
Introduction to the Codelink package

Diego Diez

April 15, 2025

1 Introduction

This package implements methods to facilitate the preprocessing and analysis of Codelink microarrays.
Codelink is a microarray platform for the analysis of gene expression that uses 30 base long oligonu-
cleotides. Codelink is currently owned by Applied Microarrays, Inc. (previously was GE Healthcare
and before that Amersham). There is a proprietary software for reading scanned images, perform spot
intensity quantification and diagnostics. A Codelink microarray consists of a number of species-specific
probes to measure gene expression, as well as some other control probes (see Table 1). The Codelink
software assigns quality flags to each spot (see Table 2) on the basis of a signal to noise ratio (SNR)
computation (Eq: 1) and other morphological characteristics as irregular shape of the spots, saturation
of the signal or manufacturer spots removed. By default, the software performs background correction
(subtract) followed by median normalization. The results can be exported in several formats as XML,
Excel, plain text, etc.

The codelink package enables loading Codelink data into R, and stores it as a CodelinkSet ob-
ject. The CodelinkSet-class inherits from ExpressionSet all methods, and enables straightforward
interfacing with other Bioconductor structures, and packages.

NOTE: the old Codelink-class infrastructure is maintained for backbard compatibility, and in-
formation about its use can be found in the vignette Codelink Legacy.pdf.

Probe type Description Default weight
DISCOVERY Measure gene expression 1

POSITIVE Positive control 0
NEGATIVE Negative control 0
FIDUCIAL Grid alignment 0

OTHER Other controls and housekeeping genes 0

Table 1: Probe types for Codelink arrays.

Flag Description Default value set Default weight
G Good signal (SNR ≥ 1) 1
L Limit signal (SNR < 1) 1
S Saturated signal 1
I Irregular shape 0
M MSR spot (-9999) NA 0
C Background contaminated 0
X User excluded spots 0

Table 2: Quality Flag description. SNR: Signal to Noise Ratio.

1

SNR =
Smean

(Bmedian+ 1.5 ∗Bstdev)
(1)

2 Reading data

Only Codelink data exported as plain text from the Codelink software is supported. Unfortunately
the Codelink exported text format can have arbitrary columns and header fields so depending of what
has been exported, reading it into a CodelinkSet object may be more or less complicated. As a rule of
thumb it is recommended to include in the exported files at least Spot mean and Bkgd median values
so that background correction and normalization can be performed within R. In addition, Bkgd stdev
will be needed to compute the SNR. If Raw intensity or Normalized intensity columns are present then
it is possible to avoid background correction and/or normalization, and use the ones performed by the
Codelink software. The Feature id column will be use to assign unique identifiers to each spot, so that
CodelinkSet object can be read appropriately (or else will try to guess those). To read codelink data:

> # NOT RUN #

> library(codelink)

> # to read data as CodelinkSet object:

> f = list.files(pattern = "TXT")

> codset = readCodelinkSet(filename = f)

> # NOT RUN #

This assumes that the files have the extension ”TXT” (uppercase) and are in the working directory.
You can prepare a targets file with each file’s name and additional phenotypic information, then pass
this information to readCodelinkSet() so that it is stored in the CodelinkSet object.

> # NOT RUN #

> pdata = read.AnnotatedDataFrame("targets.txt")

> codset = readCodelinkSet(filename = pdata$FileName, phenoData = pdata)

> # NOT RUN #

> # sample dataset.

> data(codset)

> codset

CodelinkSet (storageMode: lockedEnvironment)

assayData: 35129 features, 4 samples

element names: background, exprs, flag, snr, weight

protocolData: none

phenoData

sampleNames: Sample-1 Sample-2 Sample-3 Sample-4

varLabels: sample

varMetadata: labelDescription

featureData

featureNames: 1001 1002 ... 328112 (35129 total)

fvarLabels: probeName probeType ... meanSNR (5 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation: rwgcod

To convert old Codelink objects into the new CodelinkSet the handy function Codelink2CodelinkSet()
can be used:

2

> data(codelink.example)

> print(is(codelink.example))

[1] "Codelink" "list" "vector" "AssayData"

[5] "list_OR_List" "vector_OR_factor" "vector_OR_Vector"

> tmp = Codelink2CodelinkSet(codelink.example)

> tmp

CodelinkSet (storageMode: lockedEnvironment)

assayData: 20469 features, 2 samples

element names: background, exprs, flag, snr, weight

protocolData: none

phenoData

rowNames: 1 2

varLabels: sample

varMetadata: labelDescription

featureData

featureNames: 1 2 ... 20469 (20469 total)

fvarLabels: probeName probeType ... meanSNR (5 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation: h10kcod.db

2.1 Flags and weights

Traditionally the codelink package has used flag information to assign NAs to values. This behavior
has been changed since the version released with Bioconductor 2.13 (October, 2013). To reproduce
the old behavior call readCodelinkSet() with argument old=TRUE.

In the current implementation, only probes flagged as MSR spots (flag ’M’- which have an intensity
value assigned of -9999), will be automatically converted to NA. This value cannot be adjusted since
the value of the probes itself does not represent any measure of signal.

In addition to this, probe weights will be computed by default, based on the conversion table shown
in tables 1 and 2. The weight computation follows this process. First, weights are assigned based on
type, with DISCOVERY probes being assigned weight=1 and other probes weight=0. Then, weights
are adjusted based on flags. The worst weight (type or flag weights when multiple) is assigned to
each probe. The weights assigned can be controled by the type.weights and flag.weights argu-
ment to readCodelinkSet(). It is possible also to reassign weights after reading with the function
createWeights(). Weights can be used during preprocessing (background correction and normaliza-
tion) and linear modeling.

> w = createWeights(codset)

> ## NOTE: a proper replacement function will be provided later:

> assayDataElement(codset, "weight") = w

2.2 Accessing data

Data stored in a CodelinkSet object can be accessed using several accessor functions:

> # get signal intensities. alias: getInt()

> head(exprs(codset))

Sample-1 Sample-2 Sample-3 Sample-4

1001 1645.4359 1175.0750 1191.2703 1127.0000

3

1002 47.2364 39.7000 41.3415 35.9556

1004 42.7961 39.5862 44.3542 36.5977

1005 1008.0443 482.7928 638.2655 482.1574

1006 118.9067 73.3896 82.8421 77.1571

1007 1612.3613 1122.6693 1122.6522 1074.5339

> # get background intensities.

> head(getBkg(codset))

Sample-1 Sample-2 Sample-3 Sample-4

1001 31 31 31 31

1002 31 31 31 31

1004 31 31 32 31

1005 31 30 31 32

1006 32 31 30 32

1007 31 30 31 32

> # get SNR values.

> head(getSNR(codset))

Sample-1 Sample-2 Sample-3 Sample-4

1001 37.790711 27.6104937 28.0621444 26.1873780

1002 1.100202 0.9286658 0.9711291 0.8586443

1004 1.007958 0.9298767 1.0146951 0.8475702

1005 22.495867 11.4867798 14.9880533 10.9125875

1006 2.576429 1.7566020 2.0463101 1.8040827

1007 36.999348 25.4019705 25.9305364 24.3570387

> # get flags.

> head(getFlag(codset))

Sample-1 Sample-2 Sample-3 Sample-4

1001 "G" "G" "G" "G"

1002 "G" "L" "L" "L"

1004 "G" "L" "G" "L"

1005 "G" "G" "G" "G"

1006 "G" "G" "G" "G"

1007 "G" "G" "G" "G"

> # get weights.

> head(getWeight(codset))

Sample-1 Sample-2 Sample-3 Sample-4

1001 0 0 0 0

1002 1 1 1 1

1004 1 1 1 1

1005 1 1 1 1

1006 1 1 1 1

1007 0 0 0 0

> # get phenoData:

> head(pData(codset))

sample

Sample-1 T3-5(3)

Sample-2 TX-1(3)

Sample-3 T3-2(3)

Sample-4 T3-4(1)

4

3 Background correction

If Spot mean and Bkgd median values are available then background correction can be performed
with codCorrect(). Background correction methods are borrowed from the limma package, including
methods none, subtract, half and normexp. The default is set to half, because it is very fast. However,
more sensitive (although slower) methods like normexp are recommended. It is possible to assign an
offset to avoid low intensity probes to have high M variances.

> codset = codCorrect(codset, method = "half", offset = 0)

4 Normalization

Normalization of the background corrected intensities is done by the wrapper function normalize (or
the alias codNormalize()). Here again, normalization is borrowed from the limma package. Methods
median, quantile (the default) and loess are available.

> codset = codNormalize(codset, method = "quantile")

Method loess performs CyclicLoess normalzation and accepts weights. Weights are used in a per-
probe fashion (that is, one weight for one probe, not different weights for each sample). When weights
are used for normalzation the minimum of all the weights for each probe along all the samples will
be used. This is to ensure that for each array there is an equal contribution of each probe in the
normalization process.

> # NOT RUN

> codset = codNormalize(codset, method = "loess", weights = getWeight(codset), loess.method = "fast")

> # NOT RUN

5 Diagnostic plots

There are some plot facilities to help diagnose the effect of background correction and normalization,
as well as identify putative faulty arrays. The most commonly used functions are MA plots, density
plots and array images. All these functions can be accessed through the function codPlot(). The
parameter what specifies the type of plot: ma (default), density, scatter and image are valid choices.
Figures 1 and 2 below show examples of these plotting functions.

> codPlot(codset) # by default MA plot.

> codPlot(codset, what = "density")

When the columns Logical row and Logical col are present in the original data files, this information
is used to assign the physical location of each probe in the array to plot a pseudo image. It is possible
to plot the background intensities (default), the spot mean, raw and normalized intensities and the
SNR values. This images are useful to identify spatial artifact that may be affecting the analysis.

> codPlot(codset, what = "image")

5

0 2 4 6 8 10 12

−
4

−
2

0
2

4
6

A

M

Median vs Sample−1

DISCOVERY
POSITIVE
NEGATIVE
OTHER
FIDUCIAL

0 5 10
0.

00
0.

05
0.

10
0.

15

Intensity

D
en

si
ty

Sample−1
Sample−2
Sample−3
Sample−4

Figure 1: MA plot (left) and density plot (right).

0:(gr * sr)

0:
(g

c
*

sc
)

Array: 1 Signal: bg Sample: Sample−1

Figure 2: Pseudo image plot of an array

6

6 Fitting linear models

A typical analysis include the testing for differentially expressed probes between two populations. This
can be performed using a variety of different R/Bioconductor packages, but the limma package is one
of the most popular options. Limma can readily use CodelinkSet objects, and can take advantage
of weights generated during data reading. In this case, weights will be use probe-wise (i.e. different
weights for the same probe in different samples will be considered).

> fit = lmFit(codset, design = c(1, 1, 2, 2), weights = getWeight(codset))

> fit2 = eBayes(fit)

> topTable(fit2)

probeName probeType logicalRow logicalCol meanSNR logFC AveExpr

255020 GE1262775 DISCOVERY 255 20 224.66663 7.985204 13.33260

311011 GE21204 DISCOVERY 311 11 197.73053 7.967831 13.21738

31103 GE1152142 DISCOVERY 31 103 222.18072 7.863261 13.14444

106027 GE1204034 DISCOVERY 106 27 130.05434 7.468283 12.44730

24019 GE1126416 DISCOVERY 24 19 122.54245 7.312816 12.23010

150024 GE20195 DISCOVERY 150 24 105.40705 7.265655 12.14916

321107 GE1181836 DISCOVERY 321 107 98.68877 7.259977 12.06931

242033 GE1221296 DISCOVERY 242 33 102.22355 7.224388 12.07106

114068 GE22145 DISCOVERY 114 68 102.59456 7.199294 12.06821

312012 GE19692 DISCOVERY 312 12 93.38577 7.192154 11.98362

t P.Value adj.P.Val B

255020 12.73139 8.863450e-37 2.074213e-32 71.77767

311011 12.70555 1.225821e-36 2.074213e-32 71.46363

31103 12.53708 9.994042e-36 1.127395e-31 69.43157

106027 11.90935 1.965818e-32 1.663180e-28 62.08972

24019 11.66107 3.563186e-31 2.411707e-27 59.28627

150024 11.58612 8.446908e-31 4.466440e-27 58.45125

321107 11.57832 9.238545e-31 4.466440e-27 58.36459

242033 11.52059 1.788894e-30 7.567469e-27 57.72537

114068 11.47996 2.843083e-30 1.069062e-26 57.27724

312012 11.46988 3.188422e-30 1.079026e-26 57.16636

7 Citation

> citation(package = "codelink")

To cite codelink in publications use:

Diego Diez, Rebeca Alvarez and Ana Dopazo. codelink: An R package for

analysis of GE Healthcare Gene Expression Bioarrays. 2007,

Bioinformatics

A BibTeX entry for LaTeX users is

@Article{,

title = {codelink: an R package for analysis of GE Healthcare Gene

Expression Bioarrays},

author = {{Diego Diez} and {Rebeca Alvarez} and {Ana Dopazo}},

year = {2007},

7

journal = {Bioinformatics},

volume = {23},

number = {9},

pages = {1168-9},

doi = {10.1093/bioinformatics/btm072},

}

8 Session info

> sessionInfo()

R version 4.5.0 RC (2025-04-04 r88126 ucrt)

Platform: x86_64-w64-mingw32/x64

Running under: Windows Server 2022 x64 (build 20348)

Matrix products: default

LAPACK version 3.12.1

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.utf8

[3] LC_MONETARY=English_United States.utf8

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.utf8

time zone: America/New_York

tzcode source: internal

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] knitr_1.50 codelink_1.76.0 limma_3.64.0

[4] Biobase_2.68.0 BiocGenerics_0.54.0 generics_0.1.3

loaded via a namespace (and not attached):

[1] crayon_1.5.3 vctrs_0.6.5 httr_1.4.7

[4] cli_3.6.4 rlang_1.1.6 xfun_0.52

[7] highr_0.11 DBI_1.2.3 UCSC.utils_1.4.0

[10] png_0.1-8 jsonlite_2.0.0 xtable_1.8-4

[13] bit_4.6.0 S4Vectors_0.46.0 statmod_1.5.0

[16] Biostrings_2.76.0 XML_3.99-0.18 formatR_1.14

[19] stats4_4.5.0 KEGGREST_1.48.0 evaluate_1.0.3

[22] fastmap_1.2.0 GenomeInfoDb_1.44.0 IRanges_2.42.0

[25] memoise_2.0.1 compiler_4.5.0 RSQLite_2.3.9

[28] blob_1.2.4 XVector_0.48.0 R6_2.6.1

[31] GenomeInfoDbData_1.2.14 AnnotationDbi_1.70.0 annotate_1.86.0

[34] tools_4.5.0 bit64_4.6.0-1 cachem_1.1.0

8

