Upsize your clustering with Clusterize

Erik S. Wright
April 8, 2025

Contents

{1 Introduction to supersized clustering| 1
2 Getting started with Clusterize| 2
3 Optimize your inputs to Clusterize 2
|4 Visualize the output of Clusterize| 6
|5 Specialize clustering for your goals| 9
|6  Resize to fit within less memory| 12
(7 Clustering both nucleotide strands| 13
8 Alternative measures of distancel 14
[9  Finalize your use of Clusterize| 15

1 Introduction to supersized clustering

You may have found yourself in a familiar predicament for many bioinformaticians: you have a lot of sequences and
you need to downsize before you can get going. You may also theorize that this must be an easy problem to solve
—given sequences, output clusters. But what can you utilize to solve this problem? This vignette will familiarize you
with the Clusterize function in the DECIPHER package. Clusterize will revolutionize all your clustering needs!
Why Clusterize?:

 Scalability - Clusterize will linearize the search space so that many sequences can be clustered in a reason-
able amount of time.

 Simplicity - Although you can individualize Clusterize, the defaults are straightforward and should meet
most of your needs.

* Accuracy - Clusterize will maximize your ability to extract biologically meaningful results from your se-
quences.

This vignette will summarize the use of Clusterize to cluster DNA, RNA, or protein sequences.



2  Getting started with Clusterize

To get started we need to load the DECIPHER package, which automatically mobilize a few other required packages.

> library (DECIPHER)

There’s no need to memorize the inputs to Clusterize, because its help page can be accessed through:

> ? Clusterize

Note that, while it’s easy to fantasize about using Clusterize, if you only have a moderate number of homologous
sequences (« 100k) then it’s more accurate to use Treeline with a distance matrix created from a multiple sequence
alignment. This function provides hierarchical clustering (i.e., single-linkage, UPGMA, or complete-linkage) that is
impossible to criticize as inexact.

3 Optimize your inputs to Clusterize

Clusterize requires that you first digitize your sequences by loading them into memory. For the purpose of this
vignette, we will capitalize on the fact that DECIPHER already includes some built-in sets of sequences.

> # specify the path to your file of sequences:
> fas <- "<<path to training FASTA file>>"

> # OR use the example DNA sequences:

> fas <- system.file("extdata",
"50S_ribosomal_protein_L2.fas",
package="DECIPHER")

> # read the sequences into memory

> dna <- readDNAStringSet (fas)

> dna

DNAStringSet object of length 317:

width

[1] 819
(2] 822
[3] 822
[4] 822
[5] 819
[313] 819
[314] 822
[315] 864
[316] 831
[317] 840

seq

ATGGCTTTAAAAAATTTTAATC. .
ATGGGAATACGTAAACTCAAGC. .
ATGGGAATACGTAAACTCAAGC. .
ATGGGAATACGTAAACTCAAGC. .
ATGGCTATCGTTAAATGTAAGC. .

ATGGCAATTGTTAAATGTAAAC. .
ATGCCTATTCAAAAATGCAAAC. .
ATGGGCATTCGCGTTTACCGAC. .
ATGGCACTGAAGACATTCAATC. .
ATGGGCATTCGCAAATATCGAC. .

ATTTATTGTAAAAAAAAGAAAA
.CATCATTGAGAGAAGGAAAAAG
.CATCATTGAGAGAAGGAAAAAG
.CATCATTGAGAGAAGGAAAAAG
.CATCGTACGTCGTCGTGGTAAA

. TATCGTACGTCGCCGTACTAAA
. TATTCGCGATCGTCGCGTCAAG
.GGGTCGCGGTGGTCGTCAGTCT
.AAGCCGCCACAAGCGGAAGAAG
.CAAGACGGCTTCCGGGCGAGGT

names

Rickettsia prowaz...
Porphyromonas gin...
Porphyromonas gin...
Porphyromonas gin...
Pasteurella multo...

Pectobacterium at...
Acinetobacter sp....
Thermosynechococc. ..
Bradyrhizobium ja...
Gloeobacter viola...

The Clusterize algorithm will generalize to nucleotide or protein sequences, so we must choose which we
are going to use. Here, we hypothesize that weaker similarities can be detected between proteins and, therefore, decide
to use the translated coding (amino acid) sequences. If you wish to cluster at high similarity, you could also strategize
that nucleotide sequences would be better because there would be more nucleotide than amino acid differences.

> aa <- translate (dna)

> aa



AAStringSet
width

[1] 273
[2] 274
[3] 274
[4] 274
[5] 273
[313] 273
[314] 274
[315] 288
[316] 277
[317] 280

object of length 317:
seq

MALKNENPITPSLRELVQVDKT. .
MGIRKLKPTTPGQRHKVIGAEFD. .
MGIRKLKPTTPGQRHKVIGAEFD. ..
MGIRKLKPTTPGQRHKVIGAED. .
MATIVKCKPTSAGRRHVVKIVNP. .

MAIVKCKPTSPGRRHVVKVVNP. .
MPIQKCKPTSPGRRFVEKVVHS. ..
MGIRVYRPYTPGVRQKTVSDFA. .
MALKTENPTTPGQRQLVMVDRS. .
MGIRKYRPMTPGTRQRSGADFA. ..

. STKGKKTRKNKRTSKEFIVKKRK
.KGLKTRAPKKHSSKYIIERRKK

KGLKTRAPKKHSSKYIIERRKK

.KGLKTRAPKKHSSKYIIERRKK
. TKGKKTRHNKRTDKF IVRRRGK

. TKGKKTRSNKRTDKF IVRRRTK

KGYKTRTNKRTTKMIIRDRRVK

. SDALIVRRRKKSSKRGRGGRQS
.KKTRSNKSTNKFILLSRHKRKK

RKRRKPSSKFIIRRRKTASGRG

> seqgs <- aa # could also cluster the nucleotides
> length (seqgs)

[1] 317

names

Rickettsia prowaz...
Porphyromonas gin...
Porphyromonas gin...
Porphyromonas gin...
Pasteurella multo...

Pectobacterium at...
Acinetobacter sp....
Thermosynechococc. ..
Bradyrhizobium ja...
Gloeobacter viola...

Now you can choose how to parameterize the function, with the main arguments being myXStringSet and cutoff .
In this case, we will initialize cutoff at seq (0.5, O,
by 10%’s. It is important to recognize that cutoff's can be provided in ascending or descending order and, when
descending, groups at each cutoff will be nested within the previous cutoff’s groups.

We must also choose whether to customize the calculation of distance. The defaults will penalize gaps as single
events, such that each consecutive set of gaps (i.e., insertion or deletion) is considered equivalent to one mismatch.
If you want to standardize the definition of distance to be the same as most other clustering programs then set: pe-
nalizeGapLetterMatches to TRUE (i.e., every gap position is a mismatch), method to "shortest", minCoverage
to 0, and includeTerminalGaps to TRUE. It is possible to rationalize many different measures of distance — see the
DistanceMatrix function for more information about alternative distance parameterizations.

—-0.1) to cluster sequences from 50% to 100% similarity



default default

"’ X
[%]
Q
c
el
o)
)
rareKmers maxPhase3 FALSE (default) TRUE
(50) (2000) singleLinkage
Qo
40% coverage umlgﬂm-y target (cluster representative)
60% coverage query sequence

minCoverage = +50% (default) then cluster because 60 = 50
minCoverage = -50% then don't cluster because 40 < 50

maskRepeats = FALSE (default) whether to avoid potentially
maskLCRs = FALSE (default)  non-homologous regions

S
o
00?5 (“a‘
N @
““\“‘a c,’a?\'e
. Ae' L@ ‘\\
P a(\“ od (4 W ) 4
5‘\6\\\ “\e\'.“ \(\"\“ Qe‘\a @\\Q“
85.7% (6/7) = w= NA@efaur) _TT, T
=2 -}
100% (6/6) & & ‘é’ S FALSE [
75% (6/8) Z Y2 TRUE HH
66.7% (6/9) &= w NA(default) Lo
° S
100% (66) &< 2 FALSE ”" TroTT
31.6% (6/19) 2 < TRUE T TTTTTTTTT
75% (6/8) % w  NA@efauly (T T
(0]
100% (6/6) & = FALSE T
<
60% (6/10) & = TRUE T
75% (6/8) % w  NA(default) m
100% (6/6) © 2 FALSE m
35.3% (6/17) = = TRUE T T

Figure 1: The most important parameters (in bold) to customize your use of Clusterize.



We can further personalize the inputs as desired. The main function argument to emphasize is processors, which
controls whether the function is parallelized on multiple computer threads (if DECIPHER) was built with OpenMP
enabled). Setting processors to a value greater than 1 will speed up clustering considerably, especially for large size
clustering problems. Once we are ready, it’s time to run Clusterize and wait for the output to materialize!

> clusters <- Clusterize(seqgs, cutoff=seq(0.5, 0, -0.1), processors=l)

Partitioning sequences by 3-mer similarity:

Time difference of 0.08 secs

Sorting by relatedness within 35 groups:
iteration 34 of up to 34 (100.0% stability)
Time difference of 0.51 secs

Clustering sequences by 5-mer similarity:

Time difference of 0.19 secs

Clusters via relatedness sorting: 100% (0% exclusively)

[)

Clusters via rare 3-mers: 100% (0% exclusively)
Estimated clustering effectiveness: 100%

> class (clusters)
[1] "data.frame"
> colnames (clusters)

[1] "cluster_0_5" "cluster_0_4" "cluster_0_3" "cluster_0_2" "cluster_0_1"
[6] "cluster_O0O"

> str (clusters)

'data.frame': 317 obs. of 6 variables:
S cluster_0_5: int 3 1 11 3 3 3 2 2 2
$ cluster_0_4: int 1 21 21 21 3 3 3 10 10 10
$ cluster_0_3: int 41 1 1 1 35 35 36 23 23 23
$ cluster_0_2: int 1 66 66 66 11 11 8 33 33 33
S cluster_0_1: int 85 1 1 1 69 69 73 40 40 40
$ cluster_0 : int 2 101 101 101 24 24 19 58 58 58
> apply (clusters, 2, max) # number of clusters per cutoff
cluster_0_5 cluster_0_4 cluster_0_3 cluster_0_2 cluster_0_1 cluster_0
3 21 41 66 85 101
> apply (clusters, 2, function(x) which.max(table(x))) # max sizes
cluster_0_5 cluster_0_4 cluster_0_3 cluster_0_2 cluster_0_1 cluster_0
3 5 30 21 53 45

Notice that Clusterize will characterize the clustering based on how many clustered pairs came from re-
latedness sorting versus rare k-mers, and Clusterize will predict the effectiveness of clustering. Depending on
the input sequences, the percentage of clusters originating from relatedness sorting will equalize with the number
originating from rare k-mers, but more commonly clusters will originate from one source or the other. The clustering
effectiveness formalizes the concept of “inexact” clustering by approximating the fraction of possible sequence pairs



that were correctly clustered together. You can incentivize a higher clustering effectiveness by increasing maxPhase3
at the expense of (proportionally) longer run times.

We can now realize our objective of decreasing the number of sequences. Here, we will prioritize keeping only
the longest diverse sequences.

> o <- orde

> aalo]
AAStringSet
width
] 274
] 274
] 274
] 277
] 280
273
273
273
277
277
> dnalo]
DNAStringSe
width
822
822
822
831
840
819
819
819
831
831

r (clusters[[2]],

object of length 21:
seq

MGIRKLKPTTPGORHKVIGAFDK. .
MGIRKLKPTTPGQRHKVIGAFDK. .
MAVRKLKPTTPGQRHKIIGTFEE. ..
MGIKTYKPKTSSLRYKTTLSFEFDD. .
MAIRKYKPTTPGRRQSSVSMFEE. . .

MATIVKCKPTSAGRRHVVKIVNPE. .
MATIVKCKPTSAGRRHVVKIVNPE. .
MAIVKCKPTSAGRRFVVKVVNQE. .
MALKHENPITPGQRQLVIVDRSE. ..
MALKQFNPTTPGQRQLVIVDRSC. .

t object of length 21:
seq

ATGGGAATACGTAAACTCAAGCC. .
ATGGGAATACGTAAACTCAAGCC. .
ATGGCAGTACGTAAATTAAAGCC. .
ATGGGTATTAAGACTTATAAGCC. .
ATGGCTATTCGTAAGTACAAGCC. .

ATGGCTATCGTTAAATGTAAGCC. .
ATGGCTATCGTTAAATGTAAGCC. .
ATGGCAATCGTTAAGTGCAAACC. .
ATGGCACTCAAGCATTTTAATCC. .
ATGGCACTTAAGCAGTTTAATCC. .

4 Visualize the output of Clusterize

width (seqgs),
> o0 <- of[!duplicated(clusters([[2]])]

decreasing=TRUE) #

.KGLKTRAPKKHSSKYIIERRKK
.KGLKTRAPKKHSSKYITIERRKK

KGLKTRAPKKQSSKYITIERRKK

.KGYKTRKKKRYSDKF ITKRRNK

NPNRYSNNMIVQRRRTNKSKKR

. TKGKKTRHNKRTDKYIVRRRGK
. TKGKKTRHNKRTDKYIVRRRGK
.QTKGKKTRSNKRTDNMIVRRRK

KKTRSNKATDKF IMRSRHQRKK

.KRTRSNKATDKF IMRTRHQRKK

.CATCATTGAGAGAAGGAAAAAG
.CATCATTGAGAGAAGGAAAAAG
.CATTATTGAGAGAAGAAAAAAG
. TATTATTAAAAGAAGAAATAAA
.CACGAACAAGAGCAAGAAGCGC

. TATCGTACGTCGTCGTGGCAAA
.TATCGTACGTCGTCGTGGCAAA
.CATGATCGTCCGCCGCCGCAAG
. TTCGCGCCATCAGCGCAAGAAG
. TACGCGTCATCAGCGCAAGAAA

40% cutoff

names

Porphyromonas gin...
Porphyromonas gin...
Bacteroides theta...
Borrelia burgdorf...
Corynebacterium d...

Haemophilus influ...
Haemophilus influ...
Pseudomonas aerug...

Brucella abortus

Bartonella hensel...

names

Porphyromonas gin...
Porphyromonas gin...
Bacteroides theta...
Borrelia burgdorf...
Corynebacterium d...

Haemophilus influ...
Haemophilus influ...
Pseudomonas aerug...

Brucella abortus

Bartonella hensel...

We can scrutinize the clusters by selecting them and looking at their multiple sequence alignment:

> t <- tabl
> t <- sort
> head(t)

3 1 2
218 58 41

> w <— which(clusters[[1]]
> AlignSeqgs (seqgs[w],

e(clusters[[1]])
(t, decreasing=TRUE)

verbose=FALSE)

AAStringSet object of length 218:
width seq

== names (t[1]))

# select the clusters at a cutoff

names



g w N

[214]
[215]
[216]
[217]
[218]

288
288
288
288
288
288
288
288

288
288

—-MALKNEFNPITPSLRELVQVDK. .
—-MAIVKCKPTSAGRRHVVKIVN. .
—-MAIVKCKPTSAGRRHVVKIVN. .
-MPLMKFKPTSPGRRSAVRVVT. .
-MPLMKFKPTSPGRRSAVRVVT. .

-MAFKHFNPTTPGQRQLVIVDR. .
—-MAFKHEFNPTTPGQRQLVIVDR. .
—-MAIVKCKPTSPGRRHVVKVVN. .
-MPIQKCKPTSPGRREFVEKVVH. .
-MALKTENPTTPGQRQLVMVDR. .

. TR-KNKRTSKFIVKKRK—————
. TR-HNKRTDKF IVRRRGK—-——-—
. TR-HNKRTDKF IVRRRGK————
. TR-KNKRTQQF IVRDRRG————
. TR-KNKRTQQF IVRDRRG————

. TR-SNKATDKFIMHTRHQRKK-
. TR-SNKATDKF IMHTRHQRKK-
. TR-SNKRTDKF IVRRRTK—-——-—
. TR-TNKRTTKMIIRDRRVK—-——
. TR-SNKSTNKF ILLSRHKRKK-

It’s possible to utilize the heatmap function to view the clustering results.

As can be seen in Figure 2] Clusterize will organize its clusters such that each new cluster is within the
previous cluster when cutoff is provided in descending order. We can also see that sequences from the same species
tend to cluster together, which is an alternative way to systematize sequences without clustering.

Rickettsia prowaz...
Pasteurella multo...
Pasteurella multo...
Xanthomonas campe...
Xanthomonas citri...

Bartonella quinta...
Bartonella gquinta...
Pectobacterium at...
Acinetobacter sp....
Bradyrhizobium ja...



aligned_seqgs <- AlignSegs (seqgs, verbose=FALSE)

d <- DistanceMatrix (aligned_segs,
tree <- Treeline (myDistMatrix=d, method="UPGMA",

E
=

cluster 0 5

cluster 0 _4
cluster 0_3
cluster 0 _2
cluster 0 1

verbose=FALSE)

Figure 2: Visualization of the clustering.

verbose=FALSE)
heatmap (as.matrix (clusters), scale="column", Colv=NA, Rowv=tree)
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5 Specialize clustering for your goals

The most common use of clustering is to categorize sequences into groups sharing similarity above a threshold and
pick one representative sequence per group. These settings empitomize this typical user scenario:

> cl <- Clusterize(dna, cutoff=0.2, invertCenters=TRUE, processors=1)

Partitioning sequences by 5S5-mer similarity:

Time difference of 0.15 secs

Sorting by relatedness within 34 groups:
iteration 25 of up to 56 (100.0% stability)
Time difference of 2.4 secs

Clustering sequences by 10-mer similarity:

Time difference of 0.45 secs

Clusters via relatedness sorting: 100% (0% exclusively)

Clusters via rare 5-mers: 100% (0% exclusively)

Estimated clustering effectiveness: 100%

> w <- which(cl < 0 & !duplicated(cl))

> dnal[w] # select cluster representatives (negative cluster numbers)
DNAStringSet object of length 78:

width seq names
[1] 819 ATGGCTTTAAAAAATTTTAATCC...ATTTATTGTAAAAAAAAGAAAA Rickettsia prowaz...
[2] 822 ATGGGAATACGTAAACTCAAGCC...CATCATTGAGAGAAGGAAAAAG Porphyromonas gin...
[3] 837 GTGGGTATTAAGAAGTATAAACC...TGGTCGCCGTCCAGGCAAACAC Lactobacillus pla...
[4] 825 ATGCCATTGATGAAGTTCAAACC...CATCGTCCGCGATCGTAGGGGC Xanthomonas axono...
[5] 828 ATGGGTATTCGTAATTATCGGCC...GATTGTCCGCCGTCGCACCAAA Synechocystis sp....

831 ATGGCATTTAAGCACTTTAATCC...TACGCGTCATCAGCGCAAGAAA Bartonella quinta...
843 ATGTTTAAGAAATATCGACCTGT...CGTGAAACGTCGAAGGAAGAAG Candidatus Protoc...

864 ATGGGCATTCGCGTTTACCGACC. ..GGGTCGCGGTGGTCGTCAGTCT Thermosynechococc...
840 ATGGGCATTCGCAAATATCGACC...CAAGACGGCTTCCGGGCGAGGT Gloeobacter viola...

[74]
[75]
[76] 822 ATGCCTATTCAAAAATGCAAACC...TATTCGCGATCGTCGCGTCAAG Acinetobacter sp....
(77]
(78]

By default, Clusterize will cluster sequences with linkage to the representative sequence in each group,
but it is also possible to tell Clusterize to minimize the number of clusters by establishing linkage to any sequence
in the cluster (i.e., single-linkage). This is often how we conceptualize natural groupings and, therefore, may better
match alternative classification systems such as taxonomy:

> ¢c2 <- Clusterize(dna, cutoff=0.2, singlelLinkage=TRUE, processors=1l)
Partitioning sequences by 5-mer similarity:

Time difference of 0.1 secs



Sorting by relatedness within 34 groups:
iteration 22 of up to 56 (100.0% stability)
Time difference of 2.14 secs

Clustering sequences by 10-mer similarity:

Time difference of 0.81 secs

Clusters via relatedness sorting: 100% (0% exclusively)
Clusters via rare 5-mers: 100% (0% exclusively)
Estimated clustering effectiveness: 100%

> max (abs(cl)) # center-linkage

[1] 78

> max (c2) # single-linkage (fewer clusters, but broader clusters)
[1] 76

It is possible to synthesize a plot showing a cross tabulation of taxonomy and cluster number. We may idealize
the clustering as matching taxonomic labels (3)), but this is not exactly the case.
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> genus <- sapply(strsplit (names(dna), " "), “ [, 1)
> t <- table(genus, c2[[1]])
> heatmap (sgrt(t), scale="none", Rowv=NA, col=hcl.colors (100))

Xanthomonas
Wolbachia
Vibrio
Treponema
Thermotoga
Thermoanaerobacter
Synechococcus
Streptococcus
Sinorhizobium
Rickettsia
Rhodopirellula
Pseudomonas
Porphyromonas
Pectobacterium
Onion

Nostoc
Neisseria
Mycobacterium
Lactococcus
Helicobacter
Gloeobacter
Fusobacterium
Desulfovibrio
Coxiella
Clostridium
Chlorobium
Chlamydia
Candidatus
Buchnera
Bradyrhizobium
Bifidobacterium
Bartonella
Bacillus
Anabaena
Acinetobacter

Figure 3: Another visualization of the clustering.

11



6 Resize to fit within less memory

What should you do if you have more sequences than you can cluster on your midsize computer? If there are far
fewer clusters than sequences (e.g., cutoff is high) then it is likely possible to resize the clustering problem. This is
accomplished by processing the sequences in batches that miniaturize the memory footprint and are at least as large
as the final number of clusters. The number of sequences processed per batch is critical to atomize the problem
appropriately while limiting redundant computations. Although not ideal from a speed perspective, the results will not
jeopardize accuracy relative to as if there was sufficient memory available to process all sequences in one batch.

> batchSize <- 2e2 # normally a large number (e.g., le6 or le7)
> o <- order (width(segs), decreasing=TRUE) # process largest to smallest
> ¢3 <- integer (length(seqgs)) # cluster numbers
> repeat {
m <- which(c3 < 0) # existing cluster representatives
m <- m[!duplicated(c3[m])] # remove redundant sequences

if (length(m) >= batchSize)
stop ("batchSize is too small")

w <— head(c(m, o[c3[o] == 0L]), batchSize)
if (lany(c3[w] == 0L)) {
if (any(c3[-w] == 0L))

stop ("batchSize is too small")
break # done
}
m <- m[match (abs(c3[-w]), abs(c3[m]))]
c3[w] <- Clusterize(segs|[w], cutoff=0.05, invertCenters=TRUE) [[1]]
c3[-w] <- ifelse(is.na(c3[m]), 0L, abs(c3[m]))
}

Partitioning sequences by 3-mer similarity:

Time difference of 0.03 secs

Sorting by relatedness within 4 groups:
iteration 1 of up to 29 (100.0% stability)
Time difference of 0.01 secs

Clustering sequences by 5-mer similarity:

Time difference of 0.16 secs
Clusters via relatedness sorting: 100% (0% exclusively)
Clusters via rare 3-mers: 100% (0% exclusively)

Estimated clustering effectiveness: 100%

Partitioning sequences by 3-mer similarity:

Time difference of 0.04 secs
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Sorting by relatedness within 97 groups:
Clustering sequences by 5-mer similarity:

Time difference of 0.23 secs

Clusters via relatedness sorting: 100% (0% exclusively)
Clusters via rare 3-mers: 100% (0% exclusively)
Estimated clustering effectiveness: 100%
> table(abs(c3)) # cluster sizes
1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
$1 1711 1 1 1 1 2 1 1 2 1 3 1 1 1 1 1 7 1 1 1 3 1 1 1
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
351 3 2 6 3 3 1 2 1 6 1 7 1 1 1 2 8 317 3 2 2 2 1
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
111 3 312 17 4 1 111 3 1 1 1 1 1 1 5 6 3 3 2 1 1
79 80 81 82 83 84 85 86 87 88 89 90 91
11 11713 6 3 1 1 1 1 1 1

7 Clustering both nucleotide strands

Sometimes the input sequences are present in different orientations and it is necessary to harmonize the clusterings
from both strands. Without trying to hyperbolize how easy this is to do, here’s an example of clustering both strands:

> # simulate half of strands having opposite orientation

> s <- sample (c (TRUE, FALSE), length(dna), replace=TRUE)

> dna[s] <- reverseComplement (dnal[s])

> # cluster both strands at the same time

> clus <- Clusterize(c(dna, reverseComplement (dna)), cutoff=0.2, processors=1l)
Partitioning sequences by 5-mer similarity:

Time difference of 0.3 secs

Sorting by relatedness within 142 groups:
iteration 28 of up to 50 (100.0% stability)
Time difference of 5.3 secs

Clustering sequences by 10-mer similarity:

Time difference of 1.2 secs
Clusters via relatedness sorting: 100% (0% exclusively)

Clusters via rare 5-mers: 100% (0% exclusively)
Estimated clustering effectiveness: 100%
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clus <- match(clus[[1]], clus[[1]]) # renumber clusters ascending

# if needed, reorient all clustered sequences to have the same orientation
strand <- clus[seq_len(length(clus)/2)] >= clus[-seq_len(length(clus)/2)]
dna[strand] <- reverseComplement (dna[strand])

# renumber clusters across both strands and compare to original clustering
clus <- pmin(clus[seqg_len(length(clus)/2)], clus[-seq_len(length(clus)/2)

org <- match(abs(cl[[1]]), abs(cl[[111)) # renumber original clustering

mean (clus == org) # some differences expected due to algorithm stochasticity

[1] 0.9842271

> # verify the largest cluster is now back in the same orientation
> dnalclus which.max (tabulate (clus))]

DNAStringSet object of length 75:

vV V V V V V V V

width seq names
[1] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACACAAA Helicobacter pylo...
[2] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
[3] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
[4] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
[5] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
[71] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
[72] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
[73] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
[74] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
[75] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACACAAA Helicobacter pylo...

8 Alternative measures of distance

Your prize for reading this far is a hidden feature of Clusterize — it only requires a small change to use more
sophisticated measures of distance than percent identity. Not to glamorize these alternatives, but they enable you to
correct for different rates of substitution and multiple substitutions per site. This will appear to energize distances by
making sequences more distant than their percent identity, so be sure to adjust your cutoff to units of substitutions per
site.

> c4 <- Clusterize (dna, cutoff=0.4, correction="TNO93+F")

Partitioning sequences by 5-mer similarity:

processors=1,

Time difference of 0.11 secs
Sorting by relatedness within 18 groups:
iteration 1 of up to 150 (100.0% stability)

Time difference of 0.75 secs

Clustering sequences by 10-mer similarity:

Time difference of 2.3 secs
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Clusters via relatedness sorting: 100% (0% exclusively)
Clusters via rare 5-mers: 100% (0% exclusively)
Estimated clustering effectiveness: 100%

> max (c4) # number of DNA clusters

[1] 56

> ¢5 <- Clusterize(aa, cutoff=0.4, processors=1l, correction="WAG")
Partitioning sequences by 3-mer similarity:

Time difference of 0.04 secs

Sorting by relatedness within 35 groups:
iteration 1 of up to 34 (100.0% stability)
Time difference of 0.02 secs

Clustering sequences by 5-mer similarity:

Time difference of 0.15 secs

Clusters via relatedness sorting: 100% (0% exclusively)
Clusters via rare 3-mers: 100% (0% exclusively)
Estimated clustering effectiveness: 100%

> max (c5) # number of AA clusters

[1] 31

9 Finalize your use of Clusterize

Notably, Clusterize is a stochastic algorithm, meaning it will randomize which sequences are selected during
pre-sorting. Even though the clusters will typically stabilize with enough iterations, you can set the random number
seed (before every run) to guarantee reproducibility of the clusters:

> set.seed(123) # initialize the random number generator
> clusters <- Clusterize(seqgs, cutoff=0.1, processors=1)

Partitioning sequences by 3-mer similarity:

Time difference of 0.03 secs

Sorting by relatedness within 35 groups:
iteration 1 of up to 34 (100.0% stability)
Time difference of 0.02 secs

Clustering sequences by 5-mer similarity:
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Time difference of 0.2 secs

Clusters via relatedness sorting: 100% (0% exclusively)
Clusters via rare 3-mers: 100% (0% exclusively)

Estimated clustering effectiveness: 100%
> set.seed(NULL) # reset the seed

Now you know how to utilize Clusterize to cluster sequences. To publicize your code for others to repro-
duce, make sure to include your random number seed and version number:

* R Under development (unstable) (2025-03-02 r87868), x86_64—-apple—-darwin20
* Running under: macOS Monterey 12.7.6
* Matrix products: default

* BLAS:
/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/1lib/1ibRblas.0.dylib

e LAPACK:
/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/lib/l1ibRlapack.dylib
;. LAPACK version3.12.0

» Base packages: base, datasets, grDevices, graphics, methods, stats, stats4, utils

 Other packages: BiocGenerics 0.53.6, Biostrings 2.75.4, DECIPHER 3.3.6, GenomelnfoDb 1.43.4,
IRanges 2.41.3, S4Vectors 0.45.4, XVector 0.47.2, generics 0.1.3

* Loaded via a namespace (and not attached): DBI 1.2.3, GenomelnfoDbData 1.2.14, R6 2.6.1,
UCSC.utils 1.3.1, compiler 4.5.0, crayon 1.5.3, httr 1.4.7, jsonlite 2.0.0, tools 4.5.0
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