Gene filtering by PCA for Affymetrix GeneChips

Jun Lu, Pierre R. Bushel

April 15, 2025

Contents

1 TIntr ion 1

2__Installation| 2

[3 Gene filtering by PCA| 2
3.1 Steps| 3
B.2 Examplelo 3

[4_Session| 4

1 Introduction

Due to the nature of the array experiments which examine the expression of tens of
thousands of genes (or probesets) simultaneously, the number of null hypotheses to be
tested is large. Hence multiple testing correction is often necessary to control the number
of false positives. However, multiple testing correction can lead to low statistical power
in detecting genes that are truly differentially expressed. Filtering out non-informative
genes allows for a reduction of the number of hypotheses, which potentially can reduce
the impact of multiple testing corrections. While several filtering methods have been sug-
gested [I], the best practice to filtering is still under debate. We propose a new filtering
statistic for Affymetrix GeneChips, based on principal component analysis (PCA) on the
probe-level gene expression data. Given that all the probes in a probeset are designed to
target one or a common cluster of transcripts, the measurements of probes in a probeset

1

should be correlated. The degree of concordance of gene expression among probes can
be approximated by the proportion of variation accounted by the first principal com-
ponent (PVAC). Using a wholly defined spike-in dataset, we have shown that filtering
by PVAC provides increased sensitivity in detecting truly differentially expressed genes
while controlling the false discoveries. Furthermore, a data-driven approach to guide the
selection of the filtering threshold value is also proposed.

The pvac package implements the method proposed in the paper: Jun Lu, Robnet
T. Kerns, Shyamal Peddada, and Pierre R. Bushel 2011 “Principal component analysis-
based filtering improves detection for Affymetriz gene expression arrays” Nucleic Acids
Res. 39(13):e86.

In the sections below, we provide instructions on how to perform the PCA-based
gene filtering using this package, and an example for demonstration.

2 Installation

Simply skip this section if one has been familiar with the usual Bioconductor installation
process. Assume that a recent version of R has been correctly installed.

Install the packages from the Bioconductor repository, using the BiocManager: : install
function. Within R console, type:

> if (!requireNamespace ("BiocManager", quietly=TRUE))
+ install.packages ("BiocManager")
> BiocManager: :install("pvac")

Installation using the BiocManager::install function automatically handles the
package dependencies. The pvac package depends on the package affy, which can be
installed in the same way as shown above. We also recommend to install the package
pbapply (for showing a progress bar).

3 Gene filtering by PCA

PCA-based filtering requires the probe level data (Cel files). Also, note that filtering is
performed using either all samples, or a subset of samples chosen by ignoring the sample
class labels. Outlier samples should be removed before filtering. Ideally the number of
samples should be at least 6 in order to make the PCA-based filtering effective.

3.1 Steps

These are a few steps for a typical analysis. Here assume all the Cel files are put in a
directory, say /my /directory/celfiles

1. Read in the Cel files and store in an AffyBatch object

> library(affy)
> abatch <- ReadAffy(celfile.path="/my/directory/celfiles")

2. Summarize the probe level data into probeset level data, and store them in an
ExpressionSet object. Here we use the method called rma as an example,

> myeset <- rma(abatch)

3. Perform gene filtering and exclude probesets with low concordance in probe inten-
sity measurements

> library(pvac)
> ft <- pvacFilter(abatch)
> myeset <- eset[ft$aset,]

Here the myeset is an ExpressionSet object containing probesets that have
passed the default filtering threshold. To see additional information returned by
pvacFilter, type 7pvacFilter.

4. Identify the differentially expressed genes. In the case of a two-group comparison,
one can use the simple t test to identify the genes of interest. Given a vector
group which contains the group indicators for the samples (from the function call
sampleNames (myeset)), one can do,

> library(genefilter)
> myres = rowttests(exprs(myeset), as.factor(group))

3.2 Example

We use MLL.A dataset in the package ALLMLL as an example to illustrate the PCA
filtering procedure. This dataset contains 20 samples from a leukemia study with RNAs
hybridized on the HGU133A chip. The data have been stored in an AffyBatch object.
First we perform the usual summarization and then filtering.

> library(affy)
> library(pvac)

> library(ALLMLL)
> data(MLL.A)
> myeset <- rma(MLL.A)

Background correcting
Normalizing
Calculating Expression

> ft <- pvacFilter (MLL.A)

Making absent/present calls, preprocessing data ...
Computing the PVAC scores ...

Deriving the filtering threshold ...

PVAC cutoff score (<=0.5): 0.44484

> myeset.filtered <- myeset[ft$aset,]

The pvac package selects the filtering threshold by first identifying a group of probe-
sets being called “Absent” across all samples by the mas5 algorithm (in the affy package).
The 99 percentile value of the PVAC scores in this (null) set of probesets is chosen as the
default cutoff value. Certainly one can lower the percentile value to relax the filtering
threshold if necessary. In addition, the maximum value of the threshold value is set at
0.5, which corresponds to 50% of the total variation accounted for by the first PC.

We can plot the distributions of the PVAC scores as shown in Figure 1.

> plot(density(ft$pvac[ft$nullset]),xlab="PVAC score',main="",
+ col="gray",cex.lab=0.5,x1im=c(0,1))

> lines(density(ft$pvac),col=1)

> abline (v=ft$cutoff,lty=2,col="gray")

4 Session
> print(sessionInfo())

R version 4.5.0 RC (2025-04-04 r88126 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows Server 2022 x64 (build 20348)

4

Density

0.0 0.2 0.4 0.6 0.8 1.0

PVAC score

Figure 1: Density plots of PVAC scores from a group of “Absent” probesets (in gray)
and the full set (in black). The vertical gray line indicates the default filtering cutoff
value.

Matrix products: default
LAPACK version 3.12.1

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.utf8
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.utf8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats graphics grDevices utils

other attached packages:

[1] pbapply_1.7-2 hgul133acdf_2.18.0
[4] pvac_1.56.0 affy_1.86.0

[7] BiocGenerics_0.54.0 generics_0.1.3

loaded via a namespace (and not attached):

datasets methods base

ALIMLL_1.47.0
Biobase_2.68.0

[1] crayon_1.5.3 vetrs_0.6.5 httr_1.4.7

[4] c1i_3.6.4 rlang_1.1.6 DBI_1.2.3

[7] UCSC.utils_1.4.0 png_0.1-8 jsonlite_2.0.0

[10] bit_4.6.0 S4Vectors_0.46.0 Biostrings_2.76.0
[13] stats4_4.5.0 KEGGREST_1.48.0 fastmap_1.2.0

[16] GenomeInfoDb_1.44.0 IRanges_2.42.0 memoise_2.0.1

[19] BiocManager_1.30.25 compiler_4.5.0 preprocessCore_1.70.0
[22] RSQLite_2.3.9 blob_1.2.4 XVector_0.48.0

[25] R6_2.6.1 parallel_4.5.0 GenomeInfoDbData_1.2.14
[28] AnnotationDbi_1.70.0 tools_4.5.0 bit64_4.6.0-1

[31] cachem_1.1.0 affyio_1.78.0
References

[1] Richard Bourgona, Robert Gentleman, and Wolfgang Huber. (2010) Independent
filtering increases detection power for high-throughput experiments PNAS 107(21),

9546-9551

	Introduction
	Installation
	Gene filtering by PCA
	Steps
	Example

	Session

