prebs User Guide

Karolis Uziela, Antti Honkela

April 15, 2025

1 Abstract

The prebs package aims at making RNA-sequencing (RNA-seq) data more com-
parable to microarray data. The comparability is achieved by summarizing
sequencing-based expressions of probe regions using standard microarray sum-
marization algorithms: RPA (Lahti et al., 2011) or RMA (Irizarry et al., 2003).
The pipeline takes mapped reads in BAM format as an input and produces ei-
ther gene expressions or original microarray probe set expressions as an output.
A more detailed algorithm description can be found in (Uziela and Honkela),
2013).

2 Installation

prebs can be installed from Bioconductor using the BiocManager::install
function. This ensures that all of the package dependencies are met.

> if (!requireNamespace ("BiocManager", quietly=TRUE))
+ install.packages ("BiocManager")
> BiocManager: :install("prebs")

prebsdata package that is needed to run the examples in this vignette is also
available from Bioconductor.

> if (!requireNamespace("BiocManager", quietly=TRUE))
+ install.packages ("BiocManager")
> BiocManager: :install("prebsdata")

3 Examples

Here we will cover a few simple examples of running prebs in two modes: Custom
CDF and manufacturer’s CDF. The major difference between these two modes
is that Custom CDF gives expression values for genes while manufacturer’s CDF
gives the expression values for the probe sets.

3.1 Loading package and data
To load the package start R and run

> library(prebs)
> library(prebsdata)

The data for our examples is contained in prebsdata package. The data package
contains two sample BAM files, 3 Custom CDF probe sequence mapping files
and 3 manufacturer’s CDF probe sequence mapping files. We will use only 2
Custom CDF and 1 manufacturer’s CDF probe sequence mapping file in our
examples.

The full paths to data files in the prebsdata package can be retrieved using
system.file function.

bam_filel <- system.file(file.path("sample_bam_files", "inputl.bam"),
package="prebsdata")
bam_file2 <- system.file(file.path("sample_bam_files'", "input2.bam"),
package="prebsdata')
bam_files <- c(bam_filel, bam_file2)
custom_cdf_mappingl <- system.file(file.path("custom-cdf",
"HGU133Plus2_Hs_ENSG_mapping.txt"), package="prebsdata")
custom_cdf_mapping2 <- system.file(file.path("custom-cdf",
"HGU133A2_Hs_ENSG_mapping.txt"), package="prebsdata")
manufacturer_cdf_mapping <- system.file(file.path("manufacturer-cdf",
"HGU133Plus2_mapping.txt"), package="prebsdata')

+ VvV + VvV + VvV V + VvV + V

3.2 Running calc_prebs using Custom CDF and RPA sum-
marization method

The prebs package contains only one public function—calc_prebs. The most
basic usage of calc_prebs is running it in Custom CDF mode without paral-
lelization.

calc_prebs has to possible microarray summarization methods: rpa and rma.
The summarization mode can be chosen by setting sum.method parameter. In
this case we do not set the sum.method parameter explicitly, so the default mode
(rpa) is used.

The default output format of calc_prebs is ExpressionSet object defined in
affy package. The expression values can be accessed using exprs function from
Biobase package.

> prebs_values <- calc_prebs(bam_files, custom_cdf_mappingl)

[1] "Finished: inputl.bam"
[1] "Finished: input2.bam"

> head (exprs(prebs_values))

inputl.bam input2.bam
ENSGO0000000003 5.796576 5.303558
ENSGO0000000005 -13.300589 -13.300589
ENSGO0000000419 6.136572 5.798032
ENSGO0000000457 4.437882 5.513711
ENSGO0000000460 3.465189 4.499211
ENSGO0000000938 5.542566 6.200779

Above we can see the expressions of the first few genes with Ensembl gene
identifiers. In this example, the expression level of at least one of the genes is
negligible (the expression values are in logs scale). In fact, most of the other
genes that are not shown here also have a negligible expression level, because
we designed our sample BAM files so that they contain only mapped reads from
the region of the first few genes. Of course, for a real world analysis mapped
reads from all of the genes are needed. However, real world BAM files take a
lot of disk space, so it was not possible to include them in the sample data set.

Since in this case we did not provide explicit CDF package name, the name was

inferred from the probe sequence mapping filename ("custom-cdf/HGU133P1lus2_Hs_ENSG_mapping.txt"
-> hgul33plus2hsensgcdf). Both probe sequence mapping file and custom CDF

package can be downloaded from Custom CDF website:
http://brainarray.mbni.med.umich.edu/brainarray/Database/CustomCDE/
genomic_curated_CDF.asp

In particular, this example uses Ensembl custom CDF package for and HGU133P1us2
platform (version 16.0.0) that can be dowloaded here: http://brainarray.
mbni.med.umich.edu/Brainarray/Database/CustomCDF/16.0.0/ensg.download/
hgul33plus2hsensgcdf_16.0.0.tar.gz

And the corresponding description archive containing probe sequence mapping
file can be downloaded here:
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDE/
16.0.0/ensg.download/HGU133P1lus2_Hs_ENSG_16.0.0.zip

If you want to save prebs values to a text file, you can run this command:

> write.table(exprs(prebs_values), file="prebs_values.txt", quote=FALSE)

3.3 Running calc_prebs using Custom CDF and RPA sum-
marization method

Running calc_prebs in rma mode is very similar to rpa mode. All that has to
be changed is sum.method parameter.

> prebs_values <- calc_prebs(bam_files, custom_cdf_mappingl, sum.method="rma")

[1] "Finished: inputl.bam"
[1] "Finished: input2.bam"
Normalizing

Calculating Expression

http://brainarray.mbni.med.umich.edu/brainarray/Database/CustomCDF/genomic_curated_CDF.asp
http://brainarray.mbni.med.umich.edu/brainarray/Database/CustomCDF/genomic_curated_CDF.asp
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/16.0.0/ensg.download/hgu133plus2hsensgcdf_16.0.0.tar.gz
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/16.0.0/ensg.download/hgu133plus2hsensgcdf_16.0.0.tar.gz
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/16.0.0/ensg.download/hgu133plus2hsensgcdf_16.0.0.tar.gz
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/16.0.0/ensg.download/HGU133Plus2_Hs_ENSG_16.0.0.zip
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/16.0.0/ensg.download/HGU133Plus2_Hs_ENSG_16.0.0.zip

> head (exprs(prebs_values))

inputl.bam input2.bam
ENSGO0000000003 5.727919 4.960582
ENSGO0000000005 -13.300589 -13.300589
ENSGO0000000419 6.398204 5.356384

ENSGO0000000457 3.619474 5.194778
ENSGO0000000460 2.858413 3.925149
ENSG0O0000000938 5.173077 6.253996

The rest of the results in this vignette will be based on the default (rpa) mode.

3.4 Setting calc_prebs output format to a data frame

By default calc_prebs outputs an ExpressionSet object with PREBS values. If
you prefer to have a data frame as an output, you can set output_eset option
to FALSE.

> prebs_values <- calc_prebs(bam_files, custom_cdf_mappingl, output_eset=FALSE)

[1] "Finished: inputl.bam"
[1] "Finished: input2.bam"

> head (prebs_values)

inputl.bam input2.bam ID
1 5.796314 5.303296 ENSG00000000003
2 -13.300589 -13.300589 ENSGO0000000005
3 6.136587 5.798048 ENSG00000000419
4.437882 5.513711 ENSG00000000457
3.465243 4.499266 ENSG00000000460
5.542566 6.200779 ENSGO0000000938

D O

3.5 Running calc_prebs with parallelization

Now let’s run the same task with a simple parallelization. The results will be
identical to the ones above.

> library("parallel")

> N_CORES = 2

> CLUSTER <- makeCluster (N_CORES)

> prebs_values <- calc_prebs(bam_files, custom_cdf_mappingl, cluster=CLUSTER)
> stopCluster (CLUSTER)

3.6 Running calc_prebs for another microarray platform

If we want to run calc_prebs with a different microarray platform, we just
have to provide another probe sequence mapping file.

> prebs_values <- calc_prebs(bam_files, custom_cdf_mapping2)

The corresponding Custom CDF package hgul83a2hsensgedf has to be down-
loaded and installed prior to running this command. It can be found here:
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDE/
16.0.0/ensg.download/hgul33a2hsensgcdf _16.0.0.tar.gz

3.7 Running calc_prebs using manufacturer’s CDF
Running calc_prebs with manufacturer’s CDF is not so much different either.

All we have to do is to provide a suitably formatted probe sequence mapping
file.

> prebs_values <- calc_prebs(bam_files, manufacturer_cdf_mapping)
[1] "Finished: inputl.bam"

[1] "Finished: input2.bam"

Calculating Expression

> head (exprs(prebs_values))

inputl.bam input2.bam
1007_s -13.307292 -13.307292

1053 3.536032 3.424836
117 -5.413422 -5.913413
121 -13.307292 -13.307292
1255_g -13.307292 -13.307292
1294 2.772925 2.187970

As mentioned before, manufacturer’s CDF mode gives probe set expressions as
an output. In the above example, you can see the the expression values for the
first few probe sets of our example data set.

One problem with running calc_prebs using manufacturer’s CDF is that Affymetrix
does not provide probe sequence mappings for most of the microarray platforms.
Therefore, probe sequence mapping files have to be created manually, as it will

be discussed in Section

Asin Custom CDF case, the CDF package name is inferred from probe sequence
mapping file ("custom-cdf/HGU133P1lus2_mapping.txt" -> hgul33pluscdf).
If we are not sure if the mapping file is named correctly, it is better to provide
CDF package filename explicitly.

> prebs_values <- calc_prebs(bam_files, manufacturer_cdf_mapping,
+ cdf_name="hgu133plus2cdf")

Now we have presented pretty much all important ways of running calc_prebs
function. From this point, you can proceed with downstream analysis of calc_prebs
results. However, so far we have left out some important details about input
requirements of calc_prebs function that will be discussed in the next section.

http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/16.0.0/ensg.download/hgu133a2hsensgcdf_16.0.0.tar.gz
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/16.0.0/ensg.download/hgu133a2hsensgcdf_16.0.0.tar.gz

4 Detailed input specification

The main function of the package calc_prebs has the following input argu-
ments:

bam _files Mapped reads in BAM format

probe mapping file, Probe sequence mappings in a genome

cdf name ("*cdfname*_mapping.txt" file) and the
name of CDF package

cluster Cluster object for parallelization

output eset Option that controls output format (Expres-
sionSet vs data frame)

paired ended reads, Options that control the process of counting

ignore strand reads

sum.method Summarization method ("rpa" or "rma")

In this section we will discuss all the input requirements in more detail. Note
that only two input arguments are mandatory: bam_files and probe_mapping_file.
The rest of the arguments are optional and have their default values.

4.1 BAM files

For using calc_prebs function you will need to have mapped reads in BAM
format. For read mapping we recommend using TopHat software (Trapnell
et al., |2009). We suggest to align the reads only to the known transcriptome.
You can do this by using --transcriptome-only option and supplying your
own transcriptome annotation file via --GTF option. Transcriptome annotation
files can be downloaded from Ensembl [FTP server. Finally, we require that
reads are mapped to no more than 1 location in the genome. This can be
achieved by using option --max-multihits 1. So for human genome, sample
TopHat run could look like this:

tophat --transcriptome-only --max-multihits 1 \

--GTF ./Human_transcriptome/Homo_sapiens.GRCh37.65.gtf \
--transcriptome-index=./Human_transcriptome/known \
--output-dir ./tophat-out hgl9 inputl.fastq input2.fastq

4.2 Probe sequence mappings and CDF packages

calc_prebs function can be used in two modes: Custom CDF (Dai et al.l |2005])
and manufacturer’s CDF. Custom CDF mode produces gene expressions while
manufacturer’s CDF mode produces original probe set expressions. Now we will
discuss the input requirements for the two modes in more detail.

4.2.1 Custom CDF

As we have already mentioned calc_prebs function requires a probe sequence
mapping file and CDF package name as its arguments. For Custom CDF mode,

http://www.ensembl.org/info/data/ftp/index.html

both the mapping file and the package can be downloaded from the Custom
CDF website:
http://brainarray.mbni.med.umich.edu/brainarray/Database/CustomCDE/
genomic_curated_CDF.asp

The Custom CDF supports many types of gene identifiers, but in our examples
we are using Custom CDF files with Ensembl gene identifiers (version 16.0.0).
In the Custom CDF download page for each microarray platform you can find
both the the Custom CDF package file (denoted by "C") and the Custom CDF
description archive (denoted by "Z") containing the probe sequence mapping
file.

If you get a message "Note: X probe sequences are missing in _mapping.txt
file." while running prebs in Custom CDF mode, it is probably because the
Custom CDF file that you installed and the mapping file have different versions.
You can fix this by downloading and installing corresponding Custom CDF
package and _mapping.txt file. However, if you get this message while running
prebs in manufacturer’s CDF mode, you shouldn’t worry too much. You will
understand the reason after you read the next section.

The Custom CDF package can be installed like a regular R package (using R
CMD INSTALL command). For example, to install hgul33plus2hsensgedf in
Unix-like systems type R CMD INSTALL hgul33plus2hsensgedf 16.0.0.tar.gz.

The probe sequence mapping file is named as "*cdfname*_mapping.txt". Since
CDF package name can be inferred from probe sequence mapping filename,
explicitly providing CDF package name to calc_prebs function is optional.
For example, if you are using "HGU133P1lus2_Hs_ENSG_mapping.txt" probe se-
quence mapping file do not provide CDF package name, it is assumed that
hgul33plus2hsensgcdf package is used.

4.2.2 Manufacturer’s CDF

The manufacturer’s CDF packages can be downloaded and installed from the
bioconductor. For example, to install CDF package for HGU133P1us2 platform,

type:

> if (!requireNamespace ("BiocManager", quietly=TRUE))
+ install.packages ("BiocManager")
> BiocManager: :install ("hgu133plus2cdf")

Unfortunately, probe sequence mapping files are not provided for most of the
microarray platforms. For some microarray platoforms, such as HuEx10stv2,
the probe sequence mappings are available from the |Affymetrix| website (HuEx-
1_0-st-v2 Probe Sequences, tabular format)). However, they are mapped to an
old version of genome assembly (hgl6), so we do not recommend using them.

In our data package prebsdata, we provide probe sequence mapping files for
three microarray platforms: HGU133Plus2, HGU133A2 and HGFocus. We have
created these files by mapping probe sequences to human genome using Bowtie
software |[Langmead et al. (2009). If you want to use another microarray plat-
form, you will have to map probe sequences yourself. A detailed procedure of

http://brainarray.mbni.med.umich.edu/brainarray/Database/CustomCDF/genomic_curated_CDF.asp
http://brainarray.mbni.med.umich.edu/brainarray/Database/CustomCDF/genomic_curated_CDF.asp
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/16.0.0/ensg.asp
http://www.affymetrix.com/
http://www.affymetrix.com/Auth/analysis/downloads/na25/wtexon/HuEx-1_0-st-v2.probe.tab.zip
http://www.affymetrix.com/Auth/analysis/downloads/na25/wtexon/HuEx-1_0-st-v2.probe.tab.zip

creating probe sequence mapping files using Bowtie is outlined below.

For most of the microarray platforms, the probe sequences can be retrieved
from the platform’s probe package. The probe package name is the same as
CDF package name, except that it ends with "probe" instead of "cdf". For
example, to install probe package for "hgul33plus2" platform, type:

> if (!requireNamespace("BiocManager'", quietly=TRUE))
+ install.packages ("BiocManager")
> BiocManager: :install("hgul33plus2probe")

Once you load the hgu133plus2probe package, you can find the information about
the probe sequences stored in hgul33plus2probe object which can be converted
to a data frame.

> library("hgul33plus2probe")
probes <- as.data.frame (hgul33plus2probe)
> head (probes)

A\

sequence x y Probe.Set.Name

1 CACCCAGCTGGTCCTGTGGATGGGA 718 317 1007_s_at
2 GCCCCACTGGACAACACTGATTCCT 1105 483 1007_s_at
3 TGGACCCCACTGGCTGAGAATCTGG 584 901 1007_s_at
4 AAATGTTTCCTTGTGCCTGCTCCTG 192 205 1007_s_at
5 TCCTTGTGCCTGCTCCTGTACTTGT 844 979 1007_s_at
6 TGCCTGCTCCTGTACTTGTCCTCAG 537 971 1007_s_at
Probe.Interrogation.Position Target.Strandedness

1 3330 Antisense
2 3443 Antisense
3 3512 Antisense
4 3563 Antisense
5 3570 Antisense
6 3576 Antisense

Next, we should remove rows that have probe set identifiers that start if "TAFFX",
because these do not target genes and are not relevant to us. Also, we use
xy2indices function from affy package to convert probe X and Y coordinates
to probe IDs and add a new column to the data frame. We will save the resulting
data frame to a file "probes.txt".

> library("affy")

> probes <- probes[substr(probes$Probe.Set.Name,1,4) != "AFFX",]

> probes$Probe.ID <- xy2indices(probes$x, probes$y, cdf="hgul33plus2cdf")

> write.table(probes, file="probes.txt'", quote=FALSE, row.names=FALSE, col.names=TRUE)

The first column in a file "probes.txt" contains probe sequence and the seventh
column contains probe ID. To format an input for Bowtie, we need to extract

these two columns and format a fasta file:

tail -n +2 "probes.txt" | awk '{print ">" $7 "\n" $1 }' > probe_sequences.fa

Now we are ready to map the probe sequences to the genome. We suggest using
Bowtie options -a -v 0 to report all perfect match hits. A sample Bowtie run
could look like this:

bowtie -a -v 0 hgl9 -f probe_sequences.fa output_probe_mappings.map

After we map probe sequences to the genome, we must convert Bowtie output
to the format identical to Custom CDF probe sequence mapping files. The de-
fault format of Bowtie output is documented in Bowtie homepage. The first
column contains "Read ID" which in our case is "Probe.ID". We have to read
Bowtie output file "output_probe_mappings.map", and probe sequence infor-
mation file "probes.txt" and merge the two data frames based on "Probe.ID"
column. Then, we have to extract the necessary information from the resulting
merged table and save it into "_mapping.txt" file. Note that we also have
to shift Bowtie mapping positions by 1, because it uses a different offset than
"_mapping.txt" files.

Briefly, here are the commands we have to run:

probe_mappings <- read.table("output_probe_mappings.map")
colnames (probe_mappings) <- c("Probe.ID", "strand",
"chr", "start", "seq", "match", "multiple")

bowtie reports 0O-offset, but _mapping.txt files are 1-offset
probe_mappings$start <- probe_mappings$start + 1
probes <- read.table('"probes.txt", head=TRUE)
probes <- merge(probes, probe_mappings)
output_table <- data.frame (Probe.Set.Name=probes$Probe.Set.Name,

Chr=probes$chr, Chr.Strand=probes$strand, Chr.From=probes$start,

Probe.X=probes$x, Probe.Y=probes$y, Affy.Probe.Set.Name=probes$Probe.Set.Name)
write.table(output_table, file="HGU133Plus2_mapping.txt",

quote=FALSE, sep="\t'", row.names=FALSE)

n

+ VvV + + VvV VvV VVV + VYV

The resulting "_mapping.txt" file can be used as an input for calc_prebs. If
some of the probe sequences were mapped to multiple locations, calc_prebs
function will handle them by summing up the read overlaps from all of these
locations. If some probe sequences could not be mapped, calc_prebs will
assign minimal expression values to these probes. If you are using a manu-
ally created "_mapping.txt" file, calc_prebs will show notifications about the
missing probe sequences (that were not mapped) and probe sequences that have
duplicates (that were mapped to multiple locations).

4.3 Cluster object for parallel computation

If you have many input BAM files, processing them can be a computationally
expensive task. Therefore, prebs provides a possibility to parallelize BAM file
processing using parallel package. In order to parallelize the work, you must
use makeCluster function to create a cluster object and pass it to calc_prebs
function. The function makeCluster has several parameters that support dif-
ferent types of clusters. For a detailed explanation of makeCluster, please,

http://bowtie-bio.sourceforge.net/manual.shtml#default-bowtie-output

refer to parallel package manual. One simple example of using makeCluster
was already covered in Section

4.4 Output format

calc_prebs provides two arguments for output format: ExpressionSet or data.frame.
ExpressionSet is a container for high-throughput assays and experimental meta-
data from Biobase package, whereas data frame is just a standard R data struc-
ture.

4.5 Read counting options

calc_prebs has a couple of arguments that control the process of the read count-
ing. paired_ended_reads argument ensures the correct treatment of paired-
ended reads. If your data contains paired-ended reads, you should set this op-
tion to TRUE, otherwise the two mate reads will be treated as independent units.
Another argument, ignore_strand controls whether the strand from which the
reads comes should be considered during read-counting. If your data comes from
strand-specific RNA-seq protocol, set this option to FALSE, otherwise, leave it
at its default value (TRUE).

4.6 Summarization method

prebs Supports two summarization methods: rpa and rma. You can set the sum-
marization method using sum.method parameter. The default summarization
method is rpa. Please, note that before prebs version 1.7.1, only rma mode was
available and it was the default mode. However, we decided to make rpa the de-
fault mode, because it gives slightly higher RN A-seq—microarray comparability,
provided that the data from both platforms is processed using rpa method.

5 Session Info
> sessionInfo()

R version 4.5.0 RC (2025-04-04 r88126 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows Server 2022 x64 (build 20348)

Matrix products: default
LAPACK version 3.12.1

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.utf8
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C

10

[6] LC_TIME=English United States.utf8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base

other attached packages:

[1]
[3]
[5]
[7]
[9]
[11]
[13]
[15]
[17]
[19]
[21]
[23]

hgu133plus2probe_2.18.0
hgul133plus2cdf_2.18.0
prebs_1.48.0
rmarkdown_2.29
affy_1.86.0
Rsamtools_2.24.0
XVector_0.48.0
Biobase_2.68.0
matrixStats_1.5.0
GenomeInfoDb_1.44.0
S4Vectors_0.46.0
generics_0.1.3

AnnotationDbi_1.70.0
prebsdata_1.43.0
RPA_1.64.0
BiocStyle_2.36.0
GenomicAlignments_1.44.0
Biostrings_2.76.0
SummarizedExperiment_1.38.0
MatrixGenerics_1.20.0
GenomicRanges_1.60.0
IRanges_2.42.0
BiocGenerics_0.54.0

loaded via a namespace (and not attached):

[1]

[4]

[7]
[10]
[13]
[16]
[19]
[22]
[25]
[28]
[31]
[34]
[37]
[40]
[43]
[46]
[49]
[52]
[55]
[58]
[61]
[64]
[67]
[70]
[73]
[76]

DBI_1.2.3
rlang_1.1.6
compiler_4.5.0
png_0.1-8
stringr_1.
fastmap_1.
bit_4.6.0
jsonlite_2.0.0
rhdfbfilters_1.20.
BiocParallel_1.42.
R6_2.6.1
iterators_1.0.14
splines_4.5.0
abind_1.4-8
codetools_0.2-20
plyr_1.8.9
survival_3.8-3
BiocManager_1.30.25
ggplot2_3.5.2
glue_1.8.0
rhdf5_2.52.0
colorspace_2.1-1
cli_3.6.4
gtable_0.3.6
memoise_2.0.1
lifecycle_1.0.4

5.1
2.0

0
0

bitops_1.0-9 permute_0.9-7
magrittr_2.0.3 ade4_1.7-23
RSQLite_2.3.9 mgcv_1.9-3
vctrs_0.6.5 reshape2_1.4.4
pkgconfig_2.0.3 crayon_1.5.3
UCSC.utils_1.4.0 preprocessCore_1.70.0
xfun_0.52 cachem_1.1.0
biomformat_1.36.0 blob_1.2.4
DelayedArray_0.34.0 Rhdf51ib_1.30.0
parallel_4.5.0 cluster_2.1.8.1
stringi_1.8.7 Rcpp_1.0.14
knitr_1.50 Matrix_1.7-3
igraph_2.1.4 tidyselect_1.2.1
yaml_2.3.10 vegan_2.6-10
lattice_0.22-7 tibble_3.2.1
KEGGREST_1.48.0 evaluate_1.0.3
pillar_1.10.2 affyio_1.78.0
phyloseq_1.52.0 foreach_1.5.2
munsell_0.5.1 scales_1.3.0
tools_4.5.0 data.table_1.17.0
grid_4.5.0 ape_5.8-1
nlme_3.1-168 GenomeInfoDbData_1.2.14
S4Arrays_1.8.0 dplyr_1.1.4
digest_0.6.37 SparseArray_1.8.0
htmltools_0.5.8.1 multtest_2.64.0
httr_1.4.7 bit64_4.6.0-1

11

[79] MASS_7.3-65

References

Manhong Dai, Pinglang Wang, Andrew D Boyd, Georgi Kostov, Brian Athey,
Edward G Jones, William E Bunney, Richard M Myers, Terry P Speed, Huda
Akil, Stanley J Watson, and Fan Meng. Evolving gene/transcript definitions
significantly alter the interpretation of GeneChip data. Nucleic Acids Res, 33
(20):e175, 2005. doi: 10.1093 /nar/gnil79.

Rafael A Trizarry, Bridget Hobbs, Francois Collin, Yasmin D Beazer-Barclay,
Kristen J Antonellis, Uwe Scherf, and Terence P Speed. Exploration, normal-
ization, and summaries of high density oligonucleotide array probe level data.
Biostatistics, 4(2):249-264, Apr 2003. doi: 10.1093/biostatistics/4.2.249.

Leo Lahti, Laura L. Elo, Tero Aittokallio, and Samuel Kaski. Probabilistic
analysis of probe reliability in differential gene expression studies with short
oligonucleotide arrays. IEEE/ACM Trans Comput Biol Bioinform, 8(1):217—
225, 2011. doi: 10.1109/TCBB.2009.38. URL http://dx.doi.org/10.1109/
TCBB. 2009.38.

Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. Ultrafast and
memory-efficient alignment of short DNA sequences to the human genome.
Genome Biol, 10(3):R25, 2009. doi: 10.1186/gb-2009-10-3-125.

Cole Trapnell, Lior Pachter, and Steven L Salzberg. TopHat: discovering splice
junctions with RNA-Seq. Bioinformatics, 25(9):1105-1111, May 2009. doi:
10.1093 /bioinformatics/btp120.

Karolis Uziela and Antti Honkela. Probe region expression estimation for rna-
seq data for improved microarray comparability. April 2013. arXiv:1304.1698
[q-bio.GN].

12

http://dx.doi.org/10.1109/TCBB.2009.38
http://dx.doi.org/10.1109/TCBB.2009.38

	Abstract
	Installation
	Examples
	Loading package and data
	Running calc_prebs using Custom CDF and RPA summarization method
	Running calc_prebs using Custom CDF and RPA summarization method
	Setting calc_prebs output format to a data frame
	Running calc_prebs with parallelization
	Running calc_prebs for another microarray platform
	Running calc_prebs using manufacturer's CDF

	Detailed input specification
	BAM files
	Probe sequence mappings and CDF packages
	Custom CDF
	Manufacturer's CDF

	Cluster object for parallel computation
	Output format
	Read counting options
	Summarization method

	Session Info

