rBiopaxParser Vignette

Frank Kramer*

April 15, 2025

Contents
[I__Introduction| 2
21 Tation T ong 2
2.1 Prerequisites| 2
2.1.1 Prerequisites for Linux users| 3
2.1.2 Prerequisites for Windows users|. 4
)
6
6
6
7
7 Accessing the Datal 10
8 Visualization| 11
14
10 Writing out in BioPAX Format 16
11 Example: Parsing Reactome Biopax Level 3| 16
12 Session Informationl 16

“University Medical Center Gottingen, Department of Medical Statistics, Work-
group Statistical Bioinformatics, Humboldtallee 32, 37073 Gottingen, Germany. eMail:
dev@frankkramer.de

1 Introduction

The aim of this document is to help the user get accustomed with the package
and to provide a step-by-step introduction on how to get started. This
vignette contains installation instructions as well as a quick listing of working
code to get started with the package right away.

This package supports Biopax Level 2 and has preliminary support for Biopax
Level 3. If you experience any problems or errors parsing Biopax data please
let me know!

A plethora of databases offer a vast knowledge about biological signaling
pathways. BioPAX is implemented in the Web Ontology Language OWL,
an RDF/XML-based markup language. It allows the users to store and
exchange pathway knowledge in a well-documented and standardized way.
In simplified terms one can say, that the main class, the pathway, is build up
from a list of interactions. Interactions themselves provide a link from one
controlling molecule to one or more controlled molecules. Molecule instances,
including their properties like names, sequences or external references are
defined within the BioPAX model. This package will hopefully ease the task
of working with BioPAX data within R.

rBiopaxParser has been published in Bioinformatics! Please cite the paper
if you find this package helpful. rBiopaxParser - an R package to parse,
modify and visualize BioPAX data. Kramer F, Bayerlova M, Klemm F,
Bleckmann A, Beissbarth T. Bioinformatics (2013) 29(4): 520-522. http:
//bioinformatics.oxfordjournals.org/content/29/4/520.abstract

You can retrieve rBiopaxParser from Bioconductor or GitHub: http://www.
bioconductor.org/packages/devel/bioc/html/rBiopaxParser.html/https:
//github.com/frankkramer/rBiopaxParser

For a deeper understanding of how BioPAX instances are composed, it is
strongly encouraged to take a look at the BioPAX definition, especially the
class inheritance tree and the list of properties for each class. The language
definition, as well as further information on BioPAX, can be found at http:
//www.biopax.org.

2 Installation Instructions

2.1 Prerequisites

This package depends on package XML to parse the BioPAX .owl files. This
package suggests package RCurl to download BioPAX files from the web.

http://bioinformatics.oxfordjournals.org/content/29/4/520.abstract
http://bioinformatics.oxfordjournals.org/content/29/4/520.abstract
http://www.bioconductor.org/packages/devel/bioc/html/rBiopaxParser.html
http://www.bioconductor.org/packages/devel/bioc/html/rBiopaxParser.html
https://github.com/frankkramer/rBiopaxParser
https://github.com/frankkramer/rBiopaxParser
http://www.biopax.org
http://www.biopax.org

This package suggests package graph to build graphs/networks from the data.
This package suggests package Rgraphviz to visualize networks. To install
directly from github you need package devtools. Installation or running
certain functions MIGHT fail if these prerequisites are not met. Please read
through the following instructions.

2.1.1 Prerequisites for Linux users
This paragraph uses installation instructions fitting for Debian and Ubuntu

derivatives. If you are on another Linux please use the corresponding func-
tions of your distribution.

XML Make sure your Linux has library libxml2 installed. This is almost
always the case. Otherwise install libxml2:

sudo apt-get install libxml2

You will now be able to install R package XML, this should be automatically
done when you install rBiopaxParser, or you can run within R:

install.packages("XML")

RCurl RCurlisonly needed for a convenience function to download BioPAX
files directly within R. You can skip this step if you already have the BioPAX
data downloaded. Make sure your Linux has library libcurl installed and
curl-config in your path. Check out:

locate libcurl
locate curl-config

If these are not found (usually the developer version is missing), most Linux
users will be able to fix this by running:

sudo apt-get install libcurl4-openssl-dev

You will now be able to install R package RCurl, this should be automatically
done when you install rBiopaxParser, or you can run within R:

install.packages("RCurl")

If you encounter other problems check out http://www.omegahat .org/RCurl/
FAQ.html

http://www.omegahat.org/RCurl/FAQ.html
http://www.omegahat.org/RCurl/FAQ.html

graph Package graph has moved from CRAN to Bioconductor recently,
you might encounter an error saying that package graph is not available for
your distribution when calling install.packages("graph"). Check out http:
//bioconductor.org/packages/release/bioc/html/graph.html or call:

Biocmanager::install("graph")

to install it right away.

Rgraphviz Rgraphviz is used to layout the graphs generated in this pack-
age. You can layout and plot these yourself if you want to. Since version 2.1
Rgraphviz now includes graphviz! You will now be able to install R package
Rgraphviz using:

Biocmanager::install("Rgraphviz")
If you are forced to use an earlier version of Rgraphviz you have to make
sure your Linux has package graphviz installed. If this is not the case, you
can usually fix this by running:

sudo apt-get install graphviz

If you encounter additional problems check out http://www.bioconductor.
org/packages/release/bioc/html/Rgraphviz.html

devtools Package devtools is available at CRAN. Run:
install.packages("devtools")

to install it.

2.1.2 Prerequisites for Windows users

XML and RCurl These packages depend on Linux libraries. However,
Brian Ripley has put together a repository to allow Windows users to run
these packages. Check out http://www.stats.ox.ac.uk/pub/RWin/bin/
windows/contrib/|for these two packages for your R version. Download first
XML.<yourRversion>.zip and then RCurl.<yourRversion>.zip and install
them locally on your machine.

http://bioconductor.org/packages/release/bioc/html/graph.html
http://bioconductor.org/packages/release/bioc/html/graph.html
http://www.bioconductor.org/packages/release/bioc/html/Rgraphviz.html
http://www.bioconductor.org/packages/release/bioc/html/Rgraphviz.html
http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/
http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/

graph Package graph has moved from CRAN to Bioconductor recently,
you might encounter an error saying that package graph is not available for
your distribution when calling install.packages("graph"). Check out http:
//bioconductor.org/packages/release/bioc/html/graph.html or run:

Biocmanager::install("graph")

to install it.

Rgraphviz Rgraphviz is used to layout the graphs generated in this pack-
age. You can layout and plot these yourself if you want to. Since version 2.1
Rgraphviz now includes graphviz! You will now be able to install R package
Rgraphviz using:

Biocmanager::install("Rgraphviz")
If you are forced to use an earlier version of Rgraphviz you have to make
sure your your machine has graphviz installed, it can be found at: http:
//www.graphviz.org Click on Download -> Windows. If you encounter

additional problems check out http://www.bioconductor.org/packages/
release/bioc/html/Rgraphviz.html

devtools Package devtools is available at CRAN. For Windows this seems
to depend on having Rtools for Windows installed. You can download and
install this from: http://cran.r-project.org/bin/windows/Rtools/ To
install R package devtools call:

install.packages("devtools")

2.2 Installation

If everything went well you will be able to install the rBiopaxParser package,
either from Bioconductor:

Biocmanager::install("rBiopaxParser")
or via GitHub using devtools:

library(devtools)
install_github(repo="rBiopaxParser", username="frankkramer")

http://bioconductor.org/packages/release/bioc/html/graph.html
http://bioconductor.org/packages/release/bioc/html/graph.html
http://www.graphviz.org
http://www.graphviz.org
http://www.bioconductor.org/packages/release/bioc/html/Rgraphviz.html
http://www.bioconductor.org/packages/release/bioc/html/Rgraphviz.html
http://cran.r-project.org/bin/windows/Rtools/

3 Getting Started
Let’s load the library and the example data set.

> library(rBiopaxParser)

4 Downloading BioPAX Data

Many online pathway databases offer an export in BioPAX format. This
package gives the user a shortcut to download BioPAX exports directly from
database providers from the web. A list of links to commonly used databases
is stored internally and the user can select from which source and which
export to download. The data is stored in the working directory.

Currently only the website of the National Cancer Institute (NCI, http://pid.nci.nih.gov)
is linked, where exports of the Pathway Interaction Database (PID), Bio-
Carta and Reactome are available.

The following command downloads the BioCarta export from the NCI web-
site.

> file = downloadBiopaxData("NCI","biocarta")

After the download is finished the on-screen output informs the user of suc-
cess and name of the downloaded file.

5 Parsing BioPAX Data

BioPAX data can be parsed into R using the rBiopaxParser. The readBiopax
function reads in a BioPAX .owl file and generates the internal data.table
format used in this package. This function can take a while with large
BioPAX files like NCIs Pathway Interaction Database or Reactome.

The following command reads in the BioPAX file which was previously down-

loaded into variable biopax and print its summary.

> biopax = readBiopax(file)
> print(biopax)

6 Internal Data Model

The BioPAX ontology models biological pathway concepts and their relation-
ships. Implemented in the Web Ontology Language OWL, an XML-based
markup Ianguage it allows the users to store and exchange pathway knowl-

Interacton

teractid

#C'ontroller
control

#Controlled #Anteractions

S

Figure 1: The building blocks for every BioPAX model: molecules, interac-
tions and pathways.

The BioPAX ontology models the domain of biological pathway knowledge.
Classes like Protein, RNA, Interaction and Pathway, define the entities in
this domain. Their respective properties, like NAME, SEQUENCE, CON-
TROLLER and PATHWAY-COMPONENT, define the characteristics of and
the links between the instances of these classes. An overview of the main
classes in BioPAX Level 2 is shown in the following figure:

| > | Entity | < | |

’ Physical Entity ‘ ’ Interaction ‘ ’ Pathway ‘
A A

L)
1 |
’ Physical Interaction ‘

E A

Conversion Control

xa|dwo)
ulajoid

H-

‘ a|No9Io|\ |leWwS ‘—

A
[| |
=
%’ O = (@) o
o) o 1 o2
g 3 S5 © c
1) xo}) &)
3) 2 o 5
= < o ® o
o 3 S
] >
5 8
> @ A
—_—)
Q o
o <
3 | I
A
I

Transport with Biochemical Reaction

Figure 2: Class inheritance graph of the BioPAX ontology Level 2.

A detailed description of BioPAX can be found at www.biopax.org. The
BioPAX ontology is constantly being revised and improved. The latest re-
leased version of the ontology is BioPAX Level 3. This package currently
supports BioPAX Level 2 and has preliminary support for BioPAX Level 3.
All examples in this vignette are focused at Biopax Level 2.

Mapping the XML/RDF representation of the BioPAX data from the OWL
file to R is a work intensive task, especially considering the size of many
complete exports of popular databases. The Pathway Interaction Database
of the NCI consists of more than 50000 BioPAX instances, for example.
Unfortunately mapping these instances to S3 or S4 classes within R and
managing them within lists is not feasible, therefore the classes and their
respective properties are internally mapped to a single R matrix and then
converted to a data.table. This allows for efficient indexing and selecting of
subsets of this data.table.

The mapping of BioPAX data is performed as revertible as possible, with
one caveat, however. The XML structure of the data would allow for an
infinite nesting of instance declarations. An example would be to instantiate

an external publication reference within a protein instance, which could itself
be instantiated in another instance. This is not desirable when attempting
to map the data to a tabular format like data.frame or data.table. The trick
here is to move these instances into the main XML tree and reference the
specific instance with an rdf:resource attribute.

An excerpt of the internal data.table of a biopax model, as created in the

last section of this document "Modifying BioPAX":

class id property property attr | property attr value property value
pathway | mypwid2 | NAME rdf:datatype http://www.w3.0rg/2001/XMLSchema#string | pathwayl
pathway | mypwid2 PATHWAY-COMPONENTS | rdf:resource #control 1

pathway | mypwid2 PATHWAY-COMPONENTS | rdf:resource #control 2

control control_1 | CONTROL-TYPE rdf:datatype http://www.w3.0org/2001 /XMLSchema#string | ACTIVATION
control control 1 | CONTROLLER rdf:resource #myPEPid_A

control control 1 | CONTROLLED rdf:resource #myBCRid_B

control control_2 | CONTROL-TYPE rdf:datatype http://www.w3.0org/2001/XMLSchema#string | INHIBITION
control control 2 | CONTROLLER rdf:resource #myPEPid_A

control control 2 | CONTROLLED rdf:resource #myBCRid_C

This data.table represents instances as a collection of their properties. The
first column specifies the class and the second column specifies the id of the
instance. The properties, for example "NAME", can either be of rdf:datatype,
usually a string like "pathwayl", or of type rdf:resource, which is a reference
to another instance, like "#control 1".

For comprehensive databases this data.table can reach quite extensive sizes.
The data.table itself can be accessed directly via the slot "dt" of the parsed
object, e.g. by accessing

> head(biopax$dt)

class id property property_attr
<char> <char> <char> <char>
1: bioSource Homo_sapiens NAME rdf:datatype
2: bioSource Homo_sapiens TAXON-XREF rdf:resource
3: unificationXref NCBI_taxonomy_9606 DB rdf:datatype
4: unificationXref NCBI_taxonomy_9606 ID rdf:datatype
5: dataSource example_DataSource NAME rdf:datatype
6: dataSource example_db_DataSource NAME rdf:datatype
property_attr_value property_value
<char> <char>
1: http://www.w3.org/2001/XMLSchema#string Homo sapiens
2: #NCBI_taxonomy_9606
3: http://www.w3.0rg/2001/XMLSchema#string NCBI_taxonomy
4: http://www.w3.org/2001/XMLSchema#tstring 9606

5: http://www.w3.0rg/2001/XMLSchema#tstring example biopax model
6: http://www.w3.org/2001/XMLSchema#string example biopax model data

7 Accessing the Data

Many convenience functions are available that will aid the user in selecting
certain parts or instances of the biopax model. Generally, these functions will
require the parsed biopax model as parameter as well as other parameters
that differ from function to function.

The most basic function to select distinct instances is selectInstances. This
functions allows the user to specify conditions like class, id or name to select
a subset of the internal data.table meeting these conditions. This functions
is vectorized to allow the user to select multiple instances. The user can
extend the selection criteria by several parameters to include, for example,
inherited classes or all referenced instances.

The next type of functions return (compared to the internal data.table)
nicely formatted lists: listInstances, listPathways, listPathwayComponents,
listComplexComponents. These functions return a list of class, ID and names
of instances.

The function getReferencedIDs, which can optionally be called recursively,
is passed a biopax model and an instance ID. The return value is a vector of
IDs of all instances that are referenced by the instance supplied.

This example retrieves a list of all pathways within a BioPAX model, selects
two of them and retrieves their data, their component lists and components.

pw_list = listInstances(biopax, class='"pathway")

pw_complete = selectInstances(biopax, class="pathway")

pwidl = "pid_p_100002_wntpathway"

pwid2 = "pid_p_100146_hespathway"

getInstanceProperty(biopax, pwidl, property="NAME")
getInstanceProperty(biopax, pwid2, property="NAME")

pw_1 = selectInstances(biopax, class="pathway", id=pwidl)
pw_1_component_list = listPathwayComponents(biopax,pwidl)
pw_1_components = selectInstances(biopax,id=pw_1_component_list$id)
pw_2 = selectInstances(biopax, class="pathway", id=pwid2)
pw_2_component_list = listPathwayComponents(biopax,pwid2)
pw_2_components = selectInstances(biopax,id=pw_2_component_list$id)

V VVVV V VYV VYV VYV

10

8 Visualization

These functions transform BioPAX pathways into regulatory graphs. How-
ever, there are some caveats. These graphs rely solely on the BioPAX infor-
mation about activations and inhibitions, by classes of, or inheriting from,
class "control". Involved molecules, as nodes, are connected, via edges, de-
pending on this information. Lack of this information will inevitably lead
to disconnected or incomplete graphs. The splitComplexMolecules param-
eter is available to split all complexes into their most atomic members, all
members will share the same in- and outgoing edges.

Transform pathways into a regulatory graph or an adjacency matrix:

> pw_1_adj = pathway2AdjacancyMatrix(biopax, pwidl, expandSubpathways=TRUE,
+ splitComplexMolecules=TRUE, verbose=TRUE)

> pw_1_graph = pathway2RegulatoryGraph(biopax, pwidl,

+ splitComplexMolecules=TRUE, verbose=TRUE)

> pw_2_adj = pathway2AdjacancyMatrix(biopax, pwid2, expandSubpathways=TRUE,
+ splitComplexMolecules=TRUE, verbose=TRUE)

> pw_2_graph = pathway2RegulatoryGraph(biopax, pwid2,

+ splitComplexMolecules=TRUE, verbose=TRUE)

Layout the graphs using Rgraphviz:

> pw_1_graph_laidout = layoutRegulatoryGraph(pw_1_graph)
> pw_2_graph_laidout = layoutRegulatoryGraph(pw_2_graph)

Plot the graphs:

> plotRegulatoryGraph(pw_1_graph)
> plotRegulatoryGraph (pw_2_graph)

11

Figure 3: WNT pathway

AN

@@

\

\

& @ @ @
AN

~
~

Figure 4: Segmentation Clock pathway

A number of functions can be applied to these regulatory graphs, for example,
merge, diff or intersect.

Merge graphs and render them (this time disable re-layouting for the plot
function):

> merged_graph = uniteGraphs(pw_1_graph_laidout,pw_2_graph_laidout)
> plotRegulatoryGraph(merged_graph, layoutGraph=FALSE)

12

0@/@@.“ @@?@ =

Figure 5: Merged pathway

If you want to make your graphs more beautiful a good start would be to look
at Rgraphviz parameters that can be set via nodeRenderInfo. For example,
try out:

> nodeRenderInfo(merged_graph)$cex = 1

> nodeRenderInfo(merged_graph)$textCol = "red"

> nodeRenderInfo(merged_graph)$£fill = "green"

> plotRegulatoryGraph (merged_graph, layoutGraph=FALSE)

13

9 Modifying BioPAX

Instead of merging the regulatory graph representations it is also possible
to merge the biopax pathways directly and add this new, merged pathway
directly into the biopax model.

> biopax = mergePathways(biopax, pwidl, pwid2, NAME="mergedpwl", ID="mergedpwidl")
> mergedpw_graph = pathway2RegulatoryGraph(biopax,

+ "mergedpwidl", splitComplexMolecules=TRUE, verbose=TRUE)

> plotRegulatoryGraph(layoutRegulatoryGraph(mergedpw_graph))

Although it is possible to directly edit the parsed BioPAX data by accessing
biopax$dt, there are quite a few convenience functions to make life easier. In
the following code block a new BioPAX model will be created from scratch
using createBiopax. Functions addPhysicalEntity, addPhysicalEntityPartic-
ipant, addBiochemicalReaction, addControl and addPathway will be used to
build 2 pathways with 2 controls between 3 proteins each.

Start out with adding 5 proteins (Protein A-E), their corresponding phys-
icalEntityParticipant instances and a biochemical reaction where they do
something to themselves.

> biopax = createBiopax()

> for(i in LETTERS[1:5]) {

+ biopax = addPhysicalEntity(biopax, class='protein',
NAME=paste("protein",i,sep="_"),
id=paste("proteinid",i,sep="_"))

biopax = addPhysicalEntityParticipant(biopax,
referencedPhysicalEntityID=paste("proteinid",i,sep="_"),
id=paste ("PEPid",i,sep="_"))

biopax = addBiochemicalReaction(biopax, LEFT=paste("PEPid",i,sep="_"),
RIGHT=paste ("PEPid",i,sep="_"),
id=paste("BCRid",i,sep="_"))

+ + + + + + + + +

Now we add some controls (A-B,A-C,C-D,C-E) between those proteins.

> biopax = addControl (biopax, CONTROL_TYPE="ACTIVATION",

+ CONTROLLER="PEPid_A", CONTROLLED=c("BCRid_B"),id="control_1")
> biopax = addControl(biopax, CONTROL_TYPE="INHIBITION",
+ CONTROLLER="PEPid_A", CONTROLLED=c("BCRid_C"),id="control_2")
> biopax = addControl(biopax, CONTROL_TYPE="ACTIVATION",
+ CONTROLLER="PEPid_C", CONTROLLED=c("BCRid_D"),id="control_3")

14

> biopax = addControl(biopax, CONTROL_TYPE="INHIBITION",

+ CONTROLLER="PEPid_C", CONTROLLED=c("BCRid_E"), id="control_4")

These interactions will be used as pathway components for new pathways by
calling addPathway.

> biopax = addPathway(biopax, NAME="pwl1",
+ PATHWAY_COMPONENTS=c("control_1","control_2"), id="pwidl")
> biopax = addPathway(biopax, NAME="pw2",
+ PATHWAY_COMPONENTS=c("control_3","control_4"), id="pwid2")
>

biopax = mergePathways(biopax, '"pwidl", "pwid2", NAME="pw3", id="pwid3")

Now these new pathways are ready to be viewed!

> pwl_graph = pathway2RegulatoryGraph(biopax, "pwidl",

+ splitComplexMolecules=TRUE, verbose=TRUE)
> pw2_graph = pathway2RegulatoryGraph(biopax, "pwid2",
+ splitComplexMolecules=TRUE, verbose=TRUE)

> pw3_graph = pathway2RegulatoryGraph(biopax, "pwid3",
+ splitComplexMolecules=TRUE, verbose=TRUE)

v

plotRegulatoryGraph(layoutRegulatoryGraph(pwl_graph))
plotRegulatoryGraph (layoutRegulatoryGraph (pw2_graph))
plotRegulatoryGraph(layoutRegulatoryGraph(pw3_graph))

vV Vv

protein_A protein_C

protein_B protein_C protein_D protein_E

\a=

(profein_A
oen B @roen s
Pprotein_D protein_E

Figure 6: Newly created and merged pathways
15

Finally, properties as well as complete instances can be removed from the
current BioPAX model by calling:

> temp = biopax
> temp = removeProperties(temp, id="newpwid2", properties="PATHWAY-COMPONENTS")
> temp = removeInstance(temp, id="newpwid3")

10 Writing out in BioPAX Format

Writing out an internal BioPAX model into a valid .owl file is very easy.
Simply call:

> writeBiopax(biopax, file="test.writeBiopax.owl")

11 Example: Parsing Reactome Biopax Level 3

In this section we will work with the Homo Sapiens pathways from Reactome
http://www.reactome.org in Biopax Level 3 format. To download the data
either run

> file = downloadBiopaxData("reactome","reactome", version="biopax3")

or download and unzip the file directly from http://www.reactome.org/
download/ The download is quite large (about 70MB) and might take a
while. It is strongly recommended to download the file once and re-use it.
Do not run an R script downloading this file every hour! To parse the "Homo
sapiens.owl" file run

> biopax = readBiopax(file)
> print(biopax)

Due to the size of the database this might take up to an hour. Some messages
will be displayed to keep you entertained.

12 Session Information

The version number of R and packages loaded for generating the vignette
were:

16

http://www.reactome.org
http://www.reactome.org/download/
http://www.reactome.org/download/

R version 4.5.0 RC (2025-04-04 r88126 ucrt), x86_64-w64-mingw32

Locale: LC_COLLATE=C, LC_CTYPE=English_United States.utf8,
LC_MONETARY=English_United States.utf8, LC_NUMERIC=C,
LC_TIME=English_United States.utf8

Time zone: America/New_York

TZcode source: internal

Running under: Windows Server 2022 x64 (build 20348)
Matrix products: default

Base packages: base, datasets, grDevices, graphics, methods, stats,
utils

Other packages: data.table 1.17.0, rBiopaxParser 2.48.0

Loaded via a namespace (and not attached): compiler 4.5.0,
tools 4.5.0

17

	Introduction
	Installation Instructions
	Prerequisites
	Prerequisites for Linux users
	Prerequisites for Windows users

	Installation

	Getting Started
	Downloading BioPAX Data
	Parsing BioPAX Data
	Internal Data Model
	Accessing the Data
	Visualization
	Modifying BioPAX
	Writing out in BioPAX Format
	Example: Parsing Reactome Biopax Level 3
	Session Information

