1 Introduction

Bioconductor has a rich ecosystem of metadata around packages, usage, and build status. This package is a simple collection of functions to access that metadata from R in a tidy data format. The goal is to expose metadata for data mining and value-added functionality such as package searching, text mining, and analytics on packages.

Functionality includes access to :

2 Build reports

The Bioconductor build reports are available online as HTML pages. However, they are not very computable. The biocBuildReport function does some heroic parsing of the HTML to produce a tidy data.frame for further processing in R.

library(BiocPkgTools)
head(biocBuildReport())
## # A tibble: 6 × 12
##   pkg    author  version git_last_commit git_last_commit_date pkgType Deprecated
##   <chr>  <chr>   <chr>   <chr>           <dttm>               <chr>   <lgl>     
## 1 ABSSeq Wentao… 1.59.0  dc09894         2024-04-30 10:35:52  bioc    FALSE     
## 2 ABSSeq Wentao… 1.59.0  dc09894         2024-04-30 10:35:52  bioc    FALSE     
## 3 ABSSeq Wentao… 1.59.0  dc09894         2024-04-30 10:35:52  bioc    FALSE     
## 4 ABSSeq Wentao… 1.59.0  dc09894         2024-04-30 10:35:52  bioc    FALSE     
## 5 ABSSeq Wentao… 1.59.0  dc09894         2024-04-30 10:35:52  bioc    FALSE     
## 6 ABSSeq Wentao… 1.59.0  dc09894         2024-04-30 10:35:52  bioc    FALSE     
## # ℹ 5 more variables: PackageStatus <chr>, node <chr>, stage <chr>,
## #   result <chr>, bioc_version <chr>

2.1 Personal build report

Because developers may be interested in a quick view of their own packages, there is a simple function, problemPage, to produce an HTML report of the build status of packages matching a given author regex supplied to the authorPattern argument. The default is to report only “problem” build statuses (ERROR, WARNING).

problemPage(authorPattern = "V.*Carey")

In similar fashion, maintainers of packages that have many downstream packages that depend on them may wish to check that a change they introduced hasn’t suddenly broken a large number of these. You can use the dependsOn argument to produce the summary report of those packages that “depend on” the given package.

problemPage(dependsOn = "limma")

When run in an interactive environment, the problemPage function will open a browser window for user interaction. Note that if you want to include all your package results, not just the broken ones, simply specify includeOK = TRUE.

3 Download statistics

Bioconductor supplies download stats for all packages. The biocDownloadStats function grabs all available download stats for all packages in all Experiment Data, Annotation Data, and Software packages. The results are returned as a tidy data.frame for further analysis.

head(biocDownloadStats())
## # A tibble: 6 × 7
##   pkgType  Package  Year Month Nb_of_distinct_IPs Nb_of_downloads Date      
##   <chr>    <chr>   <int> <chr>              <int>           <int> <date>    
## 1 software a4       2024 Jan                   75             320 2024-01-01
## 2 software a4       2024 Feb                   85             245 2024-02-01
## 3 software a4       2024 Mar                  156             296 2024-03-01
## 4 software a4       2024 Apr                  247             577 2024-04-01
## 5 software a4       2024 May                  108             510 2024-05-01
## 6 software a4       2024 Jun                   79             811 2024-06-01

The download statistics reported are for all available versions of a package. There are no separate, publicly available statistics broken down by version. The majority of Bioconductor Software packages are also available through other channels such as Anaconda, who also provided download statistics for packages installed from their repositories. Access to these counts is provided by the anacondaDownloadStats function:

head(anacondaDownloadStats())
## # A tibble: 6 × 7
##   Package Year  Month Nb_of_distinct_IPs Nb_of_downloads repo     Date      
##   <chr>   <chr> <chr>              <int>           <dbl> <chr>    <date>    
## 1 ABAData 2018  Apr                   NA               8 Anaconda 2018-04-01
## 2 ABAData 2018  Aug                   NA               5 Anaconda 2018-08-01
## 3 ABAData 2018  Dec                   NA             133 Anaconda 2018-12-01
## 4 ABAData 2018  Jul                   NA               6 Anaconda 2018-07-01
## 5 ABAData 2018  Jun                   NA              18 Anaconda 2018-06-01
## 6 ABAData 2018  Mar                   NA              13 Anaconda 2018-03-01

Note that Anaconda do not provide counts for distinct IP addresses, but this column is included for compatibility with the Bioconductor count tables.

4 Package details

The R DESCRIPTION file contains a plethora of information regarding package authors, dependencies, versions, etc. In a repository such as Bioconductor, these details are available in bulk for all included packages. The biocPkgList returns a data.frame with a row for each package. Tons of information are available, as evidenced by the column names of the results.

bpi = biocPkgList()
colnames(bpi)
##  [1] "Package"                       "Version"                      
##  [3] "Depends"                       "Imports"                      
##  [5] "Suggests"                      "License"                      
##  [7] "MD5sum"                        "NeedsCompilation"             
##  [9] "Title"                         "Description"                  
## [11] "biocViews"                     "Author"                       
## [13] "Maintainer"                    "git_url"                      
## [15] "git_branch"                    "git_last_commit"              
## [17] "git_last_commit_date"          "Date/Publication"             
## [19] "source.ver"                    "win.binary.ver"               
## [21] "mac.binary.big-sur-x86_64.ver" "mac.binary.big-sur-arm64.ver" 
## [23] "vignettes"                     "vignetteTitles"               
## [25] "hasREADME"                     "hasNEWS"                      
## [27] "hasINSTALL"                    "hasLICENSE"                   
## [29] "Rfiles"                        "importsMe"                    
## [31] "dependencyCount"               "URL"                          
## [33] "VignetteBuilder"               "Archs"                        
## [35] "suggestsMe"                    "LinkingTo"                    
## [37] "SystemRequirements"            "dependsOnMe"                  
## [39] "BugReports"                    "Enhances"                     
## [41] "Video"                         "linksToMe"                    
## [43] "License_restricts_use"         "PackageStatus"                
## [45] "License_is_FOSS"               "OS_type"                      
## [47] "organism"

Some of the variables are parsed to produce list columns.

head(bpi)
## # A tibble: 6 × 47
##   Package Version Depends Imports Suggests License MD5sum NeedsCompilation Title
##   <chr>   <chr>   <list>  <list>  <list>   <chr>   <chr>  <chr>            <chr>
## 1 ABSSeq  1.59.0  <chr>   <chr>   <chr>    GPL (>… ead1e… no               "ABS…
## 2 ABarray 1.73.0  <chr>   <chr>   <chr>    GPL     5b457… no               "Mic…
## 3 ACE     1.23.0  <chr>   <chr>   <chr>    GPL-2   a3d57… no               "Abs…
## 4 ACME    2.61.0  <chr>   <chr>   <chr>    GPL (>… b239c… yes              "Alg…
## 5 ADAM    1.21.0  <chr>   <chr>   <chr>    GPL (>… 10bcb… yes              "ADA…
## 6 ADAMgui 1.21.0  <chr>   <chr>   <chr>    GPL (>… 3378f… no               "Act…
## # ℹ 38 more variables: Description <chr>, biocViews <list>, Author <list>,
## #   Maintainer <list>, git_url <chr>, git_branch <chr>, git_last_commit <chr>,
## #   git_last_commit_date <chr>, `Date/Publication` <chr>, source.ver <chr>,
## #   win.binary.ver <chr>, `mac.binary.big-sur-x86_64.ver` <chr>,
## #   `mac.binary.big-sur-arm64.ver` <chr>, vignettes <list>,
## #   vignetteTitles <list>, hasREADME <chr>, hasNEWS <chr>, hasINSTALL <chr>,
## #   hasLICENSE <chr>, Rfiles <list>, importsMe <list>, dependencyCount <chr>, …

As a simple example of how these columns can be used, extracting the importsMe column to find the packages that import the GEOquery package.

require(dplyr)
bpi = biocPkgList()
bpi %>% 
    filter(Package=="GEOquery") %>%
    pull(importsMe) %>%
    unlist()
## [1] NA

5 Package Explorer

For the end user of Bioconductor, an analysis often starts with finding a package or set of packages that perform required tasks or are tailored to a specific operation or data type. The biocExplore() function implements an interactive bubble visualization with filtering based on biocViews terms. Bubbles are sized based on download statistics. Tooltip and detail-on-click capabilities are included. To start a local session:

biocExplore()