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1 Chromosome bands

Typically, in higher organisms, each chromosome has a centromere and two arms. The short arm is
called the p arm and the longer arm the q arm. Chromosome bands (see Figure [I)) are identified by
differential staining, usually with Giemsa-based stains, and many disease-related defects have been
mapped to these bands; such mappings have played an important role in classical cytogenetics. With
the availability of complete sequences for several genomes, there have been efforts to link these bands
with specific sequence locations (Furey and Haussler, |2003). The estimated location of the bands
in the reference genomes can be obtained from the UCSC genome browser, and data linking genes to
particular bands can be obtained from a variety of sources such as the NCBI. This vignette demonstrates
tools that allow the use of categories derived from chromosome bands, that is, the relevant categories
are determined a priori by a mapping of genes to chromosome bands.

Figure[I|shows an ideogram of human chromosome 12, with the band 12q21 shaded. As shown in
the figure, 12g21 can be divided into more granular levels 12q21.1, 12q21.2, and 12q21.3. 12921.3 can
itself be divided at an even finer level of resolution into 12q21.31, 12q21.32, and 12q21.33. Moving
towards less granular bands, 12g21 is a part of 12q2 which is again a part of 12q. We take advantage
of this nested structure of the bands in our analysis.

library ("Category")
library ("ALL")

library ("hgu95av2.db")
library ("annotate")
library ("genefilter")
##1library ("SNPchip")
library ("karyoploteR")
library ("geneplotter")
library ("l1imma")
library ("lattice")
library ("graph")
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2 Data Preparation

For illustration, we use a microarray dataset (Chiaretti et al., |2005)) from a clinical trial in acute lym-
phoblastic leukemia (ALL). The data are described in Chapter 2 of Hahne et al.| (2008). For the
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Figure 1: Ideogram for human chromosome 12. The p arm is on the left, the q arm is on the right,
and the centromere is indicated by a notch. The shaded bands together represent 12q21. This band
is composed of three sub-bands: 12q21.1, 12q21.2, and 12g21.3. The last of these is composed of
sub-sub-bands 12q21.31, 12q21.32, and 12q21.33.

analysis presented here, we consider the comparison of two subsets: patients identified as having a
BCR/ABL gene fusion present, typically as a result of a translocation of chromosomes 9 and 22 (la-
beled BCR/ABL), and those that have no observed cytogenetic abnormalities (labeled NEG). The full
dataset is available in the ALL package, and the relevant subset of the data can be obtained by

data (ALL, package="ALL")

subsetType <- "BCR/ABL"

Bcell <- grep(""B", as.character (ALLSBT))

bcrAblOrNegIdx <- which (as.character (ALLSmol.biol) %in% c("NEG", subsetType))
bcrAblOrNeg <- ALL[, intersect (Bcell, bcrAblOrNegIdx) ]

bcrAblOrNegSmol.biol <- factor (bcrAblOrNegSmol.biol)
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We also create relevant annotation maps to go from feature names to Entrez ID, gene symbol, and
chromosome band.

> annType <—- c("db", "env")

> entrezMap <- getAnnMap ("ENTREZID", annotation (bcrAblOrNeg),
+ type=annType, load=TRUE)

> symbolMap <- getAnnMap ("SYMBOL", annotation (bcrAblOrNeg),
+ type=annType, load=TRUE)

> bandMap <- getAnnMap ("MAP", annotation (bcrAblOrNeqg),

+ type=annType, load=TRUE)

We applied a non-specific filter to the dataset to remove probesets lacking the desired annotation as
well as those with an interquartile range (IQR) below the median IQR, as probesets with little variation
across samples are uninformative. We also ensured that each Entrez Gene identifier maps to exactly
one probeset by selecting the probeset with the largest IQR when two or more probesets map to the
same Entrez Gene ID.



> filterAns <- nsFilter (bcrAblOrNeg,

+ require.entrez = TRUE,
+ remove.dupEntrez = TRUE,
+ var.func = IQR, var.cutoff = 0.5)

> nsFiltered <- filterAnsSeset

We also remove probesets with no gene symbol, as well as those with no mapping to a chromosome
band.

> hasSYM <- sapply (mget (featureNames (nsFiltered), symbolMap, 1ifnotfound=NA),
+ function(x) length(x) > 0 && !is.na(x[1]))

> hasMAP <- sapply (mget (featureNames (nsFiltered), bandMap, ifnotfound=NA),

+ function(x) length(x) > 0 && !is.na(x[1]))

> nsFiltered <- nsFiltered[hasSYM & hasMAP, ]

We define the gene universe to be the subset of genes that remain after this filtering.

affyUniverse <—- featureNames (nsFiltered)
entrezUniverse <- unlist (mget (affyUniverse, entrezMap))
names (affyUniverse) <- entrezUniverse
if (any(duplicated(entrezUniverse)))
stop ("error in gene universe: can't have duplicate Entrez Gene Ids")
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We assessed differential expression between the BCR/ABL and NEG groups using an empirical
Bayes approach, as implemented in the software package limma (Smyth, 2005), yielding an attenuated
t-statistic for each gene.

design <- model.matrix(~ 0 + nsFilteredSmol.biol)

colnames (design) <- c¢("BCR/ABL", "NEG")

contr <- c(1, -1) ## NOTE: we thus have BCR/ABL w.r.t NEG

fml <- ImFit (nsFiltered, design)

fm2 <- contrasts.fit (fml, contr)

fm3 <- eBayes (fmZ2)

ttestLimma <- topTable(fm3, number = nrow(fm3), adjust.method = "none")
ttestLimma <—- ttestLimma/[featureNames (nsFiltered), ]

tstats <- ttestLimmaSt

names (tstats) <—- entrezUniverse[rownames (ttestLimma) ]

##
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We used a p-value cutoff of 0.01 to identify a list of potentially differentially expressed genes.

ttestCutoff <- 0.01
smPV <- ttestLimmaSP.Value < ttestCutoff
pvalFiltered <- nsFiltered[smPV, ]

selectedEntrezIds <- unlist (mget (featureNames (pvalFiltered), entrezMap))
##
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3 Methods

There are two important features of gene sets based on chromosome bands: (1) the bands are nested
hierarchically, and (2) they almost form a partition (for most species almost all genes appear in only one
location in the genome). This naturally leads to two different dichotomies in approaches to testing: one
is a top-down versus a bottom-up approach, and the other contrasts local tests with global tests. We use
human chromosome 12 as an example to describe these approaches. Users will need to identify which
of the approaches best align with their objectives and then make use of the software appropriately.

Conceptually one can start a sequential testing approach either at the most coarse level of organi-
zation (probably the level of the arm: p or q), or the most specific level (that of sub-sub-bands). In the
top-down approach, one first tests the hypothesis of interest on a coarse level of organization, and if
rejected, the next level of organization is considered. For example, we might first consider the band
12q21, and if that hypothesis is rejected, test each of the sub-bands 12q21.1, 12q21.2, and 12q21.3. If
the hypothesis for 12q21.3 is rejected, then we may subsequently examine each of 12q21.31, 12q21.32,
and 12qg21.33.

The bottom-up approach differs in that we begin at the most granular level and move upward,
amalgamating adjacent bands at each level. The bottom-up approach is easier to put into a conditional
hypothesis testing framework. Our initial null hypotheses involve the smallest, or most granular bands,
and if there is evidence that these are unusual (i.e., we reject the null hypothesis) then moving to a larger,
or less granular, band requires additional information to declare it significant, over and above what we
have used to identify the smaller band. In our example, we would first test 12q21.31, 12q21.32, and
12921.33, and then move up and test 12q21.3. If one or more of the three sub-bands had been declared
significant, we would exclude the evidence from genes annotated in those sub-bands when testing the
coarser band.

It is important to note that the top-down versus bottom-up approaches represent a fundamental
trade-off between false positive and false negative errors. The bottom-up approach necessarily involves
performing a larger number of tests, yielding a correspondingly larger absolute number of false posi-
tives for a given false positive rate at which each individual test is controlled. The top-down approach
cuts down on the number of false positives by starting with fewer top-level tests, and performing further
tests at sublevels only when a top-level test is rejected. The disadvantage to this approach is loss of
power to detect real departures that are localized to a sub-level, a phenomenon commonly illustrated
using Simpson’s paradox (see, e.g., ' Wagner, [1982).

Whether a test is local or global is a different question, orthogonal to that of top-down or bottom-
up. There are two distinct but potentially relevant questions that may be of interest. The first is whether
genes in a particular gene set are “different” relative to all other genes under consideration. For a
Hypergeometric test, this question may be formalized as whether the proportion of interesting genes in
12921 is different from the proportion of interesting genes in the rest of the genome, or equivalently,
whether membership in 12q21 is independent of being selected. Such tests are global in the sense that
all genes in the gene universe are used to determine whether or not genes at a location are unusual or
not. An alternative is to ask whether genes in a genomic location are different relative to other genes in
some meaningfully defined neighbourhood. Such a test can be performed simply by restricting the gene
universe to a suitable subset; for example, when testing 12q21, we may only consider genes in 12q. A
more natural approach is to use a 2 x 3 contingency table to test the hypothesis that the proportion of
interesting genes is the same in 12q21, 12q22, and 12q23. Both these tests are local in the sense that
only nearby genes are used.



Contingency table tests are inherently local and although they do not naturally extend to conditional
testing, we can use a top-down approach to test at various resolutions. Such tests can be performed by
the cb_contingency () function, which we do not discuss in this vignette. Instead, we focus on
the bottom-up approach, which allows for conditional testing.

4 Utility functions

We first define a few utility functions that we subsequently use in presentation. The chrSortOrder ()
function reorders rows of data frame for display in a natural order.

> chrSortOrder <- function (df) {
+ chrs <— sub (" (["pg]+).*S", "\\1", rownames (df))
+ xyIdx <- chrs %$in% c("Xx", "Y")
+ xydf <- NULL

+ if (any(xyIdx)) {

+ chrs <- chrs[!xyIdx]
+ xydf <- df[xyIdx, ]
+ df <- df[l!xyIdx, ]
+ }

+ ord <- order (as.integer (chrs), rownames (df))
+ df <- dfford, ]

+ if (!is.null (xydf))

+ df <- rbind(df, xydf)

+ dr

+ )

The gseaTstatStripplot () function creates a comparative strip plot of the t-statistics for spec-
ified bands.

> gseaTlstatStripplot <- function(bands, g, ..., include.all = FALSE)

+ {

+ chroms <- c(1:22, "x", "y")

+ chromArms <- c(paste(chroms, "p", sep=""), paste(chroms, "q", sep=""))
+ egid <- lapply(nodeData (g, bands), "[[", "geneIds")

+ if (include.all) |

+ egid$All <-

+ unique (unlist (lapply (nodeData (g) [chromArms], "[[", "geneIds")))
+ }

+ tdf <- do.call (make.groups, lapply(egid, function(x) tstats[x]))

+ stripplot (which ~ data, tdf, jitter = TRUE, ...)

+ }

>
>

The esetBWPlot () function creates box-and-whisker plots for every gene in an “Expression-
Set”.
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esetBWPlot <- function (tmpSet, ..., layout=c(l, nrow(emat)))
{

emat <- exprs (tmpSet)
pd <- pData (tmpSet)
probes <- rownames (emat)
syms <-—

sapply (mget (probes, hgu95avZ2SYMBOL, 1ifnotfound=NA),

function(x) if (all(is.na(x))) "NA" else as.character(x)[1])

selectedAffy <-

probes %in% affyUniverse[selectedEntrezIds]
symsSelected <- syms|[selectedAffy]
symsWithStatus <-

paste (syms,

ifelse(selectedAffy, "+", ""),

sep = "")
pdat <-
cbind (exprs=as.vector (emat),
genes=factor (probes, levels = probes, labels = syms),
pd[rep (seq_len (nrow(pd)), each=nrow(emat)), ])
pdat <- transform(pdat, genes = reorder (genes, exprs))

panels.to.shade <- levels (pdatSgenes) %in% symsSelected
bwplot (mol.biol ~ exprs | genes, data=pdat,

layout = layout,

auto.key=TRUE,

scales=1ist (x=1ist (log=2L)),

xlab="LogZ Expression",

panels.to.shade = panels.to.shade,

panel = function(..., panels.to.shade) {
if (panels.to.shade[packet.number()])
panel.fill (col = "lightgrey")

panel.bwplot (...)
}/
strip=FALSE,
strip.left=TRUE, ...)

gl <- makeChrBandGraph (annotation (nsFiltered), univ=entrezUniverse)
ct <- ChrBandTreeFromGraph (gl)
subsetByBand <- function (eset, ct, band) {

egIDs <—- unlist (nodeData (ct@toChildGraph, n=band,
attr="geneIds"), use.names=FALSE)

wantedProbes <- affyUniverse[as.character (egIDs) ]

eset [intersect (wantedProbes, featureNames (eset)), ]



S Hypergeometric Testing

We use a method similar to that described in [Falcon and Gentleman| (2007) to conditionally test for
over-representation of chromosome bands in the selected gene list. A test is set up by creating a
suitable object of class “ChrMapHyperGParams”. We first create an object to perform a standard
Hypergeometric analysis, treating each chromosome band independently, and then modify a copy to
represent a conditional Hypergeometric computation.

> params <- new ("ChrMapHyperGParams",

+ conditional=FALSE,

+ testDirection="over",

+ universeGenelds=entrezUniverse,
+ genelds=selectedEntrezIds,

+ annotation="hgu95av2”,

+ pvalueCutoff=0.05)

> paramsCond <- params

> paramsCond@conditional <- TRUE

The test computations are performed by

> hgans <- hyperGTest (params)
> hgansCond <- hyperGTest (paramsCond)

The results can be summarized by

> sumUn <- summary (hgans,
> chrSortOrder (sumUn)

categorySize=1)

ChrMapID Pvalue OddsRatio ExpCount Count Size
1 14g22.2 0.0005784156 22.692958 0.4907724 4 6
2 7931.2 0.0047908084 16.971910 0.4089770 3 5
3 9g21.1 0.0062117150 7.556808 0.8179540 4 10
4 13g31 0.0066733711 Inf 0.1635908 2 2
5 13g31.1 0.0066733711 Inf 0.1635908 2 2
6 6p23 0.0066733711 Inf 0.1635908 2 2
7 9¢g33.2 0.0090032012 11.311798 0.4907724 3 6
8 2p22.2 0.0148085762 8.481742 0.5725678 3 7
9 12921.33 0.0189339982 22.571429 0.2453862 2 3
10 2931.3 0.0189339982 22.571429 0.2453862 2 3
11 4922.1 0.0189339982 22.571429 0.2453862 2 3
12 14g22 0.0197575131 3.780603 1.6359080 5 20
13 12g14 0.0222758094 6.783708 0.6543632 3 8
14 6g2 0.0229391129 2.164685 5.6438824 11 69
15 129g21.3 0.0358280017 11.282913 0.3271816 2 4
16 4922 0.0358280017 11.282913 0.3271816 2 4
17 10pl1.22 0.0358280017 11.282913 0.3271816 2 4
18 12g13.11 0.0358280017 11.282913 0.3271816 2 4



19 6q24.2
20 9
21 1p21
22 20pl2
23 22gll.23
24 69
25 1p36.11

> sumCond <- summary (hgansCond,

.0358280017
.0419943288
.0422279373
.0422279373
.0422279373
.04399958¢64
.0446151403

> chrSortOrder (sumCond)

ChrMapID
1 14g22.2
2 7g31.2
3 9g21.1
4 13g31.1
5 6p23
6 9g33.2
7 2p22.2
8 12g21.33
9 2g31.3
10 4g22.1
11 12gl4
12 692
13 10pll.22
14 12g13.11
15 6q24.2
16 9
17 1p21
18 20pl2
19 22gl1.23
20 1p36.11

For the standard test, the structure of the chromosome band graph is ignored and a Hypergeomet-
ric test is applied to each band independently. For the conditional test, the hierarchical relationship
among the bands as represented by the graph is used in the computation. The highest-resolution bands
(those with no children in the graph) are tested first. Testing proceeds with the bands whose children
(sub-bands) have already been tested. For these bands, the gene annotations that are inherited from
significant child nodes (children with p-value smaller than the specified cutoff) are removed prior to

Pvalue

.0005784156
.0047908084
.0062117150
.0066733711
.0066733711
.0090032012
.0148085762
.0189339982
.0189339982
.0189339982
.0222758094
.0229391129
.0358280017
.0358280017
.0358280017
.0419943288
.0422279373
.0422279373
.0422279373
.0446151403

testing to yield a conditional test.

The effect of the conditional test is illustrated by examining the results for 14q and its sub-bands.
In the standard test, we see that 1422 and 14q22.2 both have a significant p-value. In the conditional
test, only 14q22.2 remains. The conclusion is that there is not enough additional evidence beyond that
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6 GSEA using linear models

GSEA is a popular method that can be used to assess whether or not particular gene sets are associated
with a phenotype of interest (Subramanian et al., 2005} [Tian et al.| 2005} Jiang and Gentleman, 2007).
Most applications of this method do not explicitly deal with structure of the gene sets, but when ana-
lyzing chromosomal location such methods are desirable. We present a simple approach that is similar
in spirit to traditional GSEA, and generalizes nicely to accommodate nested categories. Consider the
situation where gene ¢ has an associated measure of differential expression y;; for example, an attenu-
ated t-statistic derived from a differential expression analysis such as limma (Smyth, [2005). Given a
particular category, GSEA asks whether the distribution of y;-s restricted to the category of interest is
“unusual”. Thus, in Figure [2| we might be interested in knowing whether the distribution of y; values
for genes in 12q21 is different from that of the genes in 12q (for a local test) or of all genes in the gene
universe (for a global test). Figure [2)is produced by

> gseaTlstatStripplot (c("12g21.1", "12g21", "12q92", "12q9"),

+ include.all = TRUE,

* g =91,

+ xlab = "Per—-gene t-statistics”,

+ panel = function(...) {

+ require(grid, quietly = TRUE)

+ grid.rect (y = unit (2, "native"),

+ height = unit (1, "native"),
* agp =

+ gpar (fill = "lightgrey”,

+ col = "transparent"))
+ panel.grid(v = -1, h = 0)

+ panel.stripplot(...)

+ panel.average(..., fun = mean, lwd = 3)
+ })

We fit a factorial model to see whether the distribution of y; is associated with category membership.
Specifically, for category 7, we fit the model

yi = Bo + Braij + & (D

where a;; = 1 if gene i belongs to category j, and 0 otherwise. The index ¢ may range over the full
gene universe, or a subset, depending on whether one wishes to perform global or local tests. The null
hypothesis of no association is represented by Hy : #; = 0. The model nominally assumes that the
y;-s are Normally distributed with equal variance, but in practice the results are robust against mild
deviations. The presence of an intercept term allows nonzero overall mean, which can be important in
many situations, especially for local tests. We expect the test to be fairly insensitive to distributional
assumptions on the y;-s.

We can fit (I)) by least squares and test Hy : 51 = 0 to obtain a marginal test for each category j; in
this case, each chromosome band. The procedure also generalizes to incorporate the nesting structure
of chromosome bands. Specifically, if band js (e.g., 12q21.1) is nested within a coarser band j; (e.g.,
12g21) and the more granular band j5 is significant, then the effect of membership in j; over and above
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Figure 2: Per-gene t-statistics, as computed by limma, for selected chromosome bands. The points
are jittered vertically to alleviate overlap. A thick grey line joins the mean value within each group. A
GSEA test would compare the genes in 12q21 with those in 12q, or the entire gene universe, by fitting
a linear model with per-gene ¢-statistics as the response, and a term indicating membership in 12g21 as
the predictor. If 12q21.1 is declared as significant, a conditional GSEA test would include an additional
term for 12q21.1.

the effect attributable to membership in j3 can be tested by fitting the model

Yi = Bo + Braij, + Paaij, +€; ()

and testing the null hypothesis Hy : 81 = 0. Multiple significant sub-bands and multiple levels of
nesting can be incorporated by including further terms in the model. The complete process can be
summarized as follows: Start by marginally testing each band which has no sub-bands. For all other
bands, first test all sub-bands, then test the current band using a linear model that includes a term for
each significant sub-band.

We apply this procedure to perform global tests using per-gene t¢-statistics as a measure of differ-
ential expression in BCR/ABL relative to NEG samples. As with the Hypergeometric tests, we start by
creating objects of class “ChrMapLinearMParams”.

> params <- new("ChrMapLinearMParams",
conditional = FALSE,
testDirection = "up",
universeGenelds = entrezUniverse,
geneStats = tstats,

annotation = "hgu95av2’,
pvalueCutoff = 0.01,

minSize = 4L)

+ + + + + + +

> params@graph <- makeChrBandGraph (params@annotation, params@universeGenelIds)

> params@gsc <- makeChrBandGSC (params@graph)
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> paramsCond <- params
> paramsCond@conditional <- TRUE

The tests are performed, and the results summarized by

> Imans <- linearMTest (params)
> ImansCond <- linearMTest (paramsCond)
> chrSortOrder (summary (lmans) )

ChrMapID Pvalue Effect Size Conditional TestDirection
53 12921 1.226213e-03 1.1250647 17 FALSE up
54 12g21.3 7.675013e-03 1.8539775 4 FALSE up
76 14 6.053485e-03 0.3117778 157 FALSE up
77 14gq 6.053485e-03 0.3117778 157 FALSE up
81 1492 2.305207e-04 0.6152527 77 FALSE up
83 14922 1.153599e-04 1.2608760 20 FALSE up
98 15g21 7.864796e-03 0.8721684 18 FALSE up
133 18p 1.034270e-03 0.8925126 28 FALSE up
134 18pl 1.034270e-03 0.8925126 28 FALSE up
135 18pll 1.034270e-03 0.8925126 28 FALSE up
137 18pl1.3 5.687826e-03 1.0748058 13 FALSE up
161 1p2 3.768696e-03 0.7247847 32 FALSE up
162 1p21 8.355225e-04 1.5208019 10 FALSE up
216 2 4.064842e-04 0.3060445 300 FALSE up
2277 2q 1.249084e-04 0.4364493 171 FALSE up
228 2gl 9.527008e-03 0.5694083 40 FALSE up
237 293 4.820761e-03 0.4063168 97 FALSE up
240 2933 7.529350e-03 0.9032265 17 FALSE up
243 3 1.402517e-03 0.3008901 244 FALSE up
256 3g 1.919247e-04 0.4981449 122 FALSE up
263 392 2.371159e-03 0.4366903 100 FALSE up
266 3925 3.809785e-04 1.2148855 18 FALSE up
271 4 9.538389e-04 0.3844196 158 FALSE up
277 4g 4.601941e-03 0.3844843 110 FALSE up
279 4913 6.143774e-03 0.9302421 17 FALSE up
291 5 1.089529e-03 0.3350615 205 FALSE up
297 5g 5.954123e-03 0.2982655 173 FALSE up
303 502 5.551978e-03 0.8926298 19 FALSE up
306 5923 3.555656e-03 1.6809836 6 FALSE up
311 6 1.584787e-04 0.3432447 274 FALSE up
322 6g 6.962197e-06 0.6880899 95 FALSE up
326 6g2 5.900992e-06 0.8116250 69 FALSE up
330 6g24 3.202752e-03 1.5764875 7 FALSE up
348 7g21.1 9.147762e-03 1.1422131 10 FALSE up
385 9q 6.018718e-03 0.3690938 111 FALSE up
387 9g21 2.799870e-04 1.2451339 18 FALSE up
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388 9g21.1
1113 10pll.22
1245 14g22.2
1276 15q24.3
1290 16ql2.1
1324 18pll.22
1363  1p21.3
1573  4gl13.3
1647  6p22.3
1664 6q21
1668  6g23.3
1670  6g24.2
1701 7g31.2
1756 99g21.13
1770  9g33.2

4.282873e-06
8.053864e-03
9.092615e-06
8.504394e-03
7.610085e-03
1.003528e-03
2.500404e-03
8.
2
1
3
7
4
7
3

388741e-03

.989781e-03
.292155e-03
.192526e-03
.434128e-03
.049223e-05
.571655e-04
.825568e-04

NN RPRRPRRRRRERREREDNDREDN

.1509042
.8405737
.6734149
.6328169
.4037361
.6707653
.7529252
.0570420
1672122
.1191866
.5770967
.8628060
.6936729
.9803350
.1006502

> chrSortOrder (summary (IlmansCond) )

ChrMaplID
54 12g21.3
81 1492
98 15g21
137 18pl11.3
228 29l
240 2933
256 3g
266 3g25
271 4
291 5
306 5g23
348 7g21.1
388 9g21.1
1113 10pll.22
1245 14q922.2
1276 15g24.3
1290 1legl2.1
1324 18pll.22
1363 1p21.3
1573 4gl13.3
1647 6p22.3
1664 6921
1668 6923.3
1670 6q24.2
1701 7g31.2
1756 99g21.13
1770 9933.2

Pvalue

.675013e-03
.893819e-03
.86479%96e-03
.687826e-03
.527008e-03
.529350e-03
.983745e-03
.809785e-04
.357453e-03
.987179%9e-03
.555656e-03
.147762e-03
.243858e-04
.053864e-03
.092615e-06
.504394e-03
.610085e-03
.003528e-03
.500404e-03
.388741e-03
.989781e-03
.292155e-03
.192526e-03
.434128e-03
.049223e-05
.571655e-04
.825568e-04

NFRPNMNRPRPRPRRPRPPRPRRPPRENNRNMNR,R,OOR,OOCOROO R

Effect

.8539775
.4407200
.8721684
.0748058
.5694083
.9032265
.3725591
.2148855
.3282355
.2940783
.6809836
.1422131
.4034672
.8405737
.6734149
.6328169
.4037361
.6707653
.7529252
.0570420
1672122
.1191866
.5770967
.8628060
.6936729
.9803350
.1006502
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Size
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40
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FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
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TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
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up
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Figure 3: Expression values for the BCR/ABL and NEG samples for the genes located within 1p36.2,
which is declared as significant by the Hypergeometric test, but not by GSEA. Genes in the selected list
are highlighted with a shaded background. For these genes, The NEG samples, those with no known
cytogenetic abnormalities, have significantly lower expression than the BCR/ABL samples. However,
the direction is reversed (albeit mildly) for many of the other genes.

>
> ##

These examples only test for consistently upregulated categories; similar calls with testDirection
= "down" can be used to test for downregulation. As we see, the GSEA approach picks out many
more bands as significant, but there is some concordance with the Hypergeometric approach. For
example, 7q31, 8p22, and 14q22.2 come up in both analyses. Figure [3] shows box-and-whisker plots
of genes in one category (1p36.2) that is declared as significant by the Hypergeometric test, but not by
GSEA. It is produced by

> tmpSet <- subsetByBand(nsFiltered, ct, "Ip36.2")
> esetBWPlot (tmpSet, ylab="1p36.2", layout = c(2, 8),
+ par.strip.text = 1list(cex = 0.8))
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