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1 Introduction

Data analysis in systems biology and medicine often requires analysing data whose dynamics
can be described as a network of observed and unobserved variables. A simple example is a
protein signalling network in a cell.

Simplifying the process greatly, signalling proteins known as kinases can be unphosphorylated
(inactive) or phosphorylated (active). Cell signalling uses the phosphorylation machinery to
pass messages from the exterior of the cell to the interior where they will be acted upon. This
message passing is achieved via a relay of kinases and other proteins (the signalling pathway),
which can be thought of as a network.

Numerous software packages exist for reconstructing networks from observational data (e.g.
[1], [2], [3]: [4]). However, most of these packages assume that there is a single underlying
network. Package nethet was designed with the intent of handling heterogeneous datasets
arising from a collection of (possibly related) networks.

Take for example protein measurements of breast cancer tumor cells. It is known that there
exist several subtypes of breast cancer with different molecular profiles [5]. We might be
interested in whether the signalling pathways (networks) reconstructed from two subtypes
are statistically different. If they are not, then we might want to identify new subtypes that
present different molecular profiles, and reconstruct the networks for each identified subtype.
The nethet package contains functionalities to tackle all of these tasks.

To the best of our knowledge, nethet is currently the only implementation of statistical solid
methodology enabling the analysis of network heterogeneity from high-dimensional data.
Package nethet combines several implementations of recent statistical innovations useful
for estimation and comparison of networks in a heterogeneous, high-dimensional setting.
In particular, we provide code for formal two-sample testing in Gaussian graphical models
(differential network and GGM-GSA; [6], [7]) and make a novel network-based clustering
algorithm available (mixed graphical lasso, [8]).
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Statistical setup

We consider independent samples X; € RP (i = 1,...,n), measuring p molecular vari-
ables. We assume that the collected data can be divided into K different groups. Let
S; € {1,..., K} be the group assignment of sample 4, denote with nj the group specific
sample size and write X}, for the n; x p data matrix consisting of all samples belonging to
group k.

To describe networks we use Gaussian graphical models (GGMs, [9]). These models use an
undirected graph (or network) to describe probabilistic relationships between variables. For
each group k, we assume that Xy is sampled from a multivariate Gaussian distribution with
(unknown) mean gy, and (unknown) p x p concentration matrix ), = %; ', The matrix
defines the group-specific graph Gy, via

(4,4") € E(Gy) & Qujj0 # 0,
4,3 €{1,...,p}and j # j',

where FE(G) denotes the edge set of graph G.

Learning of networks Gy is a so-called high-dimensional statistical problem. We employ
regularization to learn sparse, parsimonious networks and thereby control over-fitting. In
particular, we use the popular graphical Lasso [10, 11]. Frequently the group assignments
S;, as well as the number of groups K, are unknown at the outset and have to be inferred
simultaneously with the group-specific mean vectors and networks. The method mixglasso,
implemented in this package, is a novel tool for high-dimensional, network-based clustering.
It is based on a finite mixture of GGMs and employs an adaptive and automatic penalization
scheme [8].

Network inference is subject to statistical uncertainty and observed differences between es-
timated networks may be due to noise in the data and variability in estimation rather than
any true difference in underlying network topology. Testing hypotheses of the form

Hy : Gy = Gy, k,k'E{l,...,K},k#k’/

is challenging. We build upon a recent approach called differential network [6, 7] which allows
formal two-sample testing in high-dimensional GGMs.

Package functionalities

The package consists of the following main parts:

= Simulation functions for creating synthetic data from the underlying Gaussian mixture
(network) model.

= Network inference using the het_cv_glasso function for reconstructing heterogeneous
networks from data with the graphical Lasso [12] when the group structure is known.

= High-dimensional hypothesis testing capabilities, including the diffnet functions im-
plementing a statistical test for whether the networks underlying a pair of dataset
are different, the ggmgsa functions allowing for differential gene set testing and the
diffregr functions testing whether two high-dimensional regression models are statis-
tically different [6, 7].

= The mixglasso functions implementing a network-based clustering and reconstruction
algorithm also based on the graphical Lasso, for unknown group structure [8].
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= Plotting and export functions for displaying and saving the results of the analysis in a
sensible way.

Simulate data

In order to demonstrate the functionalities of the package, we will first simulate data from
a Gaussian mixture model with a known covariance structure. The nethet package includes
code for generating random covariance matrices with a given sparsity, and for simulating from
a Gaussian mixture model with given means and covariances. The function sim_mix_networks
provides a convenient wrapper for both:

# Specify number of simulated samples and dimensionality
n = 100
p =25

# Specify number of components of the mixture model and mixture probabilities
n.comp = 4

mix.prob = c(0.1, 0.4, 0.3, 0.2)

# Specify sparsity in [0,1], indicating fraction of off-diagonal zero entries.
s =0.9

# Generate networks with random means and covariances. Means will be drawn from
# a standard Gaussian distribution, non-zero covariance values from a

# Beta(1,1) distribution.

sim.result = sim mix networks(n, p, n.comp, s, mix.prob)

The data is contained in sim.result$data, and the components that each data point belongs
to are contained in sim.result$comp. Let's check that the mixture probabilities are correct
and then plot the first two dimensions of the data. Note that we do not expect these to be
well-separated in any way.

print(table(sim.result$comp)/n)

#i#
## 1 2 3 4
## 0.08 0.34 0.35 0.23

component = as.factor(sim.result$comp)

library('ggplot2')
gplot(x=sim.result$datal,1l], y=sim.result$datal,?2],
colour=component) +
xlab('Dimension 1') +
ylab('Dimension 2')

## Warning: ‘gplot()‘ was deprecated in ggplot2 3.4.0.

## This warning is displayed once every 8 hours.

## Call ‘lifecycle::last_lifecycle_warnings()‘ to see where this warning was
## generated.
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The means and covariances of the data are contained in sim.result$Mu and sim.result$Sig.
If desired, they can also be specified when calling sim_mix_networks.

# Generate new dataset with the same covariances, but different means
sim.result.new = sim mix networks(n, p, n.comp, s, mix.prob, Sig=sim.result$Sig)

component = as.factor(sim.result.new$comp)

gplot(x=sim.result.new$datal,1], y=sim.result.new$datal,2],
colour=component) +
xlab('Dimension 1') +
ylab('Dimension 2')
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When the covariance matrices for the components are not specified in advance, the sim_mix_networks
function implicitly assumes that they are generated independently of each other. In order to

test the diffnet functions, we also want to be able to generate simulated data from pairs

of networks that present some common edges. The generate 2networks function is used to
generate pairs of networks with an arbitrary overlap.

## Sample size and number of nodes
n <- 40
p <- 10

## Specify sparse inverse covariance matrices,

## with number of edges in common equal to ~ 0.8xp

gen.net <- generate_2networks(p,graph='random',n.nz=rep(p,2),
n.nz.common=ceiling(p*x0.8))

invcovl <- gen.net[[1]]
invcov2 <- gen.net[[2]]

plot_2networks(invcovl,invcov2, label.pos=0, label.cex=0.7)

X5 X4 X5 X4
X
X1
X7 X7
X6 o X10
X10 X6
X9 X2 x9° X2
X3 X3
o
X8 X8

5 Network estimation with known group labels

If it is known a priori to which component each sample belongs, then the problem of re-
constructing the network reduces to a simple application of the graphical Lasso to each
component. For convenience, we have included a wrapper function het_cv_glasso in nethet
that applies the graphical Lasso [12] to each component in a heterogeneous dataset with
specified component labels. The penalisation hyperparameter is tuned individually for each
component using cross-validation.

To demonstrate het_cv_glasso, we will generate some data in the same way as in the previous
section:

set.seed(10)

100
p =25

# Generate networks with random means and covariances.
sim.result = sim mix networks(n, p, n.comp, s, mix.prob)
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test.data = sim.result$data
test.labels = sim.result$comp

# Reconstruct networks for each component
networks = het cv glasso(data=test.data, grouping=test.labels)

One way of checking if the reconstructed networks are sensible is plotting the covariance
matrices used for generating the networks against the reconstructed covariance matrices.

# Component labels for covariance values
components = as.factor(rep(l:n.comp, each=p~2))

gplot(x=c(networks$Sig), y=c(sim.result$Sig),
colour=components) +
xlab('Reconstructed Covariances') +
ylab('True Covariances')
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Reconstructed Covariances

High-dimensional two-sample testing

We have demonstrated how to use our package to estimate networks from heterogeneous
data. Often, we would like to perform a statistical comparison between networks. Differential
network allows formal hypothesis testing regarding network differences. It is based on a novel
and very general methodology for high-dimensional two-sample testing. Other useful tools
based on this technology are GGM-GSA (“multivariate gene-set testing based on GGMs")
and differential regression which allows formal two-sample testing in the high-dimensional
regression model. For details on this methodology we refer the reader to [6, 7].
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6.1

Differential network

Let us consider datasets generated from GGMs G and G respectively. We would like to
know whether networks inferred from these datasets differ in a statistical significant manner,
that is we would like to test the hypothesis

HO: G1:G2.

The function diffnet_multisplit uses repeated sample splitting to address this task. The
main steps are:

‘

1. Both datasets are randomly split into two halves: the “in-" and “out-sample”.

2. Networks are inferred using only the in-sample (“screening step”).

3. Based on the out-sample, a p-value is computed which compares the networks obtained
in step 2 (“cleaning step”).

4. Steps 1-3 are repeated many times (e.g. 50 times); the resulting p-values are aggregated
and the final aggregated p-value is reported.

We now illustrate the use of diffnet_multisplit with an example. We consider GGMs (i.e.
inverse covariance matrices) previously generated in Section 4.

## Set seed
set.seed(1)

## Sample size and number of nodes
p <- 30

## Specify sparse inverse covariance matrices

gen.net <- generate_2networks(p,graph='random',n.nz=rep(p,2),
n.nz.common=ceiling(p*0.8))

invcovl <- gen.net[[1]]

invcov2 <- gen.net[[2]]

## Get corresponding correlation matrices
corl <- cov2cor(solve(invcovl))
cor2 <- cov2cor(solve(invcov2))

We start with generating data under the “null-scenario” where both datasets have the same
underlying network.
## Generate data under null hypothesis

library(mvtnorm) # To generate multivariate Gaussian random samples

## Sample size

n <- 70
x1 <- rmvnorm(n,mean = rep(0,dim(corl)[1]), sigma = corl)
x2 <- rmvnorm(n,mean = rep(0,dim(corl)[1]), sigma = corl)

Then, we run a differential network analysis:

## Run diffnet (under null hypothesis)
dn.null <- diffnet multisplit(x1l,x2,b.splits=1,verbose=FALSE)
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We obtain the p-value 0.9411215, which is stored in dn.null$ms.pval.
The same analysis can be performed for data generated under the alternative hypothesis.

## Generate data under alternative hypothesis (datasets have different networks)
x1 <- rmvnorm(n,mean = rep(0,dim(corl)[1]), sigma = corl)
X2 <- rmvnorm(n,mean = rep(0,dim(corl)[2]), sigma = cor2)

## Run diffnet (under alternative)
dn.altn <- diffnet multisplit(x1l,x2,b.splits=1,verbose=FALSE)

The resulting p-value is 7.7924444 x 10~% which indicates a highly significant network dif-
ference.

The variable b.splits specifies the number of data splits used in the differential network
procedure. The p-values in the previous examples were obtained using only a single data split
(b.splits=1). P-values heavily depend on the random split of the data. This amounts to a
"p-value lottery". To get stable and reproducible results we therefore would typically choose
a larger number for the variable b.split and report the aggregated p-value.

## Typically we would choose a larger number of splits
# Use parallel library (only available under Unix) for computational efficiency
if(.Platform$0S.type == "unix") {
dn.altn <- diffnet multisplit(x1,x2,b.splits=50,verbose=FALSE,mc.flag=TRUE)
} else {
dn.altn <- diffnet multisplit(x1l,x2,b.splits=25,verbose=FALSE,mc.flag=FALSE)
}

par(cex=0.7)
plot(dn.altn, cex=0.5) # histogram over 50 p-values

histogram single—split p—values
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cat('p-value:',dn.altn$medagg.pval, '\n') # median aggregated p-value

## p-value: 0.0003984909
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6.2  Multivariate gene-set testing based on GGMs

In the case where molecular variables can be grouped into various sets of biologically related
features (e.g. gene-sets or pathways), ggmgsa_multisplit can be used to perform differential
network analyses iteratively for all gene-sets. This allows us to identify gene-sets which show a
significant network difference. For illustration we consider data generated from the following
networks.

## Generate new networks

set.seed(1)

p <- 9 # network with p nodes

n <- 40

hub.net <- generate_2networks(p,graph="hub',n.hub=3,n.hub.diff=1)#generate hub networks
invcovl <- hub.net[[1]]

invcov2 <- hub.net[[2]]

plot 2networks(invcovl,invcov2, label.pos=0, label.cex=0.7,

main=c('network 1', 'network 2'),cex.main=0.7)
network 2 network 1
X5 X5
X4 X4
X8 X8
X6 X6
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X2 X9 o X9
X2
o
X1 X1
]
X3 X3

## Generate data

library('mvtnorm')

x1 <- rmvnorm(n,mean = rep(0,p), sigma = cov2cor(solve(invcovl)))
X2 <- rmvnorm(n,mean rep(0,p), sigma = cov2cor(solve(invcov2)))

The nodes can be grouped into three gene-sets where only the first has a different underlying
network.

## Identify groups with 'gene-sets'
gene.names <- paste('G',1l:p,sep="")
gsets <- split(gene.names,rep(1l:3,each=3))

We run GGM-GSA with a single data split (b.splits=1) and note that only the p-value for
the first gene-set has small magnitude. Again, we would typically use a larger number of data
splits in order to obtain stable p-values.

## Run GGM-GSA
fit.ggmgsa <- ggmgsa multisplit(x1l,x2,b.splits=1,gsets,gene.names,verbose=FALSE)

library(xtable)
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6.3

print(xtable(summary(fit.ggmgsa),digits=6))

medagg.pval meinshagg.pval

gsl 0.000286 0.001143
gs?2 0.654303 1.000000
gs3 0.506485 1.000000

Differential regression

In addition to differential network, this R-package also provides an implementation of differ-
ential regression. In particular, the function diffregr_multisplit allows formal two-sample
testing in the high-dimensional regression model. It is also based on sample splitting and is
very similar to the previously introduced diffnet multisplit.

Consider the following sparse regression models.

## Number of predictors and sample size
p <- 100
n <- 80

## Predictor matrices
x1l <- matrix(rnorm(n*p),n,p)
X2 <- matrix(rnorm(n#*p),n,p)

## Active-sets and regression coefficients

actl <- sample(l:p,5)

act2 <- c(actl[1:3],sample(setdiff(l:p,actl),2))
betal <- beta2 <- rep(0,p)

betal[actl] <- 0.7

beta2[act2] <- 0.7

We generate data under the null-hypothesis and run differential regression. The histogram
shows the distribution of the p-values obtained form ten data splits.

## Response vectors under null-hypothesis
yl <- x1%x%as.matrix(betal)+rnorm(n,sd=1)
y2 <- x2%*%as.matrix(betal)+rnorm(n,sd=1)

## Differential regression; b.splits=10

fit.null <- diffregr_multisplit(yl,y2,x1,x2,b.splits=10)

par(cex=0.7)

plot(fit.null,cex=0.5) # histogram of p-values from b.split data splits

10
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histogram single—split p—values
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cat('p-value: ',fit.null$medagg.pval,'\n') # median aggregated p-value

p-value: 0.999963

The following example illustrates differential regression in scenario with different regression
models.

## Response vectors under alternative-hypothesis
yl <- x1%+*%as.matrix(betal)+rnorm(n,sd=1)
y2 <- x2%x%as.matrix(beta2)+rnorm(n,sd=1)

## Differential regression (asymptotic p-values)
fit.alt <- diffregr_multisplit(yl,y2,x1,x2,b.splits=10)
par(cex=0.7)

plot(fit.alt)
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cat('p-value: ',fit.alt$medagg.pval, '\n')

p-value: 8.726256e-05

For differential regression we have the option to compute permutation-based p-values by
choosing a number of permutations n.perm.

## Differential regression (permutation-based p-values; 100 permutations)
fit.alt.perm <- diffregr multisplit(yl,y2,x1,x2,b.splits=5,n.perm=100)

The default option (n.perm=NULL) uses an asymptotic approximation to calculate p-values.

Network estimation and model-based clustering with
unknown group labels

Often we do not know a priori which component each sample belongs to. For example in
the case of samples corresponding to protein measurements in breast cancer patients, the
particular subtype of breast cancer that a patient suffers from may be unknown. In these
cases, our package allows for network-based clustering of the samples using the mixture
graphical Lasso (mixglasso), which jointly clusters the samples and reconstructs the networks
for each group or cluster.

To demonstrate the mixglasso function, let us first generate some data in the same way as
before, but with means defined to ensure separability of the groups:

# Generate networks with random means and covariances.
n 1000
p =10
s
n

=0.9
.comp = 3

# Create different mean vectors

12
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Mu = matrix(0,p,n.comp)

# Define non-zero means in each group (non-overlapping)
nonzero.mean = split(sample(l:p),rep(l:n.comp,length=p))

# Set non-zero means to fixed value
for(k in 1:n.comp){

Mu[nonzero.mean[[k]],k] = -2/sqrt(ceiling(p/n.comp))
}

# Generate data
sim.result = sim mix networks(n, p, n.comp, s, Mu=Mu)

Now we will run mixglasso on this dataset to retrieve the original clustering and reconstruct
the underlying networks.

# Run mixglasso
mixglasso.result = mixglasso(sim.result$data, n.comp=3)

# Calculate adjusted rand index to judge how accurate the clustering is
# Values > 0.7 indicate good agreement.
library(mclust, quietly=TRUE)

## Package ’'mclust’ version 6.1.1
## Type ’citation("mclust")’ for citing this R package in publications.

##
## Attaching package: ’mclust’

## The following object is masked from ’package:mvtnorm’:
##
## dmvnorm

adj.rand = adjustedRandIndex(mixglasso.result$comp, sim.result$comp)
cat('Adjusted Rand Index', round(adj.rand, digits=2), '\n')

## Adjusted Rand Index 0.58

Table 1 shows the cross-tabulation of the number of samples in predicted versus true groups.

A B C
1 12 312 34
2 261 24 30
3 38 22 267

Table 1: Cross-tabulation of mixglasso clusters (rows) with true group assignments (columns).

What if we don’t know the true number groups? Luckily, mixglasso supports model compar-
ison using BIC [13] and minimum description length [14]. In the following example we will
use BIC to find the correct number of components:

# Run mixglasso over a range of numbers of components
mixglasso.result = mixglasso(sim.result$data, n.comp=1:6)

## -mixglasso: comp too small; min(n_k)= 4.963561

13
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# Repeat with lambda=0 and lambda=Inf for comparison
mixglasso.result.0® = mixglasso(sim.result$data, n.comp=1:6, lambda=0)
mixglasso.result.Inf = mixglasso(sim.result$data, n.comp=1:6, lambda=Inf)

# Aggregate BIC results for plotting
BIC.vals = c(mixglasso.result$bic, mixglasso.result.0$bic,
mixglasso.result.Inf$bic)

lambda. labels = rep(c('Default', 'Lambda = 0', 'Lambda = Inf'), each=6)
# Plot to verify that minimum BIC value corresponds with true
library(ggplot2)
plotting.frame <- data.frame(BIC=BIC.vals, Num.Comps=rep(l:6, 3), Lambda=lambda.labels)
p <- ggplot(plotting.frame) +
geom_Lline(aes(x=Num.Comps, y=BIC, colour=Lambda)) +

geom_vline(xintercept=3, linetype='dotted"')

print(p)

18200 -
18000 - Lambda
—— Default
% 17800 -
— Lambda=0
17600 - —— Lambda = Inf
17400 -

2 4 6

Num.Comps

We note that mixglasso involves a penalization parameter A which trades off goodness-of-
fit and model complexity. We recommend to use the default which employs an adaptive
and automatic penalization scheme [8]. Note that in this simplified example, A = 0 (no
penalization) performs well because n >> p. A = co constrains inverse covariance matrices
to be diagonal, hence the inferior performance.

Plotting and exporting results

Our package includes several functions for plotting and exporting the networks and results
that have been obtained.

14
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8.1

Plotting results

The output of het_cv_glmnet and mixglasso can be plotted either in network form or as
individual edges in the networks. For the network plots, we use the network package [15].
This is the default plotting when plot is invoked on an object of class nethetclustering, and
produces one global plot showing edges that occur in any group, as well as one plot for each
group. For this example we will use the networks and clustering obtained using mixglasso in
the previous section.

# Retrieve best clustering and networks by BIC
mixglasso.clustering = mixglasso.result$models[[mixglasso.result$bic.opt]]

# Plot networks, omitting edges with absolute partial correlation < 0.5 in
# every group.

# NOTE: Not displayed.

# plot(mixglasso.clustering, p.corrs.thresh=0.5)

Usually we are only interested in specific edges, and perhaps we wish to compare them among
groups. Function dot_plot generates a plot with edges above a certain threshold along the
y-axis, and one circle for each group showing the smallest mean of the two nodes that make
up the edge. We use the ggplot2 package to make the plots [16].

# Plot edges, omitting those with absolute partial correlation < 0.5 in every
# group.
g = dot_plot(mixglasso.clustering, p.corrs.thresh=0.5, dot.size.range=c(1,5))

Mean
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o 3
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P.Corr

Finally, we might want to compare the observed values of the nodes linked by specific edges
across groups. Function scatter_plot will generate plots for a specified list of edges.

# Specify edges
node.pairs = rbind(c(9,10), c(2,5),c(4,9))

# Create scatter plots of specified edges
g = scatter _plot(mixglasso.clustering, data=sim.result$data,

15
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8.2

node.pairs=node.pairs, cex=0.5)
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Exporting Results

Our package offers the option to export the inferred networks as a comma-separated values
(CSV) text file. Like the plotting functions, function export_network can be invoked on the
output of het_cv_glmnet and mixglasso.

# Save network in CSV format, omitting edges with absolute partial correlation
# less than 0.25.

#export_network(mixglasso.clustering, file='nethet_network.csv',

# p.corrs.thresh=0.25)

This creates a CSV file encoding a table with one row for each edge with partial correlation
above the threshold, and columns indicating the nodes linked by the edge, the absolute partial
correlation, the sign of the partial correlation, and the group or cluster in which the edge
occurred.

If the user wishes to use the Cytoscape [17] software to analyse the network further, we
note that the output of export_network can be loaded into Cytoscape, provided the option
quote=FALSE is set.

16
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# Save network in CSV format suitable for Cytoscape import
#export_network(mixglasso.clustering, file='nethet_network.csv',
# p.corrs.thresh=0.25, quote=FALSE)

sessionInfo()

## R version 4.5.0 RC (2025-04-04 r88126 ucrt)
## Platform: x86_64-w64-mingw32/x64

## Running under: Windows Server 2022 x64 (build 20348)
#i#

## Matrix products: default

#i# LAPACK version 3.12.1

#i#t

## locale:

## [1] LC_COLLATE=C

## [2] LC_CTYPE=English_United States.utf8

## [3] LC_MONETARY=English_United States.utf8
## [4] LC_NUMERIC=C

## [5] LC_TIME=English_United States.utf8

#i#

## time zone: America/New_York

## tzcode source: internal

#it

## attached base packages:

## [1] stats graphics grDevices utils datasets methods base
#it

## other attached packages:
## [1] mclust 6.1.1 xtable 1.8-4 mvtnorm_1.3-3 ggplot2_3.5.2 nethet 1.40.0

#i#t

## loaded via a namespace (and not attached):

## [1] GeneNet_1.2.17 gtable_0.3.6 shape_1.4.6.1
## [4] xfun_0.52 ICSNP_1.1-2 ggm_2.5.1

## [7] Biobase_2.68.0 CompQuadForm_1.4.3 lattice_0.22-7
## [10] ICS_1.4-2 vctrs_0.6.5 tools_4.5.0

## [13] generics_0.1.3 parallel_4.5.0 stats4_4.5.0
## [16] tibble 3.2.1 highr_0.11 pkgconfig 2.0.3
## [19] Matrix_1.7-3 huge_1.3.5 graph_1.86.0
## [22] lifecycle_1.0.4 farver_2.1.2 compiler_4.5.0
## [25] tinytex_0.57 statmod_1.5.0 munsell_0.5.1
## [28] BiocStyle 2.36.0 mitools_2.4 codetools_0.2-20
## [31] survey_4.4-2 htmltools _0.5.8.1 glasso_1.11

## [34] fdrtool 1.2.18 longitudinal 1.1.13 yaml_ 2.3.10

## [37] glmnet_4.1-8 crayon_1.5.3 pillar_1.10.2
## [40] MASS_7.3-65 limma_3.64.0 iterators_1.0.14
## [43] foreach_1.5.2 GSA_1.03.3 network_1.19.0
## [46] tidyselect_1.2.1 digest_0.6.37 dplyr_1.1.4

## [49] labeling_0.4.3 splines_4.5.0 fastmap_1.2.0
## [52] grid_4.5.0 colorspace_2.1-1 cli_3.6.4

## [55] magrittr_2.0.3 survival_3.8-3 withr_3.0.2

## [58] corpcor_1.6.10 scales_1.3.0 rmarkdown_2.29

## [61] igraph_2.1.4 multtest_2.64.0 coda_0.19-4.1
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## [64] evaluate_1.0.3 knitr_1.50 rlang_1.1.6
## [67] Rcpp_1.0.14 glue_1.8.0 DBI_1.2.3
## [70] BiocManager_1.30.25 BiocGenerics_0.54.0 R6.2.6.1
## [73] statnet.common_4.11.0
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