test. Figure 2.3 displays the resulting scores.

> gene <- exprs(golubNorm)[pval$result$index[1],]

> corr <- twilight.pval(golubNorm,gene,method="spearman",quant.ci=0.99,B=100)

Compute vector of observed statistics.

Compute expected scores and p-values. This will take approx. 0 seconds.

Compute q-values.

Compute values for confidence lines.

> corr

Twilight object with

7129 transcripts

observed and expected test statistics

p- and q-values

Estimated percentage of non-induced genes:
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pi0

0.6305741

Function call:

Test: spearman. Number of permutations: 100.

Note that the overall percentage of non-induced genes π0 is now interpreted as the overall

percentage of genes not correlated to the clinical parameter under the null hypothesis.

> corr$result[1:10,1:5] #$

observed expected candidate pvalue qvalue

M27891_at 1.0000000 0.5762556 1 1.402721e-06 0.006305741

J03801_f_at 0.7901302 0.5422212 1 2.805443e-06 0.006305741

D88422_at 0.7850968 0.5243725 1 4.208164e-06 0.006305741

Z15115_at -0.7577415 -0.5678718 1 5.610885e-06 0.006305741

M83667_rna1_s_at 0.7566473 0.5115877 1 7.013606e-06 0.006305741

M19045_f_at 0.7557720 0.5020878 1 8.416328e-06 0.006305741

M33195_at 0.7481125 0.4941000 1 9.819049e-06 0.006305741

X64072_s_at 0.7474560 0.4871036 1 1.122177e-05 0.006305741

U22376_cds2_s_at -0.7457052 -0.5359186 1 1.262449e-05 0.006305741

M63138_at 0.7439545 0.4812343 1 1.402721e-05 0.006305741
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Figure 2.3: Expected versus observed Spearman correlation scores.
Deviation from the diagonal line gives evidence for signi�cant correla-
tion. The red lines mark the 99% con�dence interval on the absolute
di�erence between oberved and expected scores. The plotting call is
plot(corr,which="scores",grayscale=F,legend=F).
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2.3 twilight.filtering: Filtering permutations

twilight.pval(..., filtering = FALSE)

twilight.filtering(xin, yin, method = "fc", paired = FALSE, s0 = 0,

verbose = TRUE, num.perm = 1000, num.take = 50)

From version 1.2.0 on, we included a permutation �ltering algorithm introduced in Scheid

and Spang (2006) [6]. In a permutation based test approach, each permutation of the given

class labels is thought to re�ect the complete null model. However, in applications to real

biological data, we often observe that certain permutations produce score distributions

that still have larger margins than expected. Therefore, we treat each permutation as the

original labeling, transform the permutation scores to pooled p-values and test the resulting

distribution for uniformity. In an iterative search, we �lter for a set of permutations whose

p-value distributions �t well to a uniform distribution.

The �ltering is added as an optional argument in function twilight.pval. Although large

parts of the algorithm are written in C, the �ltering is still time-consuming. Therefore, the

default within twilight.pval is set to FALSE. If filtering=TRUE, the �ltering is called

internally with all the test parameters as given by the user. The only exception is the

balancing parameter: The �ltering is done on unbalanced permutations however balance

is speci�ed. Balancing is just a simplier way to select a set of permutations that are not

too close to the given labeling. However, this will not remove other sources of deviation

from a complete null distribution as the �ltering does.

Calling the �ltering within twilight.pval is very convenient. If one wants to further

examine the �ltered permutations, function twilight.filtering can be called directly.

Most input arguments equal those of function twilight.pval, see Sections 2.1 and 2.2 for

details on the di�erent methods and formats. Only the fugde factor s0 di�ers. It takes

e�ect only if method="z" and is computed as the median pooled standard deviation if

s0=0.

The two input arguments num.perm and num.take are important. The �rst one is the

number of wanted permutations. Within twilight.pval, it is set to B. The argument

num.take speci�es the number of valid permutations that are kept in each step of the

iteration. Within each step, this number increases by num.take. Hence, num.take might

be chosen such that num.take is a divisor of num.perm. Within twilight.pval, num.take

is set to the minimum of 50 and num.perm/20.

The output of function twilight.filtering is a matrix with the �ltered permutations

of yin in rows. The number of rows is approximately num.perm. The permutations

are checked for uniqueness. If the number of possible unique permutations is less than
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num.perm, the algorithm stops earlier. In this case, the result is likely to be just the set

of all possible permutations and it is not sure whether all of these really produce uniform

p-value distributions. Here, it is advisable to lower num.perm.

The format of the output object complies with the needed format of the input argument

yperm in function twilight.pval where two-condition labels are binarized or numerical

values are changed to ranks if method="spearman". Please note that the �rst row of the

matrix always contains the original labeling yin to be consistent with the other permutation

functions described in Section 2.5.

As an illustration, we proceed with a quick example of permutation �ltering. We perform

the �ltering on log ratio scores and only �lter for 50 permutations in steps of 10.

> yperm <- twilight.filtering(golubNorm,id,method="fc",num.perm=50,num.take=10)

Filtering: Wait for 5 to 15 dots .....done

> dim(yperm)

[1] 50 38

The �ltering leads to a random subset of possible permutations. Next, we check whether

one of these permutations really produces a uniform p-value distribution. As the �rst row

of yperm has to contain the labeling for which the p-values will be computed, we have to

remove the current �rst row which is the original labeling yin. Thus, we compute p-values

for the �rst �random� permutation. The resulting histogram is shown in Figure 2.4.

> yperm <- yperm[-1,]

> b <- twilight.pval(golubNorm,yperm[1,],method="fc",yperm=yperm)

Compute vector of observed statistics.

Compute expected scores and p-values. This will take approx. 1 seconds.

Compute q-values.

Compute values for confidence lines.

> hist(b$result$pvalue,col="gray",br=20)
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Figure 2.4: Histogram of p-values of one �ltered permutation. The p-values
are computed from pooling the scores of the set of �ltered permutations. The
resulting distribution appears to be uniform.
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2.4 twilight: Estimating the local FDR

twilight(xin, lambda=NULL, B=0, boot.ci=0.95, clus=NULL, verbose=TRUE)

Local false discovery rates (fdr) are estimated from a simple mixture model given the

density f(t) of observed scores T = t:

f(t) = π0 f0(t) + (1− π0) f1(t) ⇒ fdr(t) = π0
f0(t)

f(t)
, (2.4)

where π0 ∈ [0, 1] is the overall percentage of non-induced genes. Terms f0 and f1 are score

densities under no induction and under induction respectively. Assume that there exists

a transformation W such that U = W (T ) is uniformly distributed in [0, 1] for all genes

not di�erentially expressed. In a multiple testing scenario these u-values are p-values

corresponding to the set of observed scores. However, we do not regard the local false

discovery rate as a multiple error rate but as an exploratory tool to describe a microarray

experiment over the whole range of signi�cance.

Mapping scores to p-values allows to assume f0(p) to be the uniform density instead of

specifying the null density f0(t) with respect to a chosen scoring method. The imple-

mented successive exclusion procedure (SEP) splits any vector of p-values into a uniformly

distributed null part and an alternative part. The uniform part represents genes that are

not di�erentially expressed. The proportion of the uniform part to the total number of

genes in the experiment is a natural estimator for percentage π0. We apply a smoothed

density estimate based on the histogram counts of the observed mixture to estimate f(p).

Assuming uniformity leads to f0(p) = 1 for all p ∈ [0, 1]. Hence, the ratio of the estimates

π̂0 and f̂(p) estimates the local false discovery rate for a certain p-value level.

The successive exclusion procedure is described in detail in Scheid and Spang (2004) [4].

The functionality of twilight is not limited to microarray experiments. In principle, any

vector of p-values can be passed to twilight as long as the assumption of uniformity under

the null hypothesis is valid.

The objective function in twilight includes a penalty term that is controlled by the

regularization parameter λ ≥ 0. The regularization ensures that we �nd a separation such

that the uniform part contains as many p-values as possible. As percentage π0 is often

underestimated, the inclusion of a penalty term results in a more �conservative� estimate

that is usually less biased. If not speci�ed (lambda=NULL), function twilight.getlambda

�nds a suitable λ.

The estimates for probability π0 and the local false discovery rate are averaged over 10

runs of SEP. In addition, bootstrapping can be performed to give bootstrap estimates and

bootstrap percentile con�dence intervals on both π0 and the local false discovery rate.
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The number of bootstrap samples is set by argument B, and the width of the bootstrap

con�dence interval is set by argument boot.ci.

Function twilight takes twilight objects or any vector of p-values as input and returns a

twilight object. If the input is of class twilight , the function works on the set of empirical p-

values and �lls in the remaining output elements. Note that the estimate for π0 is replaced,

and q-values are recalculated with the new estimate π0. As an example, we run SEP with

1000 bootstrap samples and 95% boostrap con�dence intervals: twilight(xin=expval,

B=1000, boot.ci=0.95), as was done for data set exfdr.

> data(exfdr)

> exfdr

Twilight object with

7129 transcripts

observed and expected test statistics

p- and q-values

local FDR

bootstrap estimates of local FDR

Bootstrap estimate of percentage of non-induced

genes with lower and upper 95% CI:

pi0 lower.pi0 upper.pi0

0.6263987 0.59279 0.6568944

Function call:

Test: fc. Paired: FALSE. Number of permutations: 1000. Balanced: FALSE.

Function twilight used lambda = 0.02

>

> exfdr$result[1:5,6:9] #$

fdr mean.fdr lower.fdr upper.fdr

M84526_at 0.01024130 0.01015424 0.007309932 0.01307063

M27891_at 0.01024240 0.01015535 0.007311074 0.01307174

M89957_at 0.01024351 0.01015646 0.007312216 0.01307286

X82240_rna1_at 0.01024461 0.01015756 0.007313358 0.01307398

U89922_s_at 0.01024571 0.01015867 0.007314500 0.01307509
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Figure 2.5: Curve of estimated local false discovery over p-values. The
red lines denote the bootstrap mean (solid line) and the 95% boot-
strap con�dence interval on the local false discovery rate (dashed lines).
The bottom ticks are 1% quantiles of p-values. The plotting call is
plot(exfdr,which="fdr",grayscale=F,legend=T).

The output elements result$fdr, result$mean.fdr, result$lower.fdr and

result$upper.fdr contain the estimated local false discovery rate, the bootstrap aver-

age and upper and lower bootstrap con�dence bounds. These values are used to produce

the following plots which are only available after application of function twilight. First,

we plot p-values against the corresponding conditional probabilities of being induced given

the p-value level, that is 1− fdr, see Figure 2.5. Going back to observed scores, we produce

a volcano plot, that is observed scores versus local false discovery rate, see Figure 2.6.

Output element effect contains histogram information about the e�ect size distribution,

that is log ratio under the alternative. One run of the successive exclusion procedure results

in a split of the input p-value vector into a null and an alternative part. We estimate the

e�ect size distribution from the distribution of log ratio scores corresponding to p-values

in the alternative part. Again, this estimate is averaged over 10 runs of the procedure.

Argument which="effectsize" produces the histogram of all observed log ratios overlaid

with the averaged histogram of log ratios in the alternative, see Figure 2.7. The x-axis

is changed to fold change equivalent scores or rather to increase in e�ect size. Given an

observed log ratio F , the increase in e�ect size is (exp(|F |)−1) · sign(F ) ·100%. A value of

0% corresponds to no change (fold change of 1), a value of 50% to fold change 1.5 and so
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Figure 2.6: Volcano plot of observed test scores versus local false discovery
rate. The bottom ticks are 1% quantiles of observed scores. The plotting call
is plot(exfdr,which="volcano").

on. A value of -100% corresponds to a 2-fold down-regulation, that is fold change of 0.5.

The last plotting argument which="table" tabulates the histogram information in terms

of fold change equivalent scores and log ratios.

> tab <- plot(exfdr,which="table")

> tab[1:8,]

LogRatio Mixture Alternative

-2234% -3.15 2 1.6

-2012% -3.05 0 0.0

-1811% -2.95 1 1.0

-1629% -2.85 0 0.0

-1464% -2.75 0 0.0

-1315% -2.65 1 1.0

-1181% -2.55 0 0.0

-1059% -2.45 1 1.0

The input argument clus of function twilight is used to perform parallel computation

within twilight. Parallelization saves computation time which is especially useful if the

number of bootstrap samples B is large. With default clus=NULL, no parallelization is
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Figure 2.7: Observed e�ect size distribution (gray histogram) overlaid with
the estimated e�ect size distribution under the null hypothesis (black his-
togram). The plotting call is plot(exfdr,which="effectsize",legend=T).

done. If speci�ed, clus is passed as input argument to makeCluster in library(snow).

Please make sure that makeCluster(clus) works properly in your environment.
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2.5 twilight.combi: Enumerating permutations of binary vec-

tors

twilight.combi(xin, pin, bin)

Function twilight.combi is used within twilight.pval to completely enumerate all per-

mutations of a binary input vector xin. Argument pin speci�es whether the input vector

corresponds to paired or unpaired data. Argument bin speci�es whether permutations are

balanced or unbalanced. Note that the resulting permutations are always �as balanced as

possible�: The balancing is done for the smaller subsample. If its sample size is odd, say

7, twilight.combi computes all permutations with 3 and 4 samples unchanged.

As �rst example, compute all unbalanced permutations of an unpaired binary vector of

length 5 with two zeros and three ones. The number of rows are

m =
5!

2! · 3!
= 10. (2.5)

> x <- c(rep(0,2),rep(1,3))

> x

[1] 0 0 1 1 1

> twilight.combi(x,pin=FALSE,bin=FALSE)

[,1] [,2] [,3] [,4] [,5]

[1,] 0 0 1 1 1

[2,] 0 1 0 1 1

[3,] 0 1 1 0 1

[4,] 0 1 1 1 0

[5,] 1 0 0 1 1

[6,] 1 0 1 0 1

[7,] 1 0 1 1 0

[8,] 1 1 0 0 1

[9,] 1 1 0 1 0

[10,] 1 1 1 0 0

Each row contains one permutation. The �rst row contains the input vector. In balanced

permutations, we omit those rows where both original zeros have been shifted to the last

three columns. The number of balanced rows is

m =

(
2

1

)
· 3!

1! · 2!
= 6. (2.6)
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> twilight.combi(x,pin=FALSE,bin=TRUE)

[,1] [,2] [,3] [,4] [,5]

[1,] 0 0 1 1 1

[2,] 0 1 0 1 1

[3,] 0 1 1 0 1

[4,] 0 1 1 1 0

[5,] 1 0 0 1 1

[6,] 1 0 1 0 1

[7,] 1 0 1 1 0

Note that the function returns six balanced rows and the original input vector although it

is not balanced.

Next, consider a paired input vector with four pairs. The �rst zero and the �rst one are

the �rst pair and so on. In paired settings, values are �ipped only within a pair. The

number of rows is

m =
1

2
· 24 = 23 = 8. (2.7)

> y <- c(rep(0,4),rep(1,4))

> y

[1] 0 0 0 0 1 1 1 1

> twilight.combi(y,pin=TRUE,bin=FALSE)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0 0 0 0 1 1 1 1

[2,] 0 0 0 1 1 1 1 0

[3,] 0 0 1 0 1 1 0 1

[4,] 0 1 0 0 1 0 1 1

[5,] 1 0 0 0 0 1 1 1

[6,] 0 0 1 1 1 1 0 0

[7,] 0 1 0 1 1 0 1 0

[8,] 0 1 1 0 1 0 0 1

The matrix above contains only half of all possible 24 = 16 permutations. The reversed case

1 - twilight.combi(y, pin=TRUE, bin=FALSE) is omitted as this will lead to the same

absolute test scores as twilight.combi(y, pin=TRUE, bin=FALSE). The same concept
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applies to balanced paired permutations. Now, two pairs are kept �xed and two pairs are

�ipped in each row. The number of balanced rows is

m =
1

2
·
(
4

2

)
= 3. (2.8)

> twilight.combi(y,pin=TRUE,bin=TRUE)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0 0 0 0 1 1 1 1

[2,] 0 0 1 1 1 1 0 0

[3,] 0 1 0 1 1 0 1 0

[4,] 0 1 1 0 1 0 0 1

Again, the input vector is part of the output.

The complete enumeration of twilight.combi is limited by the sample sizes. The function

returns NULL if the resulting number of rows exceeds 10 000. If NULL is returned, function

twilight.pval uses the functions twilight.permute.unpair and twilight.permute.pair

which return a matrix of random permutations. For example, use the latter function to

compute 7 balanced permutations of the paired vector y. Similar to twilight.combi, these

two functions return the input vector in the �rst row of their output matrices.

> twilight.permute.pair(y,7,bal=TRUE)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0 0 0 0 1 1 1 1

[2,] 0 1 1 0 1 0 0 1

[3,] 0 1 1 0 1 0 0 1

[4,] 1 0 0 1 0 1 1 0

[5,] 1 0 0 1 0 1 1 0

[6,] 1 0 0 1 0 1 1 0

[7,] 1 0 0 1 0 1 1 0
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Di�erences to earlier versions

Changes in version 1.11.1

Usual bump in version numbering. In addition, functions work on ExpressionSet objects,

too.

Changes in version 1.9.2

Bug-�x for computation of fudge factor in permutation scores. The estimated fudge factor

s0 will now be returned by functions twilight.pval and twilight.teststat.

library(snow) was set to comment in twilight. This was necessary to complete the

new R checks under Bioconductor. Note that no checks under the current version of

library(snow) are performed any more. If any problem occurs, please report this.

Changes in version 1.9.1

New version number due to Bioconductor Release 1.8.

Changes in version 1.6.2

Adapted to changes of data package golubEsets .

23
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Changes in version 1.6.1

It is now possible to directly compute observed test statistics via function twilight.teststat.

Additional minor cosmetic changes in the plot function.

Within twilight.pval, the complete enumeration depends now on the value of argument

B. If complete enumeration would lead to a larger number of permutations than B, it is not

done but B random permutations are taken instead.

Changes in version 1.5.1 and 1.5.2

Minor cosmetic changes. The jump in version numbers is due to Bioconductor's version

bumping regime for packages in the release and in the developmental repository.

Changes in version 1.2.3

We updated the bootstrapping procedure in twilight.getlambda to get a reliable value

for the regularization parameter when π0 is small and many genes are truly di�erentially

expressed.

Changes in version 1.2.2

Changes in the C code which do not e�ect the results.

Changes in version 1.2.1

Bug �xed on the calculation of Hamming distances.

Changes in version 1.2.0

We added the argument filtering = FALSE to function twilight.pval which (if set to

TRUE) invokes the �ltering for class label permutations that produce uniform p-value distri-

butions. The set of admissible permutations is found using function twilight.filtering

which is called internally in function twilight.pval. However, it can also be used directly.

We changed the local FDR estimation in function twilight slightly. Instead of estimating

both densities f0 and f from the output of SEP, we rely on the uniform assumption such
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that f0(p) = 1 for all p ∈ [0, 1]. Hence, the 10 runs of SEP lead to 10 estimates π̂0. The

average of these is taken as the �nal value which is mutliplied with the density estimate of

the mixture density f .

The mixture density estimation of f also changed slightly. Still, the estimates are based

on smoothed histogram counts. To improve the estimation for very small p-values, the

histogram bins were changed from equidistant to quantile bins.

Changes in version 1.1.0

The computation of p-values in twilight.pval changed from gene-wise to pooled p-values.

For the computation of a gene-wise p-value for gene i, only the permutation scores of gene

i are taken into account. For pooled p-values, all permutation scores of all genes are taken

as null distribution. This change has several advantages: First, gene-wise p-values were

not monotonically increasing with scores because each gene had its own null distribution.

Thus, two genes with almost equal scores might get quite di�erent p-values. Now, the

null distribution is the same for all genes, that is the union set of all permutation scores.

Second, pooled p-values are less granular than gene-wise p-values. Gene-wise p-values

are computed from B permutation scores whereas pooled p-values are computed from B ·
(number of genes) scores.

These two important features gave rise to further changes: The ordering of the result table

is now more intuitive because the most signi�cant genes on top have the highest scores, the

lowest p- and q-values and are candidates (if there are any). In addition, the default value

of the number of permutations B is lowered to 1000 permutations. Computation of pooled

p-values is slower than for gene-wise p-values. On the other hand, changing to pooled

p-values increases the number of values in the null distribution by the factor of number of

genes. Hence, even with less permutations, the number of null values is larger than before.

We integrated Pearson and Spearman correlation coe�cients into twilight.pval. Each

gene is correlated to an numerical input vector. Expected scores are computed from random

permutations of the input vector.

The result table contains an additional index column with genes indices which comes in

handy for sorting back to original ordering.

All output matrices of the permutation functions twilight.combi, twilight.permute.pair

and twilight.permute.unpair have the original labeling vector as �rst row. This is also

the case if balanced permutations are wanted, although the input vector is not balanced.

Hence, the permutation matrix within twilight.pval now includes the original labeling

even for balanced permutations implying that the smallest possible p-value is 1/(number

of permutations).
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Changes in version 1.0.3

A print.twilight function was added which produces a short information about the

contents stored in the twilight object.

Changes in version 1.0.2

The which argument of the plot command changed from plot1 style to more intuitive

labels like scores or fdr.
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