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1 Introduction

RNA structure is known to be a key regulator of many important mechanisms, such as RNA
stability, transcription, and mRNA translation. RNA structural regulatory elements are inter-
rogated with chemical and enzymatic structure probing [1]. In these experiments, a chemical
agent reacts with the RNA molecule in a structure-dependent way, cleaving or otherwise mod-
ifying its flexible parts. These modified positions can then be detected, providing valuable
structural information that can be used for structure prediction [2].

Specifically, chemical modification terminates the reverse transcription reaction, resulting in
the reverse transcriptase (RT) dropping off at the modified positions. These positions of
drop-off can be then mapped back to the reference sequence. However, the challenge lies
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in the stochasticity of this process as the RT can also drop off randomly. To address this,
a complementary control experiment is routinely performed to monitor random RT drop-offs
when no reagent is used.

Let us consider a toy example of data obtained in a paired-end sequencing structure probing
experiment (Fig. 1). We'll focus on a particular nucleotide G and analyse the data from
a control experiment (with no reagent added) and a treatment experiment (with RNAs
modified by the reagent). In control conditions, we mapped 5 fragments overlapping with
the nucleotide G, one of which also terminated at that position. Thus, this nucleotide
had a coverage of 5 and a drop-off count of 1 (the number of times the RT dropped off
immediately after this position), giving it a drop-off rate of % (formally defined below). In
treatment conditions, more fragments terminated at this position and we measured a drop-
off rate of %. This seems to suggest that the next nucleotide T has been modified by the
reagent and perhaps corresponds to a flexible site within the molecule. However, would our
conclusion remain the same had we observed a higher drop-off rate in control conditions to
start with? In fact, how high would this control drop-off rate have to be for us to dismiss the
drop-off rate of % as a noisy measurement of randrom drop-off rather than an indication of
real modification?

Figure 1: Toy example of structure probing data.
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This question reinforces the need for deciding statistically whether the drop-off rate in treat-
ment conditions is significantly higher than the drop-off rate in control. To do this, we must
understand how much noise can be expected in control conditions. If the treatment drop-off
rate is outside of this range of drop-off rate variability, then we could deem it as significantly
higher.

We developed Beta-Uniform Mixture hidden Markov model (BUM-HMM) [3], a statistical frame-
work for modelling reactivity scores from an RNA structure probing experiment such as
SHAPE [4] or ChemModSeq [5]. BUM-HMM implements the intuition outlined above by util-
ising data from multiple experimental replicates and quantifying the variability of the RT
drop-offs. BUM-HMM also provides empirical strategies to correct intrinsic biases in the data. It
generates a probabilistic output measuring the probability of modification for each nucleotide
transcriptome-wide.
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The BUMHMM package implements the functionality of the BUM-HMM model. This vignette
provides an example workflow for using the BUMHMM package on the structure probing data
set for the yeast ribosomal RNA 18S, obtained in an experiment with random priming and
paired-end sequencing (available in the Gene Expression Omnibus under accession number
GSE52878).

2 Data format

The BUMHMM pipeline requires three data sets for all nucleotide positions:
= the coverage (or the number of reads overlapping with this position),
= the drop-off count (or the number of times the RT dropped off at the next nucleotide),
= and the drop-off rate at this position.

The coverage and the drop-off counts are the data obtained in a structure probing experiment
with paired-end sequencing. The drop-off rate r at each nucleotide position is computed as
the ratio between its drop-off count k& and the coverage n: r = % Such data sets can
be easily stored in a SummarizedExperiment object, commonly used to represent data from

sequencing-based experiments such as RNA-Seq.

The key strength of the BUM-HMM model is accounting for the biological variability of the data
and thus, it requires data sets available in multiple replicates. The data set se provided with
this package (accession number GSE52878) is available in triplicates and was obtained in a
structure probing experiment on the 18S ribosomal RNA using the DMS chemical probing
agent [6].

suppressPackageStartupMessages({
library (BUMHMM)
library(Biostrings)
library(SummarizedExperiment)

})

SE

## class: SummarizedExperiment

## dim: 1800 6

## metadata(0):

## assays(3): coverage dropoff_count dropoff_rate
## rownames: NULL

## rowData names(1l): nucl

## colnames(6): C1 C2 ... T2 T3

## colData names(1l): replicate

We see that 18S has 1,800 nucleotides (represented as rows in se) and that the data set
has 6 replicates: 3 control experiments followed by 3 treatment experiments (represented as
columns in se). The assays correspond to different data sets, namely, the coverage, drop-
off count, and drop-off rate information for each nucleotide. One could quickly access the
coverage information for control experimental replicates (labelled 'C1", 'C2’, 'C3') as follows:

controls <- se[, se$replicate == "control"]
head(assay(controls, 'coverage'))

#i# C1 Cc2 C3
## [1,] 382943 276113 135209
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## [2,] 399211 280523 137706
## [3,] 403519 284622 140211
## [4,] 404242 287589 144656
## [5,] 404463 288348 147167
## [6,] 404506 288445 147687

We also provide the associated genomic sequence of 18S, accessible through the rowbata
function which stores information about the rows, in this case corresponding to the nucle-
obases:

rowData(controls)[1:4,]

## Views on a 1800-letter DNAString subject
## subject: TATCTGGTTGATCCTGCCAGTAGTCATATGCTT. ..TTTCCGTAGGTGAACCTGCGGAAGGATCATTA

## views:

At start end width

## [1] 1 1 1 [T]
## [2] 2 2 1 [A]
## [3] 3 3 1 [T]
## [4] 4 4 1 [C]

Similarly, the function colData stores the description of the columns, which correspond to
the experimental replicates

colData(controls)

## DataFrame with 3 rows and 1 column

## replicate
## <character>
## C1 control
## C2 control
## C3 control

For transcriptome-wide experiments, the data over different chromosomes should be concate-
nated row-wise.

To briefly illustrate the data set, let us examine the 300th nucleotide:

pos <- 300
assay(controls, 'coverage')[pos, 1]

it C1
## 813073

assay(controls, 'dropoff_count')[pos, 1]

# (1
## 1837

assay(controls, 'dropoff_rate')[pos, 1]

## C1
## 0.00225933

We see that it had coverage of 813073 in the first control experimental replicate, of which
the reverse transcription randomly terminated at that position 1837 times, giving it a drop-off
rate of 0.00226.
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treatments <- se[, se$replicate == "treatment"]
assay(treatments, 'coverage')[pos, 1]

## T1
## 1640501

assay(treatments, 'dropoff_count')[pos, 1]

## Tl
## 4844

assay(treatments, 'dropoff_rate')[pos, 1]
## Tl
## 0.002952757

In the presence of a chemical probe (in the first treatment replicate), the coverage and
drop-off count at that position were higher but the drop-off rate remained roughly similar,
0.00295.

3 The overview of pipeline

The logic of structure probing experiments associates the binding accessibility of a nucleotide
with its structural flexibility, i.e. double-stranded nucleotides or those otherwise protected
(e.g. by a protein interaction) will not be available for interaction with the chemical reagent.
In contrast, those nucleotides located in flexible parts of the molecule, could be chemically
modified by the reagent and will therefore correspond to the positions at which the RT drops
off. Thus, we expect the nucleotides immediately downstream from the modification sites
within the transcript to have a high drop-off rate in the presence of a reagent; higher than
what we observe in control conditions.

To quantify the variability in drop-off rate measured in control conditions, the BUM-HMM method
compares the drop-off rates at each nucleotide position between two control experimental
replicates, C; and Cj:

rc.
log(—’)
ch

If the drop-off rates ¢, and r¢; are similar in a pair of control replicates, the above log-ratio
will be close to 0, indicating little to no variability in drop-off rate. In contrast, different drop-
off rates will result in a large log-ratio (in absolute value). Computing these per-nucleotide
log-ratios for all pairs of control experimental replicates defines a null distribution, which
quantifies how much variability in drop-off rate we can observe between two experimental
replicates simply by chance, in the absence of any reagent. (Note that due to a log transform,
the drop-off rates r = 0 are not allowed.)

We now compute this log-ratio between the drop-off rates in all pairs of treatment and control
experimental replicates, T; and Cj:

rT;
log( : )
’I“Cj
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We expect the neighbour of a modified nucleotide to have a much larger drop-off rate in a
treatment experiment compared to control conditions, generating a large log-ratio for this
pair of experimental replicates. By comparing each treatment-control log-ratio to the null
distribution, we can find those nucleotide positions that demonstrate differences in drop-off
rate larger than what can be expected by chance.

The next section goes through the steps of the BUMHMM pipeline using the provided data set
se as an example.

BUMHMM pipeline steps

Selecting pairs of nucleotides

We first need to select nucleotide positions in each experimental replicate for which we will
compute the log-ratios. This is implemented with the function selectNuclPos. This function
requires the coverage and drop-off count information stored in se, the numbers of control and
treatment experimental replicates (Nc and Nt, correspondingly), and a user-specified coverage
threshold t. Nucleotides with coverage n < t will not be considered.

In our data set, we have 3 control and 3 treatment replicates, so if we set the minimum
allowed coverage as t = 1, we can make the following function call:

Nc <- Nt <- 3

t <- 1

nuclSelection <- selectNuclPos(se, Nc, Nt, t)
List(nuclSelection)

## List of length 2
## names(2): analysedC analysedCT

The function selectNuclPos returns a list with two elements:

= analysedC is a list where each element corresponds to a control-control replicate com-
parison. Each element holds indices of nucleotides that have coverage n >=t and a
drop-off count k& > 0 in both replicates of that comparison. Thus, each element stores
those nucleotide positions for which we can compute the log-ratio for the corresponding
pair of control replicates.

= analysedCT is a list where each element corresponds to a treatment-control replicate
comparison. Again, each element holds indices of nucleotides that have coverage n >=
t and a drop-off count k& > 0 in both replicates of that comparison.

The pairwise control replicate comparisons are enumerated with the function combn from the
utils package:

t(combn(Nc, 2))

## [,11 [,2]
## [1,] 1 2
## [2,] 1 3
## [3,] 2 3

Thus, the first element of analysedC corresponds to comparing the control replicate 1 to
control replicate 2. The comparisons between treatment and control replicates are computed
similarly.
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4.3

length(nuclSelection$analysedC[[1]])
## [1] 1713
length(nuclSelection$analysedCT[[1]])
## [1] 1723

We select 1713 nucleotide positions for computing the log-ratios for the first control-control
comparison and 1723 positions for the first treatment-control comparison.

Scaling the drop-off rates across replicates

Because BUMHMM works with data collected in multiple experimental replicates, it is important
to ensure that the drop-off rates do not differ dramatically between replicates. Thus, the
second step of the pipeline scales the drop-off rates of nucleotides selected for pairwise
comparisons to have a common median value. This is implemented with a function scaleDOR,
which requires the data container se, the output of the function selectNuclPos (described
above), and the numbers of replicates. It returns the updated drop-off rates such that the
selected positions have the same median drop-off rate in all replicates:

## Medians of original drop-off rates in each replicate
apply(assay(se, 'dropoff_rate'), 2, median)

#i# C1 C2 C3 Tl T2 T3
## 0.001005071 0.001025182 0.003684315 0.001608314 0.001302076 0.003380141

## Scale drop-off rates
assay(se, "dropoff_rate") <- scaleDOR(se, nuclSelection, Nc, Nt)

## Medians of scaled drop-off rates in each replicate
apply(assay(se, 'dropoff_rate'), 2, median)

## C1 C2 C3 Tl T2 T3
## 0.001618859 0.001611737 0.001707502 0.001641554 0.001708537 0.001719018

After scaling, medians are much more similar across replicates (they are not exactly equal
when computed this way as most, but not all nucleotides were selected for the pairwise
comparisons.)

Computing stretches of nucleotide positions

The next step in the BUM-HMM modelling approach enforces a smoothness assumption over the
state of nucleotides: chemical modification does not randomly switch along the chromosome,
rather, continuous stretches of RNA are either flexible or not. This is captured with a hidden
Markov model (HMM) with binary latent state corresponding to the true state of each
nucleotide: modified or unmodified.

The observations of the HMM are the empirical p-values associated with each nucleotide.
These p-values arise from comparing the treatment-control log-ratios corresponding to each
nucleotide position with the null distribution:

p-value = 1 — closest percentile of null distribution
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If the difference between the drop-off rates in treatment and control replicates (as measured
by the treatment-control log-ratio) is well within the range of the drop-off rate variability that
we observed in control conditions (as summarised by the null distribution), then this log-ratio
will get assigned a fairly large p-value. However, those log-ratios that are much larger than
most values in the null distribution will be close to its right side (e.g. 90t" percentile). They
will then receive a small p-value (1—0.9 = 0.1 in this case). Thus, the p-value can be thought
of as a probability for the treatment-control log-ratio to belong to the null distribution. We
are interested in those log-ratios that are unlikely to belong to it as they could indicate the
real RT drop-off signal. Note that we expect the drop-off rate in treatment conditions to be
higher than in control, which is why we restrict our attention to the right side of the null
distribution.

Modelling p-values directly enabled us to define the emission distribution of the HMM as a
Beta-Uniform mixture model. Briefly, the unmodified state of a nucleotide corresponds to
the null hypothesis and the associated p-values are modelled with the Uniform distribution.
In the modified state we expect to see large log-ratios and small associated p-values, which
are modelled with a Beta distribution. Further details and theoretical justifications can be
found in [3].

To run the HMM, we compute uninterrupted stretches of nucleotides for which the posterior
probabilities are to be computed. Posterior probabilities will be computed for those nucleotides
with at least the minimum allowed coverage in all experimental replicates and a non-zero
drop-off count in at least one treatment replicate. This is achieved with the function com
puteStretches, which takes se and the threshold t as parameters.

stretches <- computeStretches(se, t)
The function returns an /Ranges object where each element corresponds to a stretch of

nucleotides and each stretch is at least 2 nucleotides long. HMM will be run separately on
each stretch.

head(stretches)

## IRanges object with 2 ranges and 0 metadata columns:

#i#t start end width
## <integer> <integer> <integer>
##  [1] 1 1747 1747
# [2] 1749 1800 52

assay(se, 'dropoff_count')[1748,]

## Cl1 C2 C3 T1 T2 T3
# 0 0 0 0 0 0

On this data set, we will compute posterior probabilities for all nucleotides but one, which is
at the 1748th position. This is because at this position, all treatment replicates (and in fact,
all replicates) had a drop-off count of 0.

Bias correction

Using a transcriptome-wide data set, we identified sequence and coverage as factors that in-
fluence log-ratios in control conditions [3]. We would therefore like to transform the log-ratios
such that these biases are eliminated and the performed comparisons are not confounded.
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4.41

442

Coverage bias

The coverage bias is addressed by a variance stabilisation strategy, implemented by the
stabiliseVariance function. This function aims to find a functional relationship between
the log-ratios in the null distribution and the average coverage in the corresponding pair
of control replicates. This relationship is modelled with the assumption that the drop-off
count is a binomially distributed random variable (see [3] for details) and is fitted to the
data with a non-linear least squares technique. Then, all log-ratios (both for control-control
and treatment-control comparisons) are transformed accordingly so that this dependency on
coverage is eliminated or at least reduced.

The function requires the data container se, the positions of nucleotides selected for pairwise
comparisons, and the numbers of replicates. It returns a list with two elements (LDR stands
for “log drop-off rate ratio”):

= LDR_C is a matrix with transformed log-ratios for control-control comparisons.
= LDR_CT is a matrix with transformed log-ratios for treatment-control comparisons.

Both matrices have rows corresponding to nucleotide positions and columns — to a pairwise
comparison. Thus, LDR_C has as many columns as there are control-control comparisons (3
comparisons for 3 control replicates) and LDR_CT has as many columns as treatment-control
comparisons (9 comparisons for 3 control and 3 treatment replicates).

varStab <- stabiliseVariance(se, nuclSelection, Nc, Nt)
LDR_C <- varStab$LDR_C
LDR_CT <- varStab$LDR_CT

hist(LDR_C, breaks = 30, main = 'Null distribution of LDRs')

Null distribution of LDRs
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The histogram shows the null distribution after the transformation.

Sequence bias

The sequence-dependent bias is addressed by computing different null distributions of log-
ratios for different sequence patterns of nucleotides. One could consider sequences of three
nucleotides, reflecting the assumption that the immediate neighbours of a nucleotide on both
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sides could affect its accessibility; patterns of other lengths could also be considered. The
function nuclPerm returns a vector of all permutations of four nucleobases (A, T, G, and C)
of length n:

nuclNum <- 3
patterns <- nuclPerm(nuclNum)
patterns

## [1] "AAA" "AAC" "AAG" "AAT" "ACA" "ACC" "ACG" "ACT" "AGA" "AGC" "AGG" "AGT"
## [13] "ATA" "ATC" "ATG" "ATT" "CAA" "CAC" "CAG" "CAT" "CCA" "CCC" "CCG" "CCT"
## [25] "CGA" "CGC" "CGG" "CGT" "CTA" "CTC" "CTG" "CTT" "GAA" "GAC" "GAG" "GAT"
## [37] "GCA" "GCC" "GCG" "GCT" "GGA" "GGC" "GGG" "GGT" "GTA" "GTC" "GTG" "GTT"
## [49] "TAA" "TAC" "TAG" "TAT" "TCA" "TCC" "TCG" "TCT" "TGA" "TGC" "TGG" "TGT"
## [61] "TTA" "TTC" "TTG" "TTT"

Considering patterns of length n = 3 will result in computing 64 different null distributions
of log-ratios, each corresponding to one sequence pattern. To do this, we first need to find
all occurrences of each pattern within the sequence. This is implemented with the function
findPatternPos, which takes the list of patterns, a string containing the sequence (e.g. a
DNAString object), and a parameter indicating whether we are dealing with sense (+) or
anti-sense (-) DNA strand. For transcriptome-wide experiments, when searching for pattern
occurrences within the genomic sequence on the anti-sense strand (sense strand sequence
is expected by the function as the second parameter), the patterns will be converted to
complementary sequence.

## Extract the DNA sequence
sequence <- subject(rowData(se)$nucl)
sequence

## 1800-letter DNAString object
## seq: TATCTGGTTGATCCTGCCAGTAGTCATATGCTTGT. ..GGTTTCCGTAGGTGAACCTGCGGAAGGATCATTA

nuclPosition <- findPatternPos(patterns, sequence, '+')
patterns[[1]]

## [1] "AAA"
head(nuclPosition[[1]])

## [1] 40 85 104 180 181 218

The function returns a list with an element corresponding to each pattern generated by nu
clPerm. Each element holds the indices of the middle nucleotide of this pattern’s occurrence in
the genomic sequence. Thus, we will separately consider the drop-off rates of the nucleotides
that occur in the context of each pattern. For instance, the null distribution specific to the
pattern “AAA" will be constructed from the log-ratios for the nucleotide positions 40, 85,
104, 180, 181, 218 etc.

Computing posterior probabilities with HMM

We are now ready for the final step of the pipeline which computes posterior probabilities
of modification with the HMM. Due to the short length of the 18S molecule (only 1,800
nucleotides), we will be omitting the sequence bias-correcting step, which is primarily designed
for transcriptome studies. Instead, we will use all nucleotide positions for constructing a

10
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single null distribution quantifying the drop-off rate variability. The nuclPosition list should
therefore have one element corresponding to the single stretch that we will run the HMM on.
This stretch contains all nucleotide positions:

nuclPosition <- list()
nuclPosition[[1]] <- l:nchar(sequence)

## Start of the stretch
nuclPosition[[1]]1[1]

## [1] 1

## End of the stretch
nuclPosition[[1]][length(nuclPosition[[1]])]

## [1] 1800

The HMM is run separately on all stretches of nucleotides (of which we have only one in
this particular case). However, in transcriptome studies it could be useful to only select some
stretches of interest, e.g. those overlapping with particular genes.

The function computeProbs computes the posterior probabilities of modification for all nu-
cleotides in the specified stretches. The function requires matrices with transformed log-ratios
LDR_C and LDR_CT, the numbers of replicates, the strand indicator, the lists of positions for
computing the null distribution(-s) (stored in nuclPosition) and pairwise comparisons (stored
in nuclSelection), and the stretches which to run the HMM on:

posteriors <- computeProbs(LDR_C, LDR_CT, Nc, Nt, '+', nuclPosition,
nuclSelection$analysedC, nuclSelection$analysed(CT,
stretches)

## Computing quantiles of null distributions...

## Computing empirical p-values...

## Computing posteriors...

The function computeProbs compares log-ratios to the null distribution(-s) and computes
empirical p-values. These are then passed as observations to the HMM, which computes

posterior probabilities for each selected nucleotide of being in the unmodified (first column
in posteriors) and modified state (second column in posteriors).

BUMHMM output

We see that the model assigns very large probabilities to the first few nucleotides to be
unmodified by the chemical probe.

head (posteriors)

## [,1] [,2]
## [1,] 1 7.410487e-56
## [2,] 1 8.033753e-95
## [3,] 1 3.823135e-42
## [4, 1 2.361604e-37
## [5, 1 1.626158e-27

11
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## [6,] 1 1.584615e-38

As the modified positions within a transcript are the ones at which the reverse transcriptase
drops off, the last position of the corresponding cDNA fragment that is detected and for which
we consequently increment the drop-off count is the nucleotide next to the modification site.
Thus, we need to shift our probabilities up by one position:

shifted_posteriors <- matrix(, nrow=dim(posteriors)[1], ncol=1)
shifted_posteriors[1l:(length(shifted_posteriors) - 1)] <-
posteriors[2:dim(posteriors)[1], 2]

We can now plot the probabilities to see the BUMHMM output for the DMS structure probing

data for the yeast rRNA 18S.

plot(shifted_posteriors, xlab = 'Nucleotide position',
ylab = 'Probability of modification',
main = 'BUMHMM output for 18S DMS data set')

BUMHMM output for 18S DMS data set
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We see that most nucleotides are predicted to be in the unmodified state, having the prob-
ability of modification close to 0 (and thus could possibly be double-stranded or protected
by a protein interaction). However, the model also identified some modified regions, which
could correspond to accessible parts of the molecule. It should be noted that the DMS probe
preferentially reacts with “A” and “C" nucleotides, which effectively makes only a subset of
the structural state of the molecule accessible to probing.

The BUMHMM package also provides an option to optimise the shape parameters of the Beta
distribution, which defines the HMM emission model for the modified state. To optimise
parameters with the EM algorithm, the computeProbs function should be called with the last
parameter optimise set to the desired tolerance. Once the previous and current estimates of
the parameters are within this tolerance, the EM algorithms stops (unless it already reached
the maximum number of iterations before that). Further details can be found in [3].

## Call the function with the additonal tolerance parameter
posteriors <- computeProbs(LDR_C, LDR_CT, Nc, Nt, '+', nuclPosition,
nuclSelection$analysedC, nuclSelection$analysed(CT,

12
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stretches, 0.001)

By default, the last parameter is set to NULL. During our experiments, we discovered that this
optimisation appeared vulnerable to local minima. Thus, the current version of the BUMHMM
pipeline does not use this optimisation.

6 Session Info

This vignette was compiled using:
sessionInfo()

## R version 4.5.0 RC (2025-04-04 r88126 ucrt)

## Platform: x86_64-w64-mingw32/x64

## Running under: Windows Server 2022 x64 (build 20348)
it

## Matrix products: default

##  LAPACK version 3.12.1

#i#

## locale:

## [1] LC_COLLATE=C

## [2] LC_CTYPE=English_United States.utf8

## [3] LC_MONETARY=English_United States.utf8

## [4] LC_NUMERIC=C

## [5] LC_TIME=English_United States.utf8

##

## time zone: America/New_York

## tzcode source: internal
#i#

## attached base packages:
## [1] stats4 stats

## [8] base

#i#t

## other attached packages:
## [1] SummarizedExperiment_1.38.0 Biobase 2.68.0

## [3] GenomicRanges_1.60.0 MatrixGenerics_1.20.0
## [5] matrixStats_1.5.0 Biostrings_2.76.0

## [7] GenomeInfoDb_1.44.0 XVector_0.48.0

## [9] IRanges_2.42.0 S4Vectors_0.46.0

## [11] BiocGenerics_0.54.0 generics_0.1.3

## [13] BUMHMM_1.32.0

##

## loaded via a namespace (and not attached):

graphics grDevices utils datasets methods

## [1] SparseArray_1.8.0

## [4] lattice 0.22-7 digest 0.6.37 magrittr_2.0.3

## [7] grid_4.5.0 evaluate_1.0.3 pkgload_1.4.0

## [10] fastmap_1.2.0 Matrix_1.7-3 jsonlite_2.0.0

## [13] pkgbuild_1.4.7 sessioninfo_1.2.3 tinytex_0.57

## [16] urlchecker_1.0.1 promises 1.3.2 BiocManager_1.30.25
## [19] httr_1.4.7 purrr_1.0.4 UCSC.utils_1.4.0
## [22] abind_1.4-8 cli_3.6.4 shiny 1.10.0

gtools_3.9.5

stringi_1.8.7

13



BUMHMM: Computational pipeline for modelling structure probing data

##
##
##
##
##
##
##
##
##
##
##

[25] crayon_1.5.3 rlang_1.1.6 BiocStyle 2.36.0
[28] ellipsis_0.3.2 DelayedArray_0.34.0 remotes_2.5.0
[31] cachem_1.1.0 yaml_2.3.10 devtools_2.4.5
[34] S4Arrays_1.8.0 tools_4.5.0 memoise 2.0.1
[37] httpuv_1.6.15 GenomeInfoDbData 1.2.14 vctrs_0.6.5
[40] R6_2.6.1 mime_0.13 lifecycle_1.0.4
[43] fs_1.6.6 htmlwidgets 1.6.4 usethis _3.1.0
[46] miniUI_0.1.1.1 later_1.4.2 glue_1.8.0

[49] profvis 0.4.0 Rcpp_1.0.14 highr_0.11

[52] xfun_0.52 knitr_1.50 xtable_1.8-4
[55] htmltools_0.5.8.1 rmarkdown_2.29 compiler_4.5.0
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