
Analysis of data from aCGH experiments using parallel

computing and � objects

Ramon Diaz-Uriarte1, Daniel Rico2, and Oscar M. Rueda3

8-April-2025

1. Department of Biochemistry, Universidad Autonoma de Madrid Instituto de
Investigaciones Biomedicas �Alberto Sols� (UAM-CSIC), Madrid (SPAIN). 2. Structural

Computational Biology Group. Spanish National Cancer Center (CNIO), Madrid (SPAIN).
3. Cancer Research UK Cambridge Research Institute Cambridge, UK
rdiaz02@gmail.com, drico@cnio.es, Oscar.Rueda@cancer.org.uk

Contents

1 This vignette 2

2 Overview: 2
2.1 Terminology . 3
2.2 Suggested usage patterns summary . 4
2.3 Usage: main steps and choices . 4

3 The data for all the examples 5

4 Example 1: RAM objects and forking 6
4.1 Reading data and storing as a RAM object (a �usual� R object) 6

4.1.1 Data available as a data frame in an RData �le 6
4.1.2 Data available as an R data frame . 7
4.1.3 Using input data from a text �le . 8
4.1.4 Using data from Limma . 9
4.1.5 Reading data from a directory . 9

4.2 Carrying out segmentation and calling . 9
4.3 Plotting the results . 10

5 Example 2: � objects and cluster 11
5.1 Choosing a working directory . 11
5.2 Reading data and storing as � objects . 12

5.2.1 Data available as a data frame in an RData �le 12
5.2.2 Converting from RData to � objects in a separate process 12
5.2.3 Data available as an R data frame . 13
5.2.4 Using input data from a text �le . 13
5.2.5 Using data from Limma . 13
5.2.6 Reading data from a directory . 13
5.2.7 Moving a set of � objects . 13

5.3 Initializing the computing cluster . 14
5.4 Carrying out segmentation and calling . 14
5.5 Plotting the results . 15

1

6 Example 3: � objects and forking 15
6.1 Choosing a working directory . 15
6.2 Reading data and storing as � objects . 15

6.2.1 Data available as a data frame in an RData �le 16
6.2.2 Converting from RData to � objects in a separate process 16
6.2.3 Data available as an R data frame . 16
6.2.4 Using input data from a text �le . 16
6.2.5 Using data from Limma . 16
6.2.6 Reading data from a directory . 16
6.2.7 Cutting the original �le into one-column �les 17

6.3 Carrying out segmentation and calling . 19
6.4 Plotting the results . 19

7 Input and output to/from other packages 19
7.1 Input data from Limma . 19
7.2 Using CGHregions . 20

8 Why ADaCGH2 instead of a �manual� solution 21

9 Session info and packages used 23

1 This vignette

This vignette presents the ADaCGH2 package using:

� Three fully commented examples that deal with the usage of the di�erent parallelization
options and types of objects (in particular, � objects) available.

� Examples of using ADaCGH2 with CGHregions and Limma.

All of the runnable examples in this vignette use a small toy example (they need to run
in a reasonably short of time in a variety of machines). In the vignette called �ADaCGH2-
long-examples� we list example calls of all segmentation methods, with di�erent options for
methods, as well as di�erent options for type of input object and clustering. That other
vignette is provided as both extended help and as a simple way of checking that all the
functions can be run and yield identical results regardless of type of input and clustering.

Finally, the �le �benchmarks.pdf� presents extensive benchmarks comparing the current
version of ADaCGH2 (>= 2.3.6) with the former version (v. 1.10, in BioConductor 2.12), as
well as some comparisons with non-parallelized executions and a discussion of recommended
patterns of usage.

2 Overview:

ADaCGH2 is a package for the analysis of CGH data. The main features of ADaCGH2 are:

� Parallelization of (several of) the main segmentation/calling algorithms currently avail-
able, to allow e�cient usage of computing clusters. Parallelization can use either
forking (in Unix-like OSs) or sockets, MPI, etc, as provided by package snow (http:
//cran.r-project.org/web/packages/snow/index.html).

Forking will probably be the fastest approach in multicore machines, whereas MPI
or sockets will be used with clusters made of several independent machines with few
CPUs/cores each.

2

http://cran.r-project.org/web/packages/snow/index.html
http://cran.r-project.org/web/packages/snow/index.html

� Optional storage of, and access to, data using the � package (http://cran.r-project.
org/web/packages/ff/index.html), making it possible to analyze data from very large
projects and/or use machines with limited memory.

� Parallelization and � can be used simultaneously. WaviCGH Carro et al. (2010) (http:
//wavi.bioinfo.cnio.es), a web-server application for the analysis and visualization
of array-CGH data that uses ADaCGH2, consitutes a clear demonstration of the usage
of � on a computing cluster with shared storage over NFS.

ADaCGH2 is a major re-write of our former package ADaCGH Diaz-Uriarte and Rueda
(2007) and version 2 of ADaCGH2 is, itself, a major rewrite of the version 1.x series. Over
time, we have improved the parallelization and, specially, changed completely the data han-
dling routines. The �rst major rewrite of ADaCGH2 included the usage of the � package,
which allows ADaCGH2 to analyze data sets of more than four million probes in machines
with no more than 2 GB of RAM. The second major rewrite reimplemented all the reading
routines, and much of the analysis, which now allow a wider range of options with increased
speed and decreased memory usage, and also allows users to disable the usage of �. Moreover,
in the new version, a large part of the reading is parallelized and makes use of temporary
� objects and we allow parallelization of analysis (and data reading) using forking. Further
details and comparisons between the old and new versions are provided in the document
�benchmarks.pdf�, included with this package.

2.1 Terminology

The following is the meaning of some terms we will use repeatedly.

� object An object that uses the � package. A tiny part of that object lives in memory,
in the R session, but most of the object is stored on the hard drive. The part that lives
in memory is just a pointer to the object that resides in the hard drive.

RAM objects The �usual� R objects (in our case, mainly data frames and matrices); these
are stored, or live, in memory.

Somewhat similar to what the documentation of the ff package does, we refer to these
objects, that reside in memory, as RAM objects. Technically, a given data frame,
for instance, need not be in RAM in a particular moment (that actual memory page
might have been swapped to disk). Regardless, the object is accessed as any other
object which resides in memory. Likewise, note that � also have a small part that is
in memory, but the data themselves are stored on disk.

forking We copy literally from the vignette of the parallel package R Core Team (2013):
�Fork is a concept from POSIX operating systems, and should be available on all R
platforms except Windows. This creates a new R process by taking a complete copy of
the master process, including the workspace and state of the random-number stream.
However, the copy will (in any reasonable OS) share memory pages with the master
until modi�ed so forking is very fast.�

Forking is, thus, a reasonable way of parallelizing jobs in multicore computers. Note,
however, that this will not work across machines (for instance, across workstations in
clusters of workstations).

cluster We use it here to contrast it with forking. With cluster, tasks are sent to other R
processes using, for instance, MPI or any of the other methods provided by package
snow (e.g., PVM, sockets, or NWS).

For example, MPI (for �Message Passing Interface�) is a standardized system for parallel
computing, probably the most widely used approach for parallelization with distributed

3

http://cran.r-project.org/web/packages/ff/index.html
http://cran.r-project.org/web/packages/ff/index.html
http://wavi.bioinfo.cnio.es
http://wavi.bioinfo.cnio.es

memory machines (such as in clusters of workstations). The package Rmpi (and snow
on top of Rmpi) use MPI. In the examples in this vignette, however, we will use
clusters of type socket, as these are available in several OSs (including Windows), and
do not require installation of MPI.

If we are running Linux, Unix, or other POSIX operating systems, in a single computer
with multiple cores we can use both forking and clusters (e.g., MPI or sockets). In most
cases forking will be preferable as we will avoid some communication overheads and it
will also probably use less total memory. If we are running Windows, however, we will
need to use a cluster even in a single multicore machine.

2.2 Suggested usage patterns summary

The following table provides a simple guide of suggested usage patterns with small to mod-
erate data sets:

Lots of RAM Little RAM

Single node,
many cores/node

RAM objects (?), forking
� objects (?), forking

� objects, forking

Many nodes,
few cores/node

� objects, cluster � objects, cluster

The question marks denote not-so-obvious choices, where the best decision will depend
on the actual details of number of nodes, size of data sets, speed of communication between
nodes, etc. For large data sets, the recommended usage involves always using � objects.
Using � objects is slightly more cumbersome, but can allow us to analyze very large data sets
in moderate hardware and will often result in faster computation; see details and discussion
in �benchmarks.pdf�. Of course, what is �lots�, �many�, and �large�, will depend on the arrays
you analyze and the hardware.

The examples below cover all three possible usage patterns:

RAM objects, forking : section 4.

� objects, cluster : section 5.

� objects, forking : section 6.

2.3 Usage: main steps and choices

ADaCGH2 includes functions that use as input, or produce as output, either � objects or
RAM R objects. Some functions also allow you to choose between using forking and using
other mechanisms for parallelization.

For both interactive and non-interactive executions we will often execute the following in
sequence:

1. Check the original data and convert to appropriate objects (e.g., to � objects).

2. Initialize the computing cluster if not using forking.

3. Carry out segmentation and calling

4. Plot the results

We cover each in turn in the remaining of this section and discuss alternative routes. But
�rst, we discuss why we might want to use ADaCGH2 instead of just �doing it manually on
our own�.

4

3 The data for all the examples

We will use a small, �ctitious data set for all the examples, with six arrays/subjects and �ve
chromosomes.

The data are available as an RData �le

> library(ADaCGH2)

> data(inputEx)

> summary(inputEx)

ID chromosome position L.1

Hs.101850: 1 Min. :1.000 Min. : 1180411 Min. :-1.07800

Hs.1019 : 1 1st Qu.:1.000 1st Qu.: 36030889 1st Qu.:-0.22583

Hs.105460: 1 Median :2.000 Median : 70805790 Median :-0.01600

Hs.105656: 1 Mean :2.284 Mean : 92600349 Mean :-0.03548

Hs.105941: 1 3rd Qu.:3.000 3rd Qu.:149843856 3rd Qu.: 0.16000

Hs.106674: 1 Max. :5.000 Max. :243795357 Max. : 0.88300

(Other) :494 NA's :5

L.2 m4 m5 L3

Min. :-0.795000 Min. :-0.1867 Min. :-4.67275 Min. :-13.273

1st Qu.:-0.139000 1st Qu.: 1.9790 1st Qu.:-0.02025 1st Qu.: 3.631

Median :-0.006000 Median : 2.2807 Median : 0.43725 Median : 3.925

Mean : 0.007684 Mean : 3.4504 Mean : 1.60159 Mean : 1.981

3rd Qu.: 0.134000 3rd Qu.: 5.8235 3rd Qu.: 3.04475 3rd Qu.: 4.110

Max. : 1.076000 Max. : 6.6043 Max. : 9.60425 Max. : 6.374

NA's :15 NA's :41 NA's :9

m6

Min. :-0.7655

1st Qu.:-0.2260

Median :-0.0440

Mean :-0.0351

3rd Qu.: 0.1620

Max. : 0.7750

NA's :203

> head(inputEx)

ID chromosome position L.1 L.2 m4

1*1180411*Hs.212680 Hs.212680 1 1180411 NA 0.038 6.22625

1*1188041.5*Hs.129780 Hs.129780 1 1188042 NA 0.028 6.17425

1*1194444*Hs.42806 Hs.42806 1 1194444 NA 0.042 6.17425

1*1332537*Hs.76239 Hs.76239 1 1332537 NA 0.285 5.62425

1*2362211*Hs.40500 Hs.40500 1 2362211 NA 0.058 5.85125

1*2372287*Hs.449936 Hs.449936 1 2372287 0.294 -0.006 5.68525

m5 L3 m6

1*1180411*Hs.212680 3.22625 6.038 NA

1*1188041.5*Hs.129780 3.17425 6.028 NA

1*1194444*Hs.42806 3.17425 6.042 NA

1*1332537*Hs.76239 2.62425 NA NA

1*2362211*Hs.40500 2.85125 NA NA

1*2372287*Hs.449936 2.68525 NA NA

5

The data are are also available (in the /data subdirectory of the package) as an ASCII
text �le in two formats: with columns separated by tabs and with columns separated by
spaces1.

4 Example 1: RAM objects and forking

This is the simplest procedure if you are not under Windows. It will work when data is small
(relative to available RAM) and the number of cores/processors in the single computing node
is large relative to the number of subjects. However, this will not provide any parallelism
under Windows: we use forking, as provided by the mclapply function in package parallel,
and forking is available for POSIX operating systems (and Windows is not one of those).

Using forking can be a good idea because, with fork, creating new process is very fast
and lightweight, and all the child process share memory pages until they start modifying
the objects, and you do not need to explicitly send those pre-existing objects to the child
processes. In contrasts, if we use other types of clusters (e.g., sockets or MPI), we need to
make sure packages and R objects are explicitly sent to the child or slave processes.

If you have lots of RAM (ideally all you would need is enough memory to hold one copy
of your original CGH data plus the return object), you will also probably use RAM objects
and not � objects, as these are less cumbersome to deal with than � objects. But see details
in �le �benchmarks.pdf�.

The steps for the analysis are:

� Read the input data.

� Carry out the segmentation.

4.1 Reading data and storing as a RAM object (a �usual� R object)

We provide here details on reading data from several di�erent sources. Of course, in any
speci�c case, you only need to use one route.

4.1.1 Data available as a data frame in an RData �le

As we said in section 3, the data are available as an R data frame (inputEx), which we have
saved as an RData �le (inputEx.RData).

We will use inputToADaCGH to produce the three objects needed later for the segmentation,
and to carry out some checks for missing values, repeated identi�ers and positions, etc.

> fnameRdata <- list.files(path = system.file("data", package = "ADaCGH2"),

+ full.names = TRUE, pattern = "inputEx.RData")

> inputToADaCGH(ff.or.RAM = "RAM",

+ RDatafilename = fnameRdata)

... done reading; starting checks

... checking identical MidPos

... checking need to reorder inputData, data.frame version

... done with checks; starting writing

... done writing/saving probeNames

1These two �les are used in the example of the help for the cutFile function

6

... done writing/saving chromData

... done writing/saving posData

... done writing/saving cghData

Calling gc at end

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 5193387 277.4 7688752 410.7 6026619 321.9

Vcells 9058204 69.2 18099788 138.1 11094308 84.7

Saved objects with names

cgh.dat chrom.dat pos.dat probenames.dat

for CGH data, chromosomal data, position data, and probe names,

respectively, in environment

R_GlobalEnv .

We need to provide the path to the RData �le, which we stored in the object fnameRData.
This RData �le will contain a single data frame. In this data frame, the �rst three columns
of the data frame are the IDs of the probes, the chromosome number, and the position, and
all remaining columns contain the data for the arrays, one column per array. The names of
the �rst three column do not matter, but the order does. Names of the remaining columns
will be used if existing; otherwise, fake array names will be created.

Note the usage of ff.or.RAM = "RAM", which is di�erent from that in section 5.2. The
output from the call will leave several R objects in the global environment. The name of the
objects can be changed with the argument robjnames. These are your usual R objects (data
frames and vectors); thus, they are RAM objects.

4.1.2 Data available as an R data frame

Instead of accessing the RData �le, we will directly use the data frame. This way, we use
inputToADaCGH basically for its checks. The �rst three columns of the data frame are the IDs
of the probes, the chromosome number, and the position, and all remaining columns contain
the data for the arrays, one column per array.

> data(inputEx) ## make inputEx available as a data frame with that name

> inputToADaCGH(ff.or.RAM = "RAM",

+ dataframe = inputEx)

... done reading; starting checks

... checking identical MidPos

... checking need to reorder inputData, data.frame version

... done with checks; starting writing

... done writing/saving probeNames

... done writing/saving chromData

7

... done writing/saving posData

... done writing/saving cghData

Calling gc at end

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 5193362 277.4 7688752 410.7 6026619 321.9

Vcells 9054627 69.1 18099788 138.1 11094308 84.7

Saved objects with names

cgh.dat chrom.dat pos.dat probenames.dat

for CGH data, chromosomal data, position data, and probe names,

respectively, in environment

R_GlobalEnv .

Skipping the call to inputToADaCGH Since our data are already available as an R data
frame, and if we are not interested in the checks provided by inputToADaCGH, we do not need
to call it. To prepare the data for later usage with pSegment we can just do as follows:

> data(inputEx)

> cgh.dat <- inputEx[, -c(1, 2, 3)]

> chrom.dat <- as.integer(inputEx[, 2])

> pos.dat <- inputEx[, 3]

4.1.3 Using input data from a text �le

Our data can also be in a text �le, with a format where the �rst three columns are ID,
chromosome, and position, and the remaining columns are arrays2. inputDataToADaCGH

allows this type of input and, inside, uses read.table.ff; this way, we can read a very large
data set and store it as an � object or a RAM object without exhausting the available RAM.

> fnametxt <- list.files(path = system.file("data", package = "ADaCGH2"),

+ full.names = TRUE, pattern = "inputEx.txt")

> ## You might want to adapt mc.cores to your hardware

> tmp <- inputToADaCGH(ff.or.RAM = "RAM",

+ textfilename = fnametxt,

+ mc.cores = 2)

... textfile reading: reading the ID column

... textfile reading: reading the chrom column

... textfile reading: (parallel) reading of remaining columns

... done reading; starting checks

... checking identical MidPos

2If they are not, utilities such as awk, cut, etc, might be used for this purpose.

8

... checking need to reorder inputData, ff version

... done with checks; starting writing

... done writing/saving probeNames

... done writing/saving chromData

... done writing/saving posData

... done writing/saving cghData

Calling gc at end

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 5223296 279.0 7688752 410.7 6026619 321.9

Vcells 9127267 69.7 18099788 138.1 11094308 84.7

Saved objects with names

cgh.dat chrom.dat pos.dat probenames.dat

for CGH data, chromosomal data, position data, and probe names,

respectively, in environment

R_GlobalEnv .

If you will be using a cluster created with makeCluster (see section 5.3) you will not
want to use this options. You will need to create � objects because, when using a cluster,
and to minimize transferring data and possibly exhausting available RAM, we have written
the code so that the slaves do not receive the data itself, but just pointers to the data (i.e.,
names of � objects) that live in the disk.

Compressed text �les The function inputToADaCGH will work with both compressed and
uncompressed �les. However, if you are working with a really large text �le, if you start from
a compressed �le, you will have to add the time it takes to decompress the �le; thus, you
might want to decompress it, outside R, before you start all of your work if you plan on using
this �le repeatedly as input.

4.1.4 Using data from Limma

You can also use data from Limma. See section 7.1.

4.1.5 Reading data from a directory

Reading data from a directory is discussed in more detail in section 6.2.6, and it is the
preferred approach when we have a lot of data. Since saving the results as a RAM object is
not likely to be the way to go in such cases (we would exhaust available RAM), we do not
discuss it here any further.

4.2 Carrying out segmentation and calling

Segmentation and calling are carried out with the pSegment functions. Here we show just one
such example. Many more are available in the second vignette. Setting argument typeParall
to fork is not needed (it is the default), but we set it here explicitly for clarity.

9

> help(pSegment)

> ## You might want to adapt mc.cores to your hardware

> haar.RAM.fork <- pSegmentHaarSeg(cgh.dat, chrom.dat,

+ merging = "MAD",

+ typeParall = "fork",

+ mc.cores = 2)

Since the input are RAM objects, the output is also a RAM object (a regular R object,
in this case a list).

> lapply(haar.RAM.fork, head)

$outSmoothed

L.1 L.2 m4 m5 L3 m6

1 NA 0.0175353 5.939581 2.929741 6.055182 NA

2 NA 0.0175353 5.939581 2.929741 6.055182 NA

3 NA 0.0175353 5.939581 2.929741 6.055182 NA

4 NA 0.0175353 5.939581 2.929741 NA NA

5 NA 0.0175353 5.939581 2.929741 NA NA

6 0.05851487 0.0175353 5.939581 2.929741 NA NA

$outState

L.1 L.2 m4 m5 L3 m6

1 NA 0 1 1 1 NA

2 NA 0 1 1 1 NA

3 NA 0 1 1 1 NA

4 NA 0 1 1 NA NA

5 NA 0 1 1 NA NA

6 0 0 1 1 NA NA

> summary(haar.RAM.fork[[1]])

L.1 L.2 m4 m5

Min. :-0.18305 Min. :-0.080705 Min. :0.9303 Min. :-4.0270

1st Qu.:-0.10712 1st Qu.:-0.004725 1st Qu.:2.0171 1st Qu.: 0.0738

Median :-0.06615 Median : 0.017535 Median :2.1786 Median : 0.1857

Mean :-0.03548 Mean : 0.007684 Mean :3.4504 Mean : 1.6016

3rd Qu.: 0.05851 3rd Qu.: 0.017535 3rd Qu.:5.9396 3rd Qu.: 2.9014

Max. : 0.17439 Max. : 0.056750 Max. :5.9396 Max. : 9.0388

NA's :5 NA's :15 NA's :41

L3 m6

Min. :-12.960 Min. :-0.20148

1st Qu.: 3.919 1st Qu.:-0.09948

Median : 3.995 Median :-0.04680

Mean : 1.981 Mean :-0.03510

3rd Qu.: 4.008 3rd Qu.: 0.06151

Max. : 6.055 Max. : 0.17410

NA's :9 NA's :203

4.3 Plotting the results

Plotting produces PNG �les for easier sharing over the Internet. The plotting function takes
as main arguments the names of the result from pSegment and the input objects to pSegment

10

(we will later see, for instance in section 5.5, how to use results stored as � objects). Setting
argument typeParall to fork is not needed (it is the default), but we set it here explicitly
for clarity.

> ## You might want to adapt mc.cores to your hardware

> pChromPlot(haar.RAM.fork,

+ cghRDataName = cgh.dat,

+ chromRDataName = chrom.dat,

+ posRDataName = pos.dat,

+ probenamesRDataName = probenames.dat,

+ imgheight = 350,

+ typeParall = "fork",

+ mc.cores = 2)

5 Example 2: � objects and cluster

This procedure should work even with relatively small amounts of RAM, and it will also work
under Windows. However, using a cluster involves additional steps. For both interactive and
non-interactive sessions we will often execute the following in sequence:

1. Check the original data and convert to appropriate objects (e.g., to � objects).

2. Initialize the computing cluster.

3. Carry out segmentation and calling

4. Plot the results

Compared to section 4 we introduce here the following new major topics:

� Using � objects.

� Setting up a cluster.

Note for Windows users: in this vignette, the code that uses ff objects has been
disabled as it leads to random and di�cult to reproduce problems with the automated testing
procedure (from creating socket clusters to removing temporary directories). Therefore, all
remaining code in this vignette is surrounded with if(.Platform$OS.type != "windows")

{some-code-here}. This code, however, should work interactively.

5.1 Choosing a working directory

As we will use � objects, we will read and write quite a few �les to the hard drive. The
easiest way to organize your work is to create a separate directory for each project. At the
end of this example, we will remove this directory. All plot �les and � data will be stored in
this new directory.

(Just in case, we check for the existence of the directory �rst. We also store the current
working directory to return to it at the very end.)

> if(.Platform$OS.type != "windows") {

+

+ originalDir <- getwd()

+ ## make it explicit where we are

+ print(originalDir)

+ }

11

> if(.Platform$OS.type != "windows") {

+ if(!file.exists("ADaCGH2_vignette_tmp_dir"))

+ dir.create("ADaCGH2_vignette_tmp_dir")

+ setwd("ADaCGH2_vignette_tmp_dir")

+ }

It is very important to remember that the names of the � objects that are exposed
to the user are always the same (i.e., chromData.RData, posData.RData, cghData.RData,
probeNames.RData). Therefore, successive invocations of inputToADaCGH, if they produce �
output (i.e., ff.or.RAM = "ff") will overwrite this objects (and make them point to di�erent
binary � �les on disk). In this vignette, we keep reusing inputToADaCGH, but note that in
all the cases we produce as output � �les (sections 5.2, 5.2.1, 5.2.2, 5.2.4, 6.2, 6.2.1, 6.2.2,
6.2.4), the data used as input are the same, so there is no problem here (although we will
leave binary � objects on disk without a corresponding � RData object on the R session).
In particular, note that when we show the usage of Limma objects as input (section 7.1), we
are using RAM objects (not � objects) as output, so there is no confusion.

5.2 Reading data and storing as � objects

Converting the original data to � objects can be done either before or after initializing the
cluster (section 5.3), as it does not use the computing cluster. The purpose of this step is to
write the � �les to disk, so they are available for the segmentation and ploting functions.

5.2.1 Data available as a data frame in an RData �le

To allow the conversion to be carried out using data from previous sessions, the conversion
takes as input the name of an RData that contains plain, �regular� R objects (which, if
loaded, would be RAM objects).

> if(.Platform$OS.type != "windows") {

+ fnameRdata <- list.files(path = system.file("data", package = "ADaCGH2"),

+ full.names = TRUE, pattern = "inputEx.RData")

+ inputToADaCGH(ff.or.RAM = "ff",

+ RDatafilename = fnameRdata)

+ }

The �rst command is used in this example to �nd the complete path of the example data
set. The actual call to the function is the second expression. Note that we used a path to
an RData �le, and do not just use a RAM object. If you are very short of RAM, you might
want to do the conversion in a separate R process that exists once the conversion is done and
returns all of the RAM it used to the operating system. This we cover next in section 5.2.2.
An alternative approach to try to minimize RAM is available if our data are in a text �le, as
discussed in section 4.1.3.

5.2.2 Converting from RData to � objects in a separate process

With large data sets, converting from RData to � can be the single step that consumes the
most RAM, since we need to load the original data into R. Even if, after the conversion
to �, we remove the original data and call gc(), R might not return all of the memory to
the operating system, and this might be inconvenient in multiuser environments and/or long
running processes.

We can try dealing with the above problems by executing the conversion to � in a separate
R process that is spawned exclusively just for the conversion. For instance, we could use the
mcparallel function (from package parallel) and do:

12

> mcparallel(inputToADaCGH(ff.or.RAM = "ff",

+ RDatafilename = fnameRData),

+ silent = FALSE)

> tableChromArray <- mccollect()

> if(inherits(tableChromArray, "try-error")) {

+ stop("ERROR in input data conversion")

+ }

That way, the � are produced and stored locally in the hard drive, but the R process
where the original data was loaded (and the conversion to � carried out) dies immediately
after the conversion, freeing back the memory to the operating system.

5.2.3 Data available as an R data frame

Instead of accessing the RData �le, we can directly use the data frame, as we did in section
4.1.2.

> if(.Platform$OS.type != "windows") {

+ data(inputEx) ## make inputEx available as a data frame with that name

+ inputToADaCGH(ff.or.RAM = "ff",

+ dataframe = inputEx)

+ }

5.2.4 Using input data from a text �le

As in 4.1.3, we can read from a text �le. In this case, however, the output will be a set of �
objects.

> if(.Platform$OS.type != "windows") {

+ fnametxt <- list.files(path = system.file("data", package = "ADaCGH2"),

+ full.names = TRUE, pattern = "inputEx.txt")

+

+ ## You might want to adapt mc.cores to your hardware

+ inputToADaCGH(ff.or.RAM = "ff",

+ textfilename = fnametxt,

+ mc.cores = 2)

+ }

5.2.5 Using data from Limma

You can also use data from Limma. See section 7.1.

5.2.6 Reading data from a directory

See section 6.2.6 for further details. This option is the best option with very large data sets.
The initial data reading will use forking and, once we have saved the objects as � objects,
we can apply all the subsequent analysis steps discussed in the rest of this section.

5.2.7 Moving a set of � objects

This is not speci�c to ADaCGH2, but since this issue can come up frequently, we explain it
here. The paths of the � �les are stored in the object. How can we move this R object with
all the � �les? First, we save the R object and all the � �les:

ffsave(cghData, file = "savedcghData", rootpath = "./")

13

We then take the resulting RData object (possible a very large object), and load it in the
new location, rerooting the path:

ffload(file = "pathtofile/savedcghData", rootpath = getwd())

5.3 Initializing the computing cluster

Cluster initialization uses the functions provided in parallel. In the example we will use
a sockect cluster, since this is likely to run under a variety of operating systems and should
not need any additional software. Note, however, that MPI can also be used (in fact, that
is what we use in our servers). In this example we will use as many nodes as cores can be
detected.

> if(.Platform$OS.type != "windows") {

+ ## Adapt number of nodes to your hardware

+ number.of.nodes <- 2 ##detectCores()

+ cl2 <- parallel::makeCluster(number.of.nodes, "PSOCK")

+ parallel::clusterSetRNGStream(cl2)

+ parallel::setDefaultCluster(cl2)

+ parallel::clusterEvalQ(NULL, library("ADaCGH2"))

+

+ wdir <- getwd()

+ parallel::clusterExport(NULL, "wdir")

+ parallel::clusterEvalQ(NULL, setwd(wdir))

+ }

The �rst two calls create a cluster and initialize the random number generator3. The
third expression sets the cluster just created as the default cluster. This is important: to
simplify function calls, we do not pass the cluster name around, but rather expect a default
cluster to be set up. The fourth line makes the ADaCGH2 package available in all the
nodes of the cluster (notice we did not need to do this with forking, as the child processes
shared memory with the parent).

The last three lines make sure the slave processes use the same directory as the master.
Because we created the cluster after changing directories (section 5.1) this step is not really
needed here. But we make it explicit so as to verify it works, and as a reminder that you
will need to do this if you change directories AFTER creating the cluster. If you run on a
multinode cluster, you must ensure that the same directory exists in all machines. (In this
case, we are running on the localhost).

5.4 Carrying out segmentation and calling

Segmentation and calling are carried out with the pSegment functions. Here we show just
one such example. Many more are available in the second vignette.

> help(pSegment)

> if(.Platform$OS.type != "windows") {

+ haar.ff.cluster <- pSegmentHaarSeg("cghData.RData",

+ "chromData.RData",

+ merging = "MAD",

+ typeParall = "cluster")

+ }

3We use the version from package parallel, instead of the one from BiocGenerics, as the last one is still

experimental.

14

We can take a quick look at the output. We �rst open the � objects (the output is a
list of � objects) and then call summary on the list that contains the results of the wavelet
smoothing:

> if(.Platform$OS.type != "windows") {

+ lapply(haar.ff.cluster, open)

+ summary(haar.ff.cluster[[1]][,])

+ }

5.5 Plotting the results

The call here is the same as in section 4.3, except that we change the values for the arguments.
As we are using � objects, we also need to �rst write to disk the (�) object with the results.

> if(.Platform$OS.type != "windows") {

+ save(haar.ff.cluster, file = "hs_mad.out.RData", compress = FALSE)

+

+ pChromPlot(outRDataName = "hs_mad.out.RData",

+ cghRDataName = "cghData.RData",

+ chromRDataName = "chromData.RData",

+ posRDataName = "posData.RData",

+ probenamesRDataName = "probeNames.RData",

+ imgheight = 350,

+ typeParall = "cluster")

+ }

Finally, we stop the workers and close the cluster

> if(.Platform$OS.type != "windows") {

+ parallel::stopCluster(cl2)

+ }

6 Example 3: � objects and forking

This example uses � objects, as in section 5, but it will not use a cluster but forking, as in
section 4. Therefore, we will not need to create a cluster, but we will need to read data and
convert it to � objects.

Here we introduce no new major topics. Working with � objects was covered in section
5.2 and forking was covered in section 4.2. We simply combine these work-�ows.

6.1 Choosing a working directory

As we will use � objects, it will be convenient, as we did in section 5.1, to create a separate
directory for each project, to store all plot �les and � data. Since we already did that above
(section 5.1) we do not repeat it here. However, for real work, you might want to keep
di�erent analyses associated to di�erent working directories.

6.2 Reading data and storing as � objects

We have here the same options as in section 5.2. We repeat them brie�y. A key di�erence
with respect to section 5.2 is that we are not creating a cluster, so there will be no need to
export the current working directory to slave processes explictly (in contrast to 5.3).

15

6.2.1 Data available as a data frame in an RData �le

> if(.Platform$OS.type != "windows") {

+ fnameRdata <- list.files(path = system.file("data", package = "ADaCGH2"),

+ full.names = TRUE, pattern = "inputEx.RData")

+ inputToADaCGH(ff.or.RAM = "ff",

+ RDatafilename = fnameRdata)

+ }

6.2.2 Converting from RData to � objects in a separate process

Even if we are using forking, we might still want to carry the conversion to � objects in a
separate process, as we did in section 5.2.2, since the conversion to � objects might be the
step that consumes most RAM in the whole process and we might want to make sure we
return that memory to the operating system as soon as possible.

> mcparallel(inputToADaCGH(ff.or.RAM = "ff",

+ RDatafilename = fnameRdata),

+ silent = FALSE)

> tableChromArray <- collect()

> if(inherits(tableChromArray, "try-error")) {

+ stop("ERROR in input data conversion")

+ }

6.2.3 Data available as an R data frame

Instead of accessing the RData �le, we can directly use the data frame, as we did in section
5.2.3.

6.2.4 Using input data from a text �le

> if(.Platform$OS.type != "windows") {

+ fnametxt <- list.files(path = system.file("data", package = "ADaCGH2"),

+ full.names = TRUE, pattern = "inputEx.txt")

+

+ ## You might want to adapt mc.cores to your hardware

+ inputToADaCGH(ff.or.RAM = "ff",

+ textfilename = fnametxt,

+ mc.cores = 2)

+ }

6.2.5 Using data from Limma

You can also use data from Limma. See section 7.1.

6.2.6 Reading data from a directory

This is probably the best option for very large input data. We will read all the �les in a
given directory (except for those you might explicitly specify not to). Even if your original
�le follows the format of the data �le in 6.2.4, you might want to convert it to the format
used here (where each column is a �le) as the time it takes to convert the �le will be more
than compensated by the speed ups of reading, in R, each �le on its own. With very large
�les, it is much faster to read the data this way (we avoid having to loop many times over the
�le to read each column). Reading the data is parallelized, which allows us to speed up the

16

reading process signi�cantly (the parallelization uses forking, and thus you will see no speed
gains in Windows). Finally, to maximize speed and minimize memory consumption, we use
� objects for intermediate storage.

6.2.7 Cutting the original �le into one-column �les

We provide a simple function, cutFile, to do this job. Here we create a directory where
we will place the one-column �les (we �rst check that the directory does not exist4). Note
that this will probably NOT work under Windows5 , and thus we skip using cutFile under
Windows, and use a directory where we have stored the �les split by column.

> if((.Platform$OS.type == "unix") && (Sys.info()['sysname'] != "Darwin")) {

+ fnametxt <- list.files(path = system.file("data", package = "ADaCGH2"),

+ full.names = TRUE, pattern = "inputEx.txt")

+ if(file.exists("cuttedFile")) {

+ stop("The cuttedFile directory already exists. ",

+ "Did you run this vignette from this directory before? ",

+ "You will not want to do that, unless you modify the arguments ",

+ "to inputToADaCGH below")

+ } else dir.create("cuttedFile")

+ setwd("cuttedFile")

+ ## You might want to adapt mc.cores to your hardware

+ cutFile(fnametxt, 1, 2, 3, sep = "\t", mc.cores = 2)

+ cuttedFile.dir <- getwd()

+ setwd("../")

+ } else {

+ cuttedFile.dir <- system.file("example-datadir",

+ package = "ADaCGH2")

+ }

We create a new directory and carry out the �le cutting there since the upper level
directory is already populated with other �les we have been creating. If we cut the �le in
the upper directory, we would later need to specify a lengthy list of �les to exclude in the
arguments to inputToADaCGH. To avoid that, we create a directory, and leave the �les in the
newly created directory. After cutting, we return to the former level directory, to keep that
directory with only the �les for input.

It is important to realize that the previous paragraph, which might seem a mess, does
not re�ect the way you would usually work, which would actually be much simpler, and
something like the following:

1. Create a directory for your new project (lets call this directory d1).

2. Copy the text �le with your big txt �le with data to d1; lets call this �le afile.txt.

3. In R, move to d1 (for example, setwd(" /d1")).

4. Use cutFile: cutFile("afile.txt", 1, 2, 3).

5. Call inputToADaCGH: inputToADaCGH(ff.or.RAM = "ff", path = getwd(), excludefile

= "afile.txt")

4If it exists and contains �les, inputToADaCGH will probably fail, as it is set to read all the �les in the

directory.
5Under Macs it might or might not work; in all of the Macs we have tried it, it works, but not on the

testing machine at BioC.

17

(In this vignette the work�ow was not as easy because we are running lots of di�erent
examples, with several di�erent work�ows.)

cutFile will run several jobs in parallel to speed up the cutting process, launching by
default as many jobs as cores it can detect, and will produce �les with the required naming
conventions of inputToADaCGH. Note that cutFile is unlikely to work under Windows.

If you do not want to use cutFile you can use utilities provided by your operating system.
The following is a very simple example of using cut under bash (which is not unlike what we
do internally in cutFile) to produce one-column �les from a �le called Data.txt, with 77
arrays/subjects, where cutting the data part is parallelized over four processors:

cut -f1 Data.txt > ID.txt

cut -f2 Data.txt > Chrom.txt

cut -f3 Data.txt > Pos.txt

for i in {4..20}; do cut -f$i Data.txt > col_$i.txt; done &

for i in {21..40}; do cut -f$i Data.txt > col_$i.txt; done &

for i in {41..60}; do cut -f$i Data.txt > col_$i.txt; done &

for i in {61..80}; do cut -f$i Data.txt > col_$i.txt; done &

After you have cut the �le, each �le contains one column of data. Three of the �les must
be named "ID.txt", "Chrom.txt", and "Pos.txt". The rest of the �les contain the data for
each one of the arrays or subjects. The name of the rest of the �les is irrelevant.

When using inputDataToADaCGH with a directory, the output can be either � objects or
RAM objects. However, the latter will rarely make sense (it will be slower and we can run
into memory contraints); see the discussion in �le �benchmarks.pdf�.

> if(.Platform$OS.type != "windows") {

+ ## You might want to adapt mc.cores to your hardware

+ inputToADaCGH(ff.or.RAM = "ff",

+ path = cuttedFile.dir,

+ verbose = TRUE,

+ mc.cores = 2)

+ }

We have used the previously cut �les in this example. You can also check the �les that
live under the �example-datadir� directory and you will see six �les with names starting with
�col�, which are the data �les, and the �les "ID.txt", "Chrom.txt", and "Pos.txt". (That
is the directory we would use as input had we used Windows.)

Note that, to provide additional information on what we are doing we are calling the
function with the (non-default) verbose = TRUE, which will list all the �les we will be reading.

Beware of possible di�erent orderings of �les. When reading from a directory,
and since each column is a �le, the order of the columns (and, thus, subjects or arrays) in
the data �les that will be created can vary. In particular, the command list.files (which
we use to list of the �les) can produce di�erent output (di�erent order of �les) between
operating systems and versions of R. What this means is that, say, column three does not
necessarily refer to the same subject or array. Always use the column names to identify
unambiguously the data and the results.

What about performing this step in a separate process? In sections 5.2.2 and 6.2.2
we performed the data preparation in a separate process, to free up RAM to the OS right
after the conversion. You can do that too here if you want, but we have not found that
necessary, since the memory consumption when reading column by column is often small.
See examples with large data sets in section ??.

18

6.3 Carrying out segmentation and calling

The call is similar to the one in 5.4, except for the argument typeParall.

> if(.Platform$OS.type != "windows") {

+ ## You might want to adapt mc.cores to your hardware

+ haar.ff.fork <- pSegmentHaarSeg("cghData.RData",

+ "chromData.RData",

+ merging = "MAD",

+ typeParall = "fork",

+ mc.core = 2)

+ }

6.4 Plotting the results

The call here is the same as in section 5.5, except for argument typeParall.

> if(.Platform$OS.type != "windows") {

+ save(haar.ff.fork, file = "haar.ff.fork.RData", compress = FALSE)

+

+ ## You might want to adapt mc.cores to your hardware

+ pChromPlot(outRDataName = "haar.ff.fork.RData",

+ cghRDataName = "cghData.RData",

+ chromRDataName = "chromData.RData",

+ posRDataName = "posData.RData",

+ probenamesRDataName = "probeNames.RData",

+ imgheight = 350,

+ typeParall = "fork",

+ mc.cores = 2)

+ }

7 Input and output to/from other packages

7.1 Input data from Limma

Many aCGH studies use pre-processing steps similar to those of gene expression data. The
MAList object, from Limma (and SegList object, from the now unavailable snapCGH pack-
age), are commonly used to store aCGH information. The following examples illustrate
the usage of the function inputToADaCGH to convert MAList data into a format suitable for
ADaCGH2.

The original MAList as produced directly from limma do not have chromosome and po-
sition information. That is what the read.clonesinfo function from snapCGH did. To
allow using objects directly from limma and incorporating position information, we will use
an approach to directly mimicks that in snapCGH. If you use MAList you can also provide
a cloneinfo argument; this can be either the full path to a �le with the format required by
read.clonesinfo or, else, the name of an object with (at least) three columns, names ID,
Chr, and Position.

Note: this code is no longer run, since these examples used data examples available from
the snapCGH package. The code is left here, but you would need to provide the appropriate
paths.

We copy from the limma vignette (section 3.2, p.8), changing the names of objects by
appending �.limma�.

19

> if(.Platform$OS.type != "windows") {

+ require("limma")

+ datadir <- system.file("testdata", package = "snapCGH")

+ targets.limma <- readTargets("targets.txt", path = datadir)

+ RG.limma <- read.maimages(targets.limma, path = datadir,

+ source="genepix")

+ RG.limma <- backgroundCorrect(RG.limma, method="normexp",

+ offset=50)

+ MA.limma <- normalizeWithinArrays(RG.limma)

+ }

We can add the chromosomal and position information in two di�erent ways. First, as
was done in read.clonesinfo from snapCGH or, else, we can provide the name of a �le (with
the same format as required by read.clonesinfo). Note that fclone is a path (and, thus,
a character vector).

The following code is no longer run as it searches for the cloneinfo.txt example �le
from the snapCGH package. If you have that �le, or a �le with similar structure, you can
easily run this code by providing the path to the �le.

> if(.Platform$OS.type != "windows") {

+ fclone <- list.files(path = system.file("testdata", package = "snapCGH"),

+ full.names = TRUE, pattern = "cloneinfo.txt")

+ fclone

+ tmp <- inputToADaCGH(MAList = MA.limma,

+ cloneinfo = fclone,

+ robjnames = c("cgh-ma.dat", "chrom-ma.dat",

+ "pos-ma.dat", "probenames-ma.dat"))

+ }

Alternatively, we can provide the name of an object with the additional information. For
illustrative purposes, we can use here the columns of the MA object. (This code does not run
either, as it requires an MA.limma object, created above with paths from the former snapCGH
package).

> if(.Platform$OS.type != "windows") {

+ acloneinfo <- MA$genes

+ tmp <- inputToADaCGH(MAList = MA.limma,

+ cloneinfo = acloneinfo,

+ robjnames = c("cgh-ma.dat", "chrom-ma.dat",

+ "pos-ma.dat", "probenames-ma.dat"))

+ }

7.2 Using CGHregions

The CGHregions package Vosse and van de Wiel (2009) is a BioConductor package that
implements a well known method van de Wiel and van Wieringen (2007) for dimension
reduction for aCGH data (see a review of common regions issues and methods in Rueda and
Diaz-Uriarte (2010)).

The CGHregions function accepts di�erent type of input, among others a data frame.
The function outputToCGHregions produces that data frame, ready to be used as input to
CGHregions (for the next example, you will need to have the CGHregions package installed).

Note: it is up to you to deal with missing values!!! In the example below, we do a
simple na.omit, but note that we are now working with data frames. Extending the usage of

20

this, and other methods, to much larger data sets, using �, and properly dealing with missing
values, is beyond the scope of this package.

> if(.Platform$OS.type != "windows") {

+ forcghr <- outputToCGHregions(haar.ff.cluster)

+ if(require(CGHregions)) {

+ regions1 <- CGHregions(na.omit(forcghr))

+ regions1

+ }

+ }

Please note that outputToCGHregions does NOT check if the calls are something that
can be meaningfully passed to CGHregions. In particular, you probably do NOT want to use
this function when pSegment has been called using merging = "none".

> if(.Platform$OS.type != "windows") {

+ ## We are done with the executable code in the vignette.

+ ## Restore the directory

+ setwd(originalDir)

+ print(getwd())

+ }

> if(.Platform$OS.type != "windows") {

+ ## Remove the tmp dir. Sys.sleep to prevent Windoze problems.

+ ## Sys.sleep(1)

+ ## What is in that dir?

+ dir("ADaCGH2_vignette_tmp_dir")

+ unlink("ADaCGH2_vignette_tmp_dir", recursive = TRUE)

+ ## Sys.sleep(1)

+ }

8 Why ADaCGH2 instead of a �manual� solution

It is of course possible to parallelize the analysis (and �gure creation) without using ADaCGH2.
To deal with very large data, the key idea is to never try to load more data than we strictly
need for an analysis (which is the strategy used by ADaCGH2).

To examine the simplest scenario, let us suppose we are already provided with single-
column �les (as, for instance, we obtain after using the helper function cutFile �see section
6.2.7); if we had a single large �le, we would need to think of a way of reading only speci�c
rows of a single column.

Now, we need to think how to parallelize the analysis. We will consider two cases:
parallelizing by subject (or array or column) and parallelizing by subject*chromosome.

Let's �rst examine the simplest case: we will parallelize by subject, as is done by
ADaCGH2 with HaarSeg and CBS (these methods are very fast, and further splitting by
chromosome is rarely worth it). These are the required steps:

1. Each R process needs to have access to the chromosome information; this probably
requires loading a vector with chromosome positions.

2. Each process will carry these steps until all the columns/subjects have been processed:

(a) Read the data for a speci�c column (or subject).

(b) Analyze (segment) those data.

21

(c) Save the results to disk.

(d) Remove from the workspace the results and the data (and probably call the garbage
collector).

3. When all analysis are completed, assemble the results somehow to allow easy access to
results.

The steps above need to deal with the following possible problems:

� We need to consider how to deal with missing values, since a simple removal of missing
values case by case will result in a ragged array of results, which would probably not
be acceptable.

� �loading� and �saving� can be time-consuming steps: the direct way in R would be to use
functions such as scan (for reading) and save (for saving), but when done repeatedly,
these are likely to be slower than using � objects (e.g., using scan will be slower than
acessing data from an � object).

� Much more serious can be step 3 since we need to assemble a whole object with results.
If the analysis involves many arrays and/or data sets with millions of probes, then we
will not be able to load all of that in memory. (The approach we use in ADaCGH2 with
the use of � objects is to never reload all of the results to assemble the �nal object,
but only assemble a set of pointers to data structures on disk).

Of course, an alternative is to leave the results as a large collection of �les, and never try
to assemble a single object with results. This, however, is likely much more cumbersome
than having a single results object with all the information available that can be accessed
as need (e.g., for further plotting).

Let us now examine the second scenario, where we parallelize by subject*chromosome.
This is done, for instance, with HMM in ADaCGH2. Why? Because the methods are
su�ciently slow that a �ner grained division is likely to pay o� in terms of gain in speed. In
this case, additional partition and reassembly of the data are required for the segmentation
and merging steps. These are the main steps:

1. Each R process needs to have access to the chromosome information.

2. Each process will carry these steps until all the columns/subjects have been processed:

(a) Read the data for a speci�c set of positions (those that correspond to a speci�c
chromosome) for a given column (or subject).

(b) Analyze (segment) those data.

(c) Save the results to disk.

(d) Remove from the workspace the results and the data.

3. When all segmentation steps are completed, assemble the results by column/subject
for the merging step.

4. For the merging step, each process will load the data for a complete column/subject
and merge them with the corresponding algorithm:

(a) Read the data for a column/subject.

(b) Perform merging.

(c) Save the results to disk.

22

(d) Remove from the workspace the results and the data and do garbage collection.

5. When all analysis are completed, assemble the results somehow to allow easy access to
results.

This process is, of course, more convoluted than when parallelizing only by subject. As
above, we need to consider how to deal with missing values, the use of repeated �scan� and
�save�, and the much more serious problem of putting together the complete object with all
of the results.

Finally, if we were interested in analyzing the data with more than one method, we would
need to modify the code above since each method uses di�erent ways of being called (e.g.,
some methods require setting up speci�c objects before segmentation can be called).

What ADaCGH2 provides is, among other things, a way to eliminate those steps, au-
tomating them for the user, with careful consideration of fast access to data on disk, and
attempts to minimize memory usage in repeated calls to the same process (which we can
do successfully, as can be seen from the benchmarks for large numbers of arrays with more
than 6 million probes �memory usage levels out; see the �le �benchmarks.pdf�). Of course,
ADaCGH2 provides other bene�ts (e.g., facilities for using as input the data from other
packages �e.g, section 7.1� or providing output for other packages �e.g., section 7.2).

9 Session info and packages used

This is the information about the version of R and packages used:

> sessionInfo()

R Under development (unstable) (2025-03-01 r87860 ucrt)

Platform: x86_64-w64-mingw32/x64

Running under: Windows Server 2022 x64 (build 20348)

Matrix products: default

LAPACK version 3.12.0

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.utf8

[3] LC_MONETARY=English_United States.utf8

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.utf8

time zone: America/New_York

tzcode source: internal

attached base packages:

[1] parallel stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] ADaCGH2_2.47.2 ff_4.5.2 bit_4.6.0

loaded via a namespace (and not attached):

[1] KEGGREST_1.47.1 gtable_0.3.6 ggplot2_3.5.1

[4] Biobase_2.67.0 lattice_0.22-7 vctrs_0.6.5

23

[7] tools_4.5.0 generics_0.1.3 stats4_4.5.0

[10] sandwich_3.1-1 tibble_3.2.1 AnnotationDbi_1.69.1

[13] RSQLite_2.3.9 cluster_2.1.8.1 vsn_3.75.0

[16] blob_1.2.4 pkgconfig_2.0.3 Matrix_1.7-3

[19] RColorBrewer_1.1-3 S4Vectors_0.45.4 lifecycle_1.0.4

[22] GenomeInfoDbData_1.2.14 compiler_4.5.0 Biostrings_2.75.4

[25] statmod_1.5.0 munsell_0.5.1 strucchange_1.5-4

[28] GenomeInfoDb_1.43.4 aCGH_1.85.0 preprocessCore_1.69.0

[31] pillar_1.10.2 crayon_1.5.3 MASS_7.3-65

[34] affy_1.85.1 cachem_1.1.0 limma_3.63.12

[37] pixmap_0.4-13 genefilter_1.89.0 tidyselect_1.2.1

[40] waveslim_1.8.5 dplyr_1.1.4 splines_4.5.0

[43] fastmap_1.2.0 grid_4.5.0 colorspace_2.1-1

[46] cli_3.6.4 magrittr_2.0.3 XML_3.99-0.18

[49] survival_3.8-3 scales_1.3.0 UCSC.utils_1.3.1

[52] bit64_4.6.0-1 XVector_0.47.2 httr_1.4.7

[55] affyio_1.77.3 matrixStats_1.5.0 multtest_2.63.0

[58] zoo_1.8-13 png_0.1-8 memoise_2.0.1

[61] DNAcopy_1.81.0 IRanges_2.41.3 tilingArray_1.85.0

[64] rlang_1.1.5 xtable_1.8-4 glue_1.8.0

[67] DBI_1.2.3 BiocManager_1.30.25 BiocGenerics_0.53.6

[70] annotate_1.85.0 jsonlite_2.0.0 multitaper_1.0-17

[73] R6_2.6.1 MatrixGenerics_1.19.1

24

References

Carro, A., Rico, D., Rueda, O. M., Diaz-Uriarte, R., and Pisano, D. G. (2010). waviCGH:
a web application for the analysis and visualization of genomic copy number alterations.
Nucleic acids research, 38 Suppl:W182�7.

Diaz-Uriarte, R. and Rueda, O. M. (2007). ADaCGH: A parallelized web-based application
and R package for the analysis of aCGH data. PloS one, 2(1):e737.

R Core Team (2013). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria.

Rueda, O. M. and Diaz-Uriarte, R. (2010). Finding Recurrent Copy Number Alteration
Regions : A Review of Methods. Current Bioinformatics, 5:1�17.

van de Wiel, M. A. and van Wieringen, W. N. (2007). CGHregions: Dimension Reduction
for Array CGH Data with Minimal Information Loss. Cancer informatics, 3(0):55�63.

Vosse, S. and van de Wiel, M. (2009). CGHregions: Dimension Reduction for Array CGH

Data with Minimal Information Loss. R package version 1.7.1.

25

	This vignette
	Overview:
	Terminology
	Suggested usage patterns summary
	Usage: main steps and choices

	The data for all the examples
	Example 1: RAM objects and forking
	Reading data and storing as a RAM object (a ``usual'' R object)
	Data available as a data frame in an RData file
	Data available as an R data frame
	Using input data from a text file
	Using data from Limma
	Reading data from a directory

	Carrying out segmentation and calling
	Plotting the results

	Example 2: ff objects and cluster
	Choosing a working directory
	Reading data and storing as ff objects
	Data available as a data frame in an RData file
	Converting from RData to ff objects in a separate process
	Data available as an R data frame
	Using input data from a text file
	Using data from Limma
	Reading data from a directory
	Moving a set of ff objects

	Initializing the computing cluster
	Carrying out segmentation and calling
	Plotting the results

	Example 3: ff objects and forking
	Choosing a working directory
	Reading data and storing as ff objects
	Data available as a data frame in an RData file
	Converting from RData to ff objects in a separate process
	Data available as an R data frame
	Using input data from a text file
	Using data from Limma
	Reading data from a directory
	Cutting the original file into one-column files

	Carrying out segmentation and calling
	Plotting the results

	Input and output to/from other packages
	Input data from Limma
	Using CGHregions

	Why ADaCGH2 instead of a ``manual'' solution
	Session info and packages used

