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1 Introduction

This vignette reveals the tricks behind the magic that is ab initio gene finding. Cells all have the magical ability
to transcribe and translate portions of their genome, somehow decoding key signals from a sea of possibilities. The
FindGenes function attempts to decipher these signals in order to accurately predict an organism’s set of genes. Cells
do much of this magic using only information upstream of the gene, whereas F indGenes uses both the content of the
gene and its upstream information to predict gene boundaries. As a case study, this tutorial focuses on finding genes in
the genome of Chlamydia trachomatis, an intracellular bacterial pathogen known for causing chlamydia. This genome
was chosen because it is relatively small (only 1 Mbp) so the examples run quickly. Nevertheless, FindGenes is
designed to work with any genome that lacks introns, making it well-suited for prokaryotic gene finding.



2 Getting Started
2.1 Startup

To get started we need to load the DECIPHER package, which automatically loads a few other required packages.
> library (DECIPHER)

Gene finding is performed with the function FindGenes. Help can be accessed via:
> ? FindGenes

Once DECIPHER is installed, the code in this tutorial can be obtained via:

> browseVignettes ("DECIPHER")

3 Finding Genes in a Genome

Ab initio gene finding begins from a genome and locates genes without prior knowledge about the specific organism.

3.1 Importing the genome

The first step is to set filepaths to the genome sequence (in FASTA format). Be sure to change the path names to
those on your system by replacing all of the text inside quotes labeled “<<path to ...>>"" with the actual path on your
system.

> # specify the path to your genome:

> genome_path <- "<<path to genome FASTA file>>"

> # OR use the example genome:

> genome_path <- system.file("extdata",
"Chlamydia_trachomatis_NC_000117.fas.gz",
package="DECIPHER")

> # read the sequences into memory

> genome <- readDNAStringSet (genome_path)

> genome

DNAStringSet object of length 1:

width seq names

[1] 1042519 GCGGCCGCCCGGGAAATTGCTA...GTTGGCTGGCCCTGACGGGGTA NC_000117.1 Chlam...

3.2 Finding genes

The next step is to find genes in the genome using FindGenes, which does all the magic. There are fairly few choices
to make at this step. By default, the bacterial and archaeal genetic code is used for translation, including the initiation
codons “ATG”, “GTG”, “TTG”, “CTG”, “ATA”, “ATT”, and “ATC”. The default minGeneLength is 60, although we
could set this lower (e.g., 30) to locate very short genes or higher (e.g., 90) for (only slightly) better accuracy. The
argument allowEdges (default TRUE) controls whether genes are allowed to run off the ends of the genome, as would
be expected for circular or incomplete chromosomes. Here, we will only set showPlot to TRUE to display a summary
of the gene finding process and allScores to TRUE to see the scores of all open reading frames (including predicted
genes).



> orfs <- FindGenes (genome,
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3.3 Inspecting the output

And presto! With a wave of our magic wand we now have our gene predictions in the form of an object belonging to
class Genes. Now that we have our genes in hand, let’s take a look at them:

> orfs

Genes object of size 109,490 specifying:
894 protein coding genes from 66 to 5,361 nucleotides.
108,596 open reading frames from 60 to 5,370 nucleotides.

Index Strand Begin

1
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1

with 109,484 more rows.

0

= O O O

1

1
2
16
17
41
91

End TotalScore ... Gene
1176 79.30 1
82 -4.75 0
1176 62.59 0
82 -9.00 0
106 -13.58 0
150 -35.34 0

Open reading frames are defined by their Begin and End position, as well as whether they are on the top (i.e.,
Strand is 0) or bottom strand. Here, genes are flagged by having a non-zero value in the Gene column. We see all
the open reading frames in the output because allScores was set to TRUE. If we only want to look at the subset of open
reading frames that are predicted as genes, we can subset the object:

> genes

<- orfsforfs]|,

"Gene"]==1, ]

The "Gene" column is one of several describing the open reading frames. Objects of class Genes are stored

as matrices with many columns:

> colnames (genes)

1] "Index"

"Begin"
"TotalScore"
"CodingScore"
"CouplingScore"
"StopScore"
"TerminationCodonScore"
"AutocorrelationScore"
"UpstreamMotifScore"
"FractionReps"
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4 Analyzing the Output

"Strand"

"End"

"LengthScore"

"CodonModel"

"StartScore"
"InitialCodonScore"
"RibosomeBindingSiteScore"
"UpstreamNucleotideScore"
"FoldingScore"

"Gene"

4.1 Extracting genes from the genome

Predictions in hand, the first thing we can do is extract the genes from the genome. This can be easily done using

ExtractGenes.

> dna <- ExtractGenes (genes,

> dna

genome)



DNAStringSet object of length 894:

width

[1] 1176
[2] 273
[3] 303
[4] 1476
[5] 1467
[890] 3051
[891] 303
[892] 2637
[893] 96
[894] 600

seq

GCGGCCGCCCGGGAAATTGCTAAAAGATGGGAG. .
ATGCTTTGTAAAGTTTGTAGAGGATTATCTTICT. .
ATGACAGAGTCATATGTAAACAAAGAAGAAATC. ..
ATGTATCGTAAGAGTGCTTTAGAATTAAGAGAT. .
ATGGGCATAGCACATACTGAATGGGAGTCTGTG. . .

ATGCCTTTTTCTTTGAGATCTACATCATTTTIGT. .
ATGCTGGCAACAATTAAAAAAATTACTGTGTTG. ..
ATGCGACCTGATCATATGAACTTCTGTTGTCTA. .
ATGTCAAAAAAAAGTAATAATTTACAGACTTTT. ..
ATGAGCATCAGGGGAGTAGGAGGCAACGGGAAT. ..

.GGCGTTGGAATAGAGAAGTCGATAGGGAATAA
.GATACCACCACCATCATATGGATAGAGAATAA

GATTAGTCAAAGTCCCTACAGTTATCAAATAG

. TGAATGGACTTTTTGACGGAGGAATAGAATAA

AATTGCTATTAGCAGCTATGCGAGATATGTAA

. TTGTATCCATGGGCTTGAATAGAATCTTTTAA

GAGATTCTCGCCTAGAATGCAAGAAGATATAA

.CCCTGGATCTGGGGACCACTTACAGGTTCTAG

ATGAAGAGTTAAGGAAGATTTTTGGATTGTGA
AAGCGAACAAGTTGGCTGGCCCTGACGGGGTA

We see that the first gene has no start codon and the last gene has no stop codon. This implies that the genes
likely connect to each other because the genome is circular and the genome end splits one gene into two. Therefore,
the first predicted gene’s first codon is not a true start codon and we need to drop this first sequence from our analysis
of start codons. We can look at the distribution of predicted start codons with:

> table(subseqg(dnal-1], 1,

ATG GTG TTIG
779 94 20

3))

There are the typical three bacterial initiation codons, “ATG”, “GTG”, and “TTG”, and one predicted non-
canonical initiation codon: “CTG”. Let’s take a closer look at genes with non-canonical initiation codons:

> w <- which (!subseqg(dna, 1,

> w
(1] 1

> w <— w[-1]

> w
integer (0)
> dna[w]

3) %in% c ("ATG",

n GTG" ,

"TTG"))

# drop the first sequence because it is a fragment

DNAStringSet object of length 0

> genes[w]

Genes object of size 0.

That worked like a charm, so let’s look at the predicted protein sequences by translating the genes:

> aa <- ExtractGenes (genes,

> aa
AAStringSet
width
[1] 392
(2] 91
[3] 101
[4] 492
[5] 489
8901 1017
[891] 101

genome,

object of length 894:
seq

AAARETIAKRWEQRVRDLODKGAARKLLNDPLGR. .
MLCKVCRGLSSLIVVLGAINTGILGVTGYKVNL. ..
MTESYVNKEEITISLAKNAALELEDAHVEEFVTS. .
MYRKSALELRDAVVNRELSVTAITEYFYHRIES. .
MGIAHTEWESVIGLEVHVELNTESKLESPARNH. ..

MPEFSLRSTSFCFLACLCSYSYGFASSPQVLTPN. ..
MLATIKKITVLLLSKRKAGIRIDYCALALDAVE. .

type="AAStringSet")

.QVEGILRDMLTNGSQTFRDLMRRWNREVDRE %

CLNFLKCCFKKRHGDCCSSKGGYHHHHMDRE %

.DMVTSDFTQEEFLSNVPVSLGGLVKVPTVIKx*
. ICQVGYSFQEHSQIKQLYPKAVNGLEDGGIE %

GFLVGQIMKRTEGKAPPKRVNELLLAAMRDM*

HHFGRAYMNYSLDARRRQTAHFVSMGLNRIF %

.LDASLESAQVRLAGLMLDYWDGDSRLECKKI %



[892] 879 MRPDHMNFCCLCAAILSSTAVLFGQDPLGETAL...LHRLOTLLNVSYVLRGQSHSYSLDLGTTYRF *
[893] 32 MSKKSNNLQTFSSRALFHVFQDEELRKIFGL*
[894] 200 MSIRGVGGNGNSRIPSHNGDGSNRRSQONTKGNN. ..NLDVNEARLMAAYTSECADHLEANKLAGPDGV

All of the genes start with a methionine (“M”) residue and end with a stop (“*”) except the first and last gene
because they wrap around the end of the genome. If so inclined, we could easily remove the first and last positions
with:

> subseq(aa, 2, -2)
AAStringSet object of length 894:
width seq

[1] 390 AAREIAKRWEQRVRDLQODKGAARKLLNDPLGRR. ..QQVEGILRDMLTNGSQTFRDLMRRWNREVDRE
[2] 89 LCKVCRGLSSLIVVLGAINTGILGVIGYKVNLL. ..VCLNFLKCCFKKRHGDCCSSKGGYHHHHMDRE
[3] 99 TESYVNKEEIISLAKNAALELEDAHVEEFVTSM...EDMVTSDFTQEEFLSNVPVSLGGLVKVPTVIK
[4] 490 YRKSALELRDAVVNRELSVTAITEYFYHRIESH...QICQVGYSFQEHSQIKQLYPKAVNGLEDGGIE
[5] 487 GIAHTEWESVIGLEVHVELNTESKLEFSPARNHF...LGFLVGQIMKRTEGKAPPKRVNELLLAAMRDM

[ ] 1015 PFSLRSTSFCFLACLCSYSYGFASSPQVLTPNV. ..IHHFGRAYMNYSLDARRRQTAHFVSMGLNRIF
[ ] 99 LATIKKITVLLLSKRKAGIRIDYCALALDAVEY...QLDASLESAQVRLAGLMLDYWDGDSRLECKKI
[892] 877 RPDHMNFCCLCAAILSSTAVLFGQDPLGETALL...ALHRLOTLLNVSYVLRGQSHSYSLDLGTTYRF
[ ] 30 SKKSNNLQTFSSRALFHVFQDEELRKIFGL

[ ] 198 SIRGVGGNGNSRIPSHNGDGSNRRSQNTKGNNK. ..GNLDVNEARLMAAYTSECADHLEANKLAGPDG

4.2 Removing genes with too many ambiguities

Genomes sometimes contain ambiguous positions (e.g., “N”’) within open reading frames. These ambiguities can make
an open reading frame look longer than it actually is, giving the illusion of a single gene when none (or more than
one) is present. We can easily remove those with more than some magic number (let’s say 20 or 5%) of ambiguous
positions:

> a <- alphabetFrequency (dna, baseOnly=TRUE)
> w <— which(a[, "other"] <= 20 & a[, "other"]/width (dna) <= 5)
> genes <- genes|[w]

Abracadabra! The genes with many ambiguities have magically disappeared from our gene set.

4.3 Taking a look at the shortest genes

You might think finding short genes (< 90 nucleotides) would require black magic, but FindGenes can do it quite
well. We can select the subset of short genes and take a look at how repeatedly they were called genes during iteration:

> w <- which (width(dna) < 90)
> dnal[w]
DNAStringSet object of length 3:

width seq
1] 69 ATGAGTCATATAAGTATTCGCAATAGTAGTTATTTATTCGCTAATCCAAATCAAGAAATCGTATTTTGA
2] 87 ATGAAATTAAAACAAAAGATCGGAATAAAAACAT...GCTCTGGGCCTTGCGAAAAAAACCAAAAAATAG
3] 66 ATGTTAGTGTGGGTTATGAGACAGCCGCGTTATAACTCGGAAGTAGAGAAAAAACAAGATTTTITAG



AAStringSet object of length 3:

width seq
[1] 23 MSHISIRNSSYLFANPNQEIVE %
[2] 29 MKLKQKIGIKTFGQKKRKALGLAKKTKK=*
[3] 22 MLVWVMRQPRYNSEVEKKQDE *

> genes|[w]
Genes object of size 3 specifying:
3 protein coding genes from 66 to 87 nucleotides.

Index Strand Begin End TotalScore ... Gene

4606 1 1 44025 44093 9.29 ... 1

9793 1 1 94116 94202 7.06 ... 1

45975 1 1 443090 443155 7.40 ... 1

> genes[w, "End"] - genes[w, "Begin"] + 1 # lengths
4606 9793 45975
69 87 66

> genes[w, "FractionReps"]

4606 9793 45975
1 1 1

We can see from the FractionReps column always being 100% that these short genes were repeatedly identified
during iteration, suggesting they weren’t pulled out of a hat. That’s impressive given how short they are!

4.4 Revealing the secrets of gene finding

All of this might seem like hocus pocus, but the predictions made by FindGenes are supported by many scores.
Some scores are related because they make use of information from the same region relative to the gene boundaries.
We can take a look at score correlations with:



> pairs(genes[, 5:16], pch=46, col="#00000033", panel=panel.smooth)
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Figure 2: Scatterplot matrix of scores used by FindGenes to make gene predictions.



Certainly some of the magic of gene finding is having a lot of scores! We can see that the ribosome binding
site score and upstream nucleotide score are the most correlated. This isn’t just magical thinking, both scores rely on
the same nucleotides immediately upstream of the start codon. The different scores are defined as follows:

1. Upstream signals
(a) Ribosome Binding Site Score - Binding strength and position of the Shine-Delgarno sequence, as well as
other motifs in the first bases upstream of the start codon.
(b) Upstream Nucleotide Score - Nucleotides in each position immediately upstream of the start codon.

(c) Upstream Motif Score - K-mer motifs further upstream of the start codon.
2. Start site signals

(a) Start Score - Choice of start codon relative to the background distribution of open reading frames.

(b) Folding Score - Free energy of RNA-RNA folding around the start codon and relative to locations upstream
and downstream of the start.

(c) Initial Codon Score - Choice of codons in the first few positions after the start codon.
3. Gene content signals

(a) Coding Score - Usage of codons or pairs of codons within the open reading frame.
(b) Codon Model - Number of the codon model that best fit each open reading frame.
(c) Length Score - Length of the open reading frame relative to the background of lengths expected by chance.

(d) Autocorrelation Score - The degree to which the same or different codons are used sequentially to code for
an amino acid.

(e) Coupling Score - Likelihood of observing neighboring amino acids in real proteins.
4. Termination signals

(a) Termination Codon Score - Codon bias immediately before the stop codon.

(b) Stop Score - Choice of stop codon relative to the observed distribution of possible stop codons.

4.5 Taking a closer look at the output

If we have a particular gene of interest, it can sometimes be useful to plot the output of FindGenes as the set of
all possible open reading frames with the predicted genes highlighted. The plot function for a Genes object is
interactive, so it is possible to pan left and right by setting the inferact argument equal to TRUE. For now we will only
look at the beginning of the genome:
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> plot (orfs,
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Figure 3: All possible open reading frames (red and blue) with predicted genes highlighted in green.
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S Incorporating non-coding RNAs

5.1 Examining the intergenic spaces

The space between genes sometimes contains promoter sequences, pseudogenes, or non-coding RNA genes that are
of interest. We can conjure up the intergenic sequences longer than a given width (e.g., 30 nucleotides) with the

IRanges (s[w], el[w])

. TATAATCTGAAAGGAAGGCGTT
. TTGACCATGTTTAGGATGGAAG
.AGGCTTTATCGCTTTTCCAATA
.ACATAGATTCTAGCACTTCTTA
.GCTGATTGTATGATGGAGTGGT

.TTTATCTCTCAGCTTTITGTGTG
.AAAGAAGATGTCATCAAACAGG
.AACGCAATGCTAGGCAAGGGAA

commands:
> s <= c(1l, genes[, "End"] + 1)
> e <- c(genes|[, "Begin"] - 1, width (genome))
> w <— which(e - s >= 30)
> intergenic <- unlist (extractAt (genome,
> intergenic
DNAStringSet object of length 500:
width seq
(1] 144 ACTGGTATCTACCATAGGTTIG. .
[2] 200 GACGTTTCTCCAACGTAGATGT..
[3] 98 TTTGCAGCATCCTCAAAAAAGG. .
[4] 127 AAAATTATCCCAAAAACAAAAA..
[5] 312 TTTTCCAACTAGGTGTTATGTA..
[496] 164 CGCAGGTTAAAAGGGGGATGTT..
[497] 596 TAAAGATTTTTCTTTTCAGAAG..
[498] 174 TCGCCAGGTTTCGAGACAAAGT..
[499] 33 GGGATTCCCCCTAAGAGTCTAAAAGAAGAGGTT
[500] 144 AATTAGAAAAATCAGAATTATC...

TTTAGTTTTGGGTTGGTTTGTT

))

names

NC_000117.
NC_000117.
NC_000117.
NC_000117.
NC_000117.

NC_000117.
NC_000117.
NC_000117.
NC_000117.
NC_000117.

I R

e = S =S

Chlam...
Chlam...
Chlam...
Chlam...
Chlam...

Chlam...
Chlam...
Chlam...
Chlam...
Chlam...

Some of these intergenic regions might be similar to each other. We can find related intergenic sequences by

clustering those within a certain distance (e.g., 20

> intergenic <- c(intergenic,
> names (intergenic) <- c(w, paste(w,

> clusts <- Clusterize (myXStringSet=intergenic,

reverseComplement (intergenic))

"rc", Sep="_") )

cutoff=0.3)

Partitioning sequences by 6-mer similarity:

Time difference of 0.37 secs
Sorting by relatedness within
iteration 2 of up to 202 (100.

Time difference of 0.16 secs

Clustering sequences by 8-mer

572 groups:

0% stability)

to 12-mer similarity:

Time difference of 12.97 secs
Clusters via relatedness sorting:

Clusters via rare 6-mers: 100% (0%
Estimated clustering effectiveness:

11
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Since we used inexact clustering, the clusters containing the longest sequences will be first. We can look at
sequences belonging to the first cluster:

> t <- sort(table(clustsS$cluster), decreasing=TRUE)
> head(t) # the biggest clusters

157 174 309 387 389 423
3 3 3 3 3 3

> AlignSeqgs (intergenic[clustsS$Scluster == names(t) [1]], verbose=FALSE)
DNAStringSet object of length 3:
width seq names
[1] 319 TTTGTCACCCTTATTTTTTAGAA.. .——————————————————————— 317
[2] 319 —-CTCTCCCCTICTCTTCTTAAAAA. . .——————————————————————— 381
[3] 319 -ACAGCCCCCTCATTGGAAAACA...AAACCAAAAAAATTTTTTAGAAT 866_rcC

These two long intergenic regions probably contain copies of the ribosomal RNA operon. A signature of non-
coding RNAs is that they tend to have higher GC content than expected. We can create a plot of GC content in
intergenic regions versus size. Since our genome averages 41% GC content, we can use statistics to add a line for the
95% confidence interval. Only a few intergenic regions have unexpectedly high GC content.

12



> gc <- alphabetFrequency (intergenic, as.prob=TRUE, baseOnly=TRUE)
gc <= gcl, "G"] + gc[, "C"]
> plot (width (intergenic),
100xgc,
xlab="Length (nucleotides)",
ylab="GC content (%)",
main="Intergenic regions",
log="x")
> size <- 10”%seq(l, 4, 0.1)
expected <- 0.413xsize
> lines(size, 100x (expected + 1.96*sqrt (expected))/size)
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Figure 4: Non-coding RNAs are often found in intergenic regions with unexpectedly high GC content.
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5.2 Finding and including non-coding RNAs

The DECIPHER has a separate function, FindNonCoding, to find non-coding RNAs in a genome. It searches for
predefined models created from multiple sequence alignments of non-coding RNAs. Thankfully DECIPHER includes
pre-built models of non-coding RNAs commonly found in bacteria, archaea, and eukarya. Since C. trachomatis is a
bacterium, we will load the bacterial models. For genomes belonging to organisms from other domains of life, simply
replace “Bacteria” with “Archaea” or “Eukarya”.

> data (NonCodingRNA_Bacteria)

> x <- NonCodingRNA_Bacteria

> names (x)

"tRNA-Ala"

"tRNA-Arg"

"tRNA-Asn"

"tRNA-Asp"

"tRNA-Cys"

"tRNA-G1n"

"tRNA-G1lu"

"tRNA-GLly"

"tRNA-His"

"tRNA-Ile"

"tRNA-Leu"

"tRNA-Lys"

"t RNA-Met "

"tRNA-Phe"

"tRNA-Pro"

"tRNA-Ser"

"tRNA-Thr"

"tRNA-Trp"

"tRNA-Tyr"

"tRNA-Val"

"tRNA-Sec"

"rRNA_5S-RF0O0001"
"rRNA_16S—-RFO00177"
"rRNA_23S-RF02541"
"tmRNA-RF00023"
"tmRNA_Alpha-RF01849"
"RNase_P_class_A-RF00010"
"RNase_P_class_B-RFO0011"
"SsrS-RF0O0013"
"Intron_Gp_I-RF00028"
"Intron_Gp_II-RF00029"
"SmallSRP-RF00169"
"Cyclic-di-GMP_Riboswitch—-RF01051"
"Cyclic-di-AMP_Riboswitch-RF00379"
"T-box_Leader—-RF00230"
"Ribosomal_Protein_L10_Leader—-RF00557"
"Cobalamin_Riboswitch-RF00174"
"TPP_Riboswitch-RF00059"
"SAM_Riboswitch-RF00162"
"Fluoride_Riboswitch—-RF01734"
"FMN_Riboswitch-RF00050"

=
fa—
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"Glycine_Riboswitch-RF00504"

[42]

[43] "HEARO-RF02033"
[44] "Flavo_l1-RF01705"
[45] "Acido_Lenti_1-RFO
[46] "5'_ureB-RF02514"

1687"

We need to search for these models in our genome before we can incorporate them into our gene calls.

> rnas <- FindNonCoding

Time difference of 70.4
> rnas

Genes object of size 46

46 non-coding RNAs from 72 to 2,938 nucleotides.

Index Strand Begin
1 1 1 20663
2 1 1 42727
3 1 1 68920
4 1 0 158662 1
5 1 0 158744 1
6 1 1 202339 2

with 40 more rows.

Tada! FindNonCoding outputs an object of class Genes just like FindGenes. However, non-coding RNAs
are denoted with negative numbers in the Gene column. Each number corresponds to the model that was identified.

(x, genome)

9 secs

specifying:

End TotalScore Gene

21082 88.31 -25
42801 69.82 -3
68995 78.58 -15
58736 55.72 -17
58827 52.24 -19
02414 68.58 -10

We can look at the set of non-coding RNAs that were found in the C. trachomatis genome:

> annotations <- attr(r
> m <- match(rnas[, "Ge
> sort (table (names (anno
RNase_P_class_A-RF00010
1

tRNA-Asp

1

tRNA-Glu

1

tRNA-Lys

1

tRNA-Tyr

1

rRNA_23S-RF02541

2

tRNA-Gly

2

tRNA-Arg

3

tRNA-Ser

4

nas, "annotations")
ne"], annotations)
tations) [m]))

SmallSRP-RF00169

1

tRNA-Cys

1

tRNA-His

1

tRNA-Phe

1

tmRNA-RF00023

1

rRNA_5S-RF00001

2

tRNA-Pro

2

tRNA-Met

3

tRNA-Leu

5
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tRNA-Asn
1
tRNA-G1ln
1
tRNA-Ile
1
tRNA-Trp
1
rRNA_16S-RF00177
2
tRNA-Ala
2
tRNA-Val
2
tRNA-Thr
3



There was at least one tRNA gene found for each amino acid, as well as two copies of each ribosomal RNA
gene, and the RNaseP and tmRNA genes. Now, we can easily include these non-coding RNAs into our gene calls.

> genes <- FindGenes (genome, includeGenes=rnas)
Iter Models Start Motif Init Fold UpsNt Term RBS Auto Stop Genes

1 1 18.40 _ 931
1 1 18.40 \ 931
1 1 18.40 | 931
1 1 18.40 / 931
1 1 18.40 _ 931
1 1 18.40 \ 931
1 1 18.40 | 931
1 1 18.40 / 931
1 1 18.40 _ 931
2 12 18.40 0.48 0.91 934
3 15 18.38 0.53 1.16 0.37 1.41 936
4 13 15.60 0.52 1.25 0.45 1.78 0.24 938
5 12 15.62 0.52 1.25 0.46 1.82 0.25 0.98 0.10 0.07 940
6 10 15.62 0.51 1.22 0.49 1.%91 0.25 1.07 0.10 0.07 941
7 13 15.62 0.51 1.22 0.49 1.95 0.25 1.11 0.10 0.07 941
8 13 15.64 0.51 1.22 0.49 1.96 0.25 1.09 0.10 0.07 940
9 14 15.63 0.51 1.22 0.51 1.97 0.25 1.08 0.10 0.07 940
10 14 15.63 0.51 1.22 0.51 1.97 0.25 1.14 0.10 0.07 940

Time difference of 43.54 secs
> genes

Genes object of size 940 specifying:
894 protein coding genes from 66 to 5,361 nucleotides.
46 non-coding RNAs from 72 to 2,938 nucleotides.

Index Strand Begin End TotalScore ... Gene
1 1 0 1 1176 79.06 1
2 1 1 1321 1593 19.98 1
3 1 0 1794 2096 31.47 1
4 1 0 2108 3583 139.66 1
5 1 0 3585 5051 125.99 1
6 1 1 5150 6241 78.68 1

with 934 more rows.

That worked like magic! Now the Genes object contains both protein coding genes and non-coding RNAs.

6 Annotating the protein coding genes

The magic doesn’t have to end there. We can annotate our protein coding genes just like we did with the non-coding
RNAs. To master this sleight of hand, we first need a training set of labeled protein sequences. We have exactly that
included in DECIPHER for Chlamydia.

> fas <- system.file("extdata",

"PlanctobacteriaNamedGenes.fas.gz",
package="DECIPHER")
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> prot <- readAAStringSet (fas)

> prot
AAStringSet object of length 2497:
width seqg names
[1] 227 MAGPKHVLLVSEHWDLFFQTKE...VGYLFSDDGDKKEFSQQODTKLS AOAOH3MDW1 |Root;N...
[2] 394 MKRNPHEFVSLTKNYLFADLQKR...GKREDILAACERLQMAPALQS 084395|Root;2;6;1...
[3] 195 MAYGTRYPTLAFHTGGIGESDD. ..GFCLTALGFLNFENAEPAKVN Q9Z6M7|Root;4;1;1...
[4] 437 MMLRGVHRIFKCEFYDVVLVCAF...TASFDRTWRALKSYIPLYKNS Q46222 |Root;2;4;9...
[5] 539 MSFKSIFLTGGVVSSLGKGLTA...FIEFIRAAKAYSLEKANHEHR Q59321 |Root;6;3;4...
2493 1038 MFEEVLQESFDEREKKVLKEWQ...EGTDWDLNGEPTKIIIKKSEY Q6MDY1l|Root;6;1;1...

]

2494] 102 MVQIVSQDNFADSIASGLVLVD. ..VERSVGLKDKDSLVKLISKHQ Q9PJK3|Root;NoEC; ...
]
]

[

[

[2495 224 MKPQDLKLPYFWEDRCPKIENH. ..NLWRSKGEKIFCTEFVKRVGI Q9PL91|Root;2;1;1...
[2496 427 MLRRLEVSTFLIFGMVSLYAKD...KIVIGLGEKRFPSWGGFPNNQ Q256H8|Root;NoOEC; ...
[2497] 344 MLTLGLESSCDETACALVDAKG...GIHPCARYHWESISASLSPLP Q822Y4|Root;2;3;1...
> head (names (prot))

[1] "AOAOH3MDW1 |Root;NoEC; chxR" "084395|Root;2;6;1;83;dapL"

[3] "Q9Z6M7|Root;4;1;1;19;aaxB" "Q46222|Root;2;4;99;Multiple; waaA"

[5] "Q59321|Root;6;3;4;2;pyrG" "POCO0Z7|Root;NoEC; groL"

The training sequences are named by their enzyme commission (EC) number and three or four-letter gene
name. The process of training a classifier is described elsewhere. For now, let’s jump straight to the solution:

> trainingSet <- LearnTaxa (train=prot,
taxonomy=names (prot),
maxChildren=1)

Time difference of 0.92 secs
> trainingSet

A training set of class 'Taxa'
K-mer size: 6
Number of rank levels: 7
Total number of sequences: 2497
Number of groups: 532
Number of problem groups: O
Number of problem sequences: 0

L S

Now we need to take the proteins we just found with FindGenes and classify them using our classifier.
Finally, we can assign each of our protein coding sequences to a classification in the Genes object:

> annotations <- sapply(ids, function(x) paste(xS$Staxon[-1], collapse="; "))
> u_annotations <- unique (annotations)

> genes[w, "Gene"] <- match(annotations, u_annotations) + 1L

> attr (genes, "annotations") <- c(attr(genes, "annotations"),

setNames (seq_along (u_annotations) + 1L,
u_annotations))
> genes
Genes object of size 940 specifying:
894 protein coding genes from 66 to 5,361 nucleotides.
46 non-coding RNAs from 72 to 2,938 nucleotides.
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> w <- which (genes[, "Gene"] > 0)
> aa <- ExtractGenes (genes[w], genome, type="AAStringSet")
> ids <- IdTaxa (aa,

trainingSet,

fullLength=0.99,

threshold=50,

processors=1)

Time difference of 4.29 secs

> ids

A test set of class 'Taxa' with length 894

confidence
[1] 9%
[2] 6%
[3] 100%
[4] 100%
[5] 99%
[890] 99%
[891] 8%
[892] 100%
[893] 0%
[894] 9%
>

plot (trainingSet, ids[grep("unclassified", ids, invert=TRUE)])

taxon

Root; unclassified_Root
Root; unclassified_Root
Root; 6; 3; 5; —; gatC
Root; 6; 3; 5; 7; gatA
Root; 6; 3; 5; —-; gatB

Root; NoEC; pmpH
Root; unclassified_Root
Root; NoEC; pmpl
Root; unclassified_Root
Root; unclassified_Root

Level 5
Level 4
Level 3
Level 2
Level 1

Distribution on taxonomic tree




Index Strand Begin End TotalScore ... Gene

1 1 0 1 1176 79.06 2
2 1 1 1321 1593 19.98 ... 2
3 1 0 1794 2096 31.47 ... 3
4 1 0 2108 3583 139.66 4
5 1 0 3585 5051 125.99 5
6 1 1 5150 6241 78.68 2

with 934 more rows.
With a little wizardry, we can now look at the top annotations in the genome.

> annotations <- attr(genes, "annotations")
> m <- match(genes[, "Gene"], annotations)
> head(sort (table (names (annotations) [m]), decreasing=TRUE))

unclassified_Root tRNA-Leu tRNA-Ser tRNA-Arg
564 5 4 3

tRNA-Met tRNA-Thr

3 3

7 Guaranteeing repeatability

FindGenes sometimes uses random sampling to increase speed of the algorithm. For this reason, gene predictions
may change slightly if the prediction process is repeated with the same inputs. For some applications this randomness
is undesirable, and it can easily be avoided by setting the random seed before using FindGenes. The process of
setting and then unsetting the seed in R is straightforward:

> set.seed(123) # choose a whole number as the random seed
> # then make gene predictions with FindGenes (not shown)
> set.seed (NULL) # return to the original state by unsetting the seed

8 Exporting the output

The genes can be exported in a variety of formats, including as a FASTA file with writeXStringSet, GenBank
(gbk) or general feature format (gff) file with WriteGenes, or delimited file formats (e.g., csv, tab, etc.) with

write.table.
Now that you know the tricks of the trade, you can work your own magic to find new genes!

9 Session Information

All of the output in this vignette was produced under the following conditions:

* R Under development (unstable) (2025-03-01 r87860 ucrt), x86_64-w64-mingw32
* Running under: Windows Server 2022 x64 (build 20348)
* Matrix products: default

» Base packages: base, datasets, grDevices, graphics, methods, stats, stats4, utils
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 Other packages: BiocGenerics 0.53.6, Biostrings 2.75.4, DECIPHER 3.3.6, GenomelnfoDb 1.43.4,
IRanges 2.41.3, S4Vectors 0.45.4, XVector 0.47.2, generics 0.1.3

* Loaded via a namespace (and not attached): DBI 1.2.3, GenomelnfoDbData 1.2.14, KernSmooth 2.23-26,
R6 2.6.1, UCSC.utils 1.3.1, compiler 4.5.0, crayon 1.5.3, httr 1.4.7, jsonlite 2.0.0, tools 4.5.0
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