Using the Streamer classes to count genomic
overlaps with summarizeOverlaps

Nishant Gopalakrishnan, Martin Morgan
April 16, 2025

1 Introduction

This vignette illustrates how users can make use of the functionality provided by the
Producer, Consumer and Stream classes in the Streamer package to process data in a
streaming fashion. The users have the option of quickly being able to create their own
class to stream process data by inheriting from the classes provided by the Streamer
package.

This example illustrates a simple Bamlnput class that inherits from the Producer
class and a CountGOverlap class that inherits from the Consumer class. These classes
allows us to count the number of hits in a BAM file corresponding to the ranges spec-
ified by the user and return the hits in a streaming manner on a per sequence basis.
Finally, the results for each sequence is collated and reordered using a helper function
so they appear in the same order as the ranges provided by the user. The classes that we
are going to develop in this example make use of the reference class system available
in R.

We first load the GenomicAlignments and Streamer packages.

> library (GenomicAlignments)
> library (Streamer)

2 BAMInput class

The BAMInput class will be used to read gapped alignments from a file specified by
the user in a streaming manner. i.e reads will be read one sequence at a time.
The two inputs specified by the user are

« file: a character string specifying the file from which alignments are to be read.
* ranges: the ranges from which alingments are to be

Like the design of the other classes in the Streamer package, the Bamlnput class
will have an initialize and a yield method. The initialize method will
be used to initialize the fields of the Bamlnput class and is called automatically when
objects are instantiated from this class.

The yield method does not take any inputs. Each call to the yield method
returns a GAlignments object for a single sequence within the ranges specified by the
user until all the sequences have been read from the BAM file at which point, an empty
GAlignments object will be returned.

.BamInput <-
setRefClass ("BamInput",
contains="Producer"”,
fields=1ist (
file="character"”,
ranges="GRanges",
.segNames="character"))
.BamInput$methods (
yield=function ()
{
"yield data from .bam file"
if (verbose) msg("BamInputS.yield()")
if(length(.self$.segNames))
{
seq <- .selfS.segNames[1]
.self$.segNames <- .selfS.segNames[-1]
idx <—- as.character (seqgnames (.selfSranges)) == seq
param <- ScanBamParam (which=.selfSranges([idx],
what=character())
aln <- readGAlignments (.self$file, param=param)
seqglevels (aln) <- seq
} else {
aln <- GAlignments ()
}
list (aln)
})

V+ +++++++++++F++FF++YV A+t

The constructor for the BamlInput class takes the file and ranges as input and returns
and instance of the BamlInput class.

> BamInput <- function(file, ranges,...)

+ {

+ .segNames <- names (scanBamHeader (file) [[1]]Starget)

+ .BamInput$new(file=file, ranges=ranges, .segNames=.seqNames,
+)

>

3 CountGOverlap class

The second class we are going to develop is a Consumer class that processes the
data obtained from the Bamlnput class. The class calls the summarizeOverlaps

method with the GAlignments object, user supplied ranges and additional arguments to
control the behaviour of the summarizeOverlaps method.

The CountGOverlap class has an initialize method and a yield method.
The initialize method initializes the class with the options to be passed in to the
countGenomicOverlaps method as well as some variables for keeping track of
the order of the hits to be returned by the CountGOverlap class.

The yield method returns a DataFrame with the number of hits. The rownames
of the result returned correspond to the order of the results in the original ranges sup-
plied by the user. (These are subsequently used to reorder the results for the hits after
collating results for all the sequences)

> .CountGOverlap <-

+ setRefClass ("CountGOverlap"”,

+ contains="Consumer"”,

+ fields=1ist (ranges="GRanges",

+ mode="character",

+ ignore.strand="1ogical"))

> .CountGOverlapSmethods (

+ yield=function ()

+ {

+ "return number of hits"

+ if (verbose) msg(".CountGOtSyield()")

+ aln <- callSuper()[[1]]

+ df <- DataFrame (hits=numeric (0))

+ if(length(aln))

+ {

+ idx <—- as.character (seqgnames (.selfSranges)) == levels (rname (aln))
+ which <- .selfSranges/[idx]

+ olap <- summarizeOverlaps (which, aln, mode=.selfSmode,
+ ignore.strand=.self$ignore.strand)
+ df <- as(assays(olap)[[1]], "DataFrame")

+ dimnames (df) <- 1ist (rownames (olap), seglevels(aln))
+ }

+ df

+ })

> CountGOverlap <-

+ function (ranges,

+ mode = c("Union", "IntersectionStrict",

+ "IntersectionNotEmpty"),

+ ignore.strand = FALSE, ...)

+ {

+ values (ranges) Spos <—- seq_len (length (ranges))

+ .CountGOverlapSnew (ranges=ranges, mode=mode,

+ ignore.strand=ignore.strand, ...)

+)

>

4 Stream with BamInput and CountGOverlap

Instances of the BamiInput and CountGOverlap classes can be created using their re-
spective constructors and can subsequently be hooked up to form a stream using the
St ream function provided by the Streamer package. For our example we shall make
use of a BAM file available in the Rsamtools package and create a GenomicRanges
object for the ranges that we are interested. A Stream can then be created by passing
these objects as the arguments to the St ream function.

A call to the yield function of the Stream class will yield the results obtained by
calling yield first on the BamiInput class and subsequently on the CountGOverlap class
for the first sequence in the ranges provided.

galn file <- system.file("extdata", "exl.bam", package="Rsamtools")
gr <-
GRanges (segnames =
Rle(c("seg2", "seqg2", "seq2", "seqgl"), c(1, 3, 2, 4)),
ranges = IRanges(rep(10,1), width = 1:10,
names = head(letters,10)),
strand = Rle(strand(rep("+", 5)), c(1, 2, 2, 3, 2)),
score = 1:10,
GC = seqg(l, 0, length=10))
bam <- BamInput (file = galn_file, ranges = gr)
olap <- CountGOverlap (ranges=gr, mode="IntersectionNotEmpty")
s <—- Stream(bam, olap)
yield(s)

VVVV+++++++ VYV

DataFrame with 4 rows and 1 column
seql
<integer>
0
0
0
32

. -5 Q

5 Collate results

Each call to the yie1ld function of the stream process data for one sequence. It would
be convenient to have a function that processed data for all the sequences in the ranges
provided and collated the results so that they are ordered correctly. (same order as the
ranges provided). We proceed to create this helper overlapCounter function that
takes a BAMInput and CountGOverlap class objects as inputs.

> overlapCounter <- function(pr, cs) {
+ s <- Stream(pr, cs)

len <- length(levels (segnames (prSranges)))
lst <—- vector("list", len)
for(i in 1:1en) {
Ist[[i]] <- yield(s)
names (1st[[1]]) <— "Count"
}
do.call (rbind, 1st) [names (csSranges), ,drop=FALSE]

+ + + + + + +

+ }

> bam <- BamlInput (file = galn_file, ranges = gr)

> olap <- CountGOverlap (ranges=gr, mode="IntersectionNotEmpty")
> overlapCounter (bam, olap)

DataFrame with 10 rows and 1 column

Count
<integer>

a 0
b 0
c 0
d 0
e 0
f 87
g 0
h 0
i 0
Jj 32

	Introduction
	BAMInput class
	CountGOverlap class
	Stream with BamInput and CountGOverlap
	Collate results

