
Package ‘adverSCarial’
October 17, 2024

Title adverSCarial, generate and analyze the vulnerability of
scRNA-seq classifier to adversarial attacks

Version 1.3.12

Description
adverSCarial is an R Package designed for generating and analyzing the vulnerability of scRNA-
seq
classifiers to adversarial attacks. The package is versatile and provides a format for integrating
any type of classifier. It offers functions for studying and generating two types of attacks,
single gene attack and max change attack. The single-
gene attack involves making a small modification
to the input to alter the classification. The max-change attack involves making a large modification
to the input without changing its classification.
The package provides a comprehensive solution for evaluating the robustness of scRNA-
seq classifiers
against adversarial attacks.

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

biocViews Software, SingleCell, Transcriptomics, Classification

Suggests knitr, RUnit, BiocGenerics, TENxPBMCData, CHETAH, stringr,
LoomExperiment

Imports gtools, S4Vectors, methods, DelayedArray

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/adverSCarial

git_branch devel

git_last_commit caca160

git_last_commit_date 2024-08-13

Repository Bioconductor 3.20

Date/Publication 2024-10-17

Author Ghislain FIEVET [aut, cre] (<https://orcid.org/0000-0002-0337-7327>),
Sébastien HERGALANT [aut] (<https://orcid.org/0000-0001-8456-7992>)

Maintainer Ghislain FIEVET <ghislain.fievet@gmail.com>

1

https://orcid.org/0000-0002-0337-7327
https://orcid.org/0000-0001-8456-7992

2 advCGD

Contents

advCGD . 2
advChar-class . 4
advGridMinChange . 4
advList-class . 6
advMaxChange . 7
advModifications . 9
advRandWalkMinChange . 11
advSingleGene . 13
getSignGenes . 15
matrixFromSCE . 16
maxChangeOverview . 17
MClassifier . 19
predictWithNewValue . 20
sceConvertToHGNC . 21
singleGeneOverview . 22

Index 25

advCGD Implementation of the IDG4C algorithm.

Description

Implementation of the IDG4C algorithm.

Usage

advCGD(
expr,
clusters,
target,
classifier,
genes = NULL,
exclNewTargets = NULL,
newTarget = NULL,
alpha = 0.1,
epsilon = 0,
slot = NULL,
stopAtSwitch = TRUE,
verbose = FALSE

)

Arguments

expr a matrix, a data.fram or a Seurat object

clusters a character vector of the clusters to which the cells belong

target the name of the cluster to modify

advCGD 3

classifier a classifier in the suitable format. A classifier function should be formated as
follow: classifier = function(expr, clusters, target) # Making the classification
c("cell type", score)
score should be numeric between 0 and 1, 1 being the highest confidance into
the cell type classification. The matrix expr contains RNA expression values,
the vector clusters consists of the cluster IDs for each cell in expr, and target
is the ID of the cluster for which we want to have a classification. The function
returns a vector with the classification result, and a score.

genes the character vector of genes to study

exclNewTargets the character vector of cell types to exclude as new target

newTarget the name of the new cell type cell type target, this will be the new prediction cell
type after the attack

alpha the alpha parameter of the IDG4C algorithm

epsilon the epsilon parameter of the IDG4C algorithm

slot the slot to modify in case of Seurat object

stopAtSwitch logical, set to TRUE to stop the attack when the new target set to FALSE to
continue the attack until all genes are tested

verbose logical, set to TRUE to activate verbose mode

Details

this function is an implementation of the IDG4C algorithm which permits to generate adversarial
attacks on a classifier on a given cluster. The attack is done by modifying the expression of the
genes by gradient descent after having inferred if by the finite difference method. Two parameters
alpha and epsilon are used to control the step size of the modifications.

Value

a list containing the modified expression matrix, the list of modified genes, the summary of the
attack by gene, the summary of the attack, the new cell types predictions and the original cell types
predictions

Examples

MyClassifier <- function(expr, clusters, target) {
typePredictions <- as.data.frame(matrix(nrow=nrow(expr), ncol=length(unique(clusters))))
colnames(typePredictions) <- unique(clusters)
typePredictions[unique(clusters)[1]] <- c(1,0,0,0)
typePredictions[unique(clusters)[2]] <- c(0,1,1,1)
rownames(typePredictions) <- 1:4

list(prediction="T cell", odd=1,
typePredictions=t(typePredictions),
cellTypes=c("B cell","T cell","T cell","T cell"))

}
rna_expression <- data.frame(CD4=c(0,0,0,0), CD8A=c(1,1,1,1),

CD8B=c(2,2,3,3))
genes <- c("CD4", "CD8A")
clusters_id <- c("B cell","T cell","T cell","T cell")

advCGD(rna_expression, clusters_id, "T cell",
MyClassifier, genes=genes, verbose=TRUE)

4 advGridMinChange

advChar-class adverSCarial class

Description

advChar is a class used to store the output values of the advMaxChange function. The result can
be a vector of few thousands genes, so a specific show method is associated to this class to avoid
overflooding the R scripts outputs.

Value

A advChar object

Examples

MyClassifier <- function(expr, clusters, target) {
c("T cell", 0.9)

}

genes <- paste0("gene_",1:10000)
rna_expression <- data.frame(lapply(genes, function(x) numeric(0)))
rna_expression <- rbind(rna_expression, rep(1,10000))
rna_expression <- rbind(rna_expression, rep(2,10000))
colnames(rna_expression) <- genes
clusters_id <- c("B cell","T cell")

max_change_genes <- advMaxChange(rna_expression, clusters_id,
"T cell", MyClassifier, advMethod="perc99")

max_change_genes

advGridMinChange Grid search of min change adversarial attack. Tries each combination
on a cluster, given a list of genes and a list of modifications.

Description

Grid search of min change adversarial attack. Tries each combination on a cluster, given a list of
genes and a list of modifications.

Usage

advGridMinChange(
exprs,
clusters,
target,
classifier,
genes,

advGridMinChange 5

modifications = list(c("perc1"), c("perc99")),
returnFirstFound = FALSE,
argForClassif = "data.frame",
argForModif = "data.frame",
verbose = FALSE,
iamsure = FALSE

)

Arguments

exprs DelayedMatrix of numeric RNA expression, cells are rows and genes are columns
- or a SingleCellExperiment object, a matrix or a data.frame. By default matrix
and data.frame are converted to DelayedMatrix for memory performance, see
’argForModif’ argument for options.

clusters a character vector of the clusters to which the cells belong

target the name of the cluster to modify

classifier a classifier in the suitable format. A classifier function should be formated as
follow: classifier = function(expr, clusters, target) # Making the classification
c("cell type", score)
score should be numeric between 0 and 1, 1 being the highest confidance into
the cell type classification. The matrix expr contains RNA expression values,
the vector clusters consists of the cluster IDs for each cell in expr, and target
is the ID of the cluster for which we want to have a classification. The function
returns a vector with the classification result, and a score.

genes the character vector of genes to study

modifications the list of the modifications to study
returnFirstFound

set to TRUE to return result when a the first misclassification is found

argForClassif the type of the first argument to feed to the classifier function. ’data.frame’ by
default, can be ’SingleCellExperiment’ or ’DelayedMatrix’.

argForModif type of matrix during for the modification, ’data.frame’ by default. Can be ’De-
layedMatrix’, which needs less memory but is slower.

verbose logical, set to TRUE to activate verbose mode

iamsure logical, prevents from expansive calculations when genes list is too long, set to
TRUE to run anyway.

Details

This function aims to find the shortest combination of genes allowing to make a min change attack.
It will test every possible combination for a given gene list. This function can take a long time to
run, and we recommand to use the random walk search advRandWalkMinChange function instead
for lists above 10 genes.

You can specify a list of modifications as so, each item of the list should be 1 or 2 length size. The 1
length vector must contain the prerecorded modifications, ’perc1’ or ’perc99’. The 2 length vector
must have as first item:

• ’fixed’, in this case the second item should be the value to be replaced by.

• ’full_row_fct’, ’target_row_fct’, ’target_matrix_fct’ or ’full_matrix_fct’. In this case the sec-
ond item should be a function. Let’s say we want to analysis the susceptibility to min change

6 advList-class

attack for 3 modifications: "perc1", the modification of each value of the cluster by 1000,
and a custom modification stored inside a function myFct. Then the ’modification’ parameter
should be: my_modifications = list(c("perc1"), c("fixed", 1000), c("full_matrix_fct", myFct))

Value

DataFrame results of the classification of all the grid combinations

Examples

library(DelayedArray)

MyClassifier <- function(expr, clusters, target) {
c("T cell", 0.9)

}
rna_expression <- DelayedArray(data.frame(CD4=c(0,0,0,0), CD8A=c(1,1,1,1),

CD8B=c(2,2,3,3)))
genes <- c("CD4", "CD8A")
clusters_id <- c("B cell","B cell","T cell","T cell")

advGridMinChange(rna_expression, clusters_id, "T cell",
MyClassifier, genes=genes,
modifications = list(c("perc1"), c("perc99")))

myModif = function(x, y){
return(sample(1:10,1))

}

my_modifications = list(c("perc1"),
c("fixed", 1000),
c("full_matrix_fct", myModif))

advGridMinChange(rna_expression, clusters_id, "T cell",
MyClassifier, genes=genes, modifications = my_modifications)

advList-class adverSCarial class

Description

advList is a class used to store the output values of the advSingleGene function. The result can be
a list of few thousands genes:cell_type key/values, so a specific show method is associated to this
class to avoid overflooding the R scripts outputs.

Value

A advList object

Examples

MyClassifier <- function(expr, clusters, target) {
c("B cell", 0.9)

}
rna_expression <- data.frame(CD4=c(0,0,0,0), CD8A=c(1,1,1,1),

advMaxChange 7

CD8B=c(2,2,3,3))
genes <- c("CD4", "CD8A")
clusters_id <- c("B cell","B cell","T cell","T cell")

adv_min_change <- advSingleGene(rna_expression, clusters_id,
"T cell", MyClassifier, advMethod="perc99")

adv_min_change

advMaxChange Find a max change adversarial attack. It finds the longer list of genes
you can modify on a cluster without changing its classification.

Description

Find a max change adversarial attack. It finds the longer list of genes you can modify on a cluster
without changing its classification.

Usage

advMaxChange(
exprs,
clusters,
target,
classifier,
exclGenes = c(),
genes = c(),
advMethod = "perc99",
advFixedValue = 3,
advFct = NULL,
maxSplitSize = 1,
argForClassif = "data.frame",
argForModif = "data.frame",
slot = NULL,
verbose = FALSE

)

Arguments

exprs DelayedMatrix of numeric RNA expression, cells are rows and genes are columns
- or a SingleCellExperiment object, a matrix or a data.frame. By default, these
are converted to a data.frame to increase speed performance during modifica-
tions. However, this conversion can consume a significant amount of memory,
see ’argForModif’ argument for options.

clusters a character vector of the clusters to which the cells belong

target the name of the cluster to modify

classifier a classifier in the suitable format. A classifier function should be formated as
follow: classifier = function(expr, clusters, target) # Making the classification
c("cell type", score)

8 advMaxChange

score should be numeric between 0 and 1, 1 being the highest confidance into
the cell type classification. The matrix expr contains RNA expression values,
the vector clusters consists of the cluster IDs for each cell in expr, and target
is the ID of the cluster for which we want to have a classification. The function
returns a vector with the classification result, and a score.

exclGenes a list of genes to exclude from the analysis

genes a list of genes in case you want to limit the attack on a subset of genes

advMethod the name of the method to use

advFixedValue the numeric value to use in case of advMethod=fixed

advFct the function to use in case advMethod belongs to the following list: full_row_fct,
target_row_fct, target_matrix_fct, full_matrix_fct

maxSplitSize max size of dichotomic slices.

argForClassif the type of the first argument to feed to the classifier function. ’data.frame’ by
default, can be ’SingleCellExperiment’ or ’DelayedMatrix’.

argForModif type of matrix during for the modification, ’data.frame’ by default. Can be ’De-
layedMatrix’, which needs less memory but is slower.

verbose logical, set to TRUE to activate verbose mode

Details

This function aims to get the largest part of the genes that can be modified without altering the
classification, considering a given modification. You can refer to the ’advModifications’ function
documentation to more details on how to define a modification. The search is made by a dichotomic
process, on a reccursive function. At each iteration the function splits the genes in two groups. It
proceeds to the modification of the RNA gene value of the first group, makes its classification. Then
three possible scenarios:

• the classification is the same as the target cluster. We concat the genes list to the previous one,
make the classification, and it still gives same classification. Then we return the genes list.

• the classification is the same as the target cluster. We concat the genes list to the previous one,
make the classification, and it gives a different classification. This happens often, you can
modify the gene A with a classification of T cell, or modify the gene B with a classification
of T cell, but modifying A and B returns another classification. In this case we split the genes
list in two and try again.

• the classification is not the same as the target cluster. In this case we split the genes list in two
and try again. The iteration process stops when the length of the genes list is lower than the
value of the ’maxSplitSize’ argument. So you should set it to 1 to have the maximum number
of genes for the max change attack. This function is used by the ’overMaxChange’ function
with a default argument value of 100 to increase speed, and still returns significant results.

Value

a character vector of genes you can modify on a cluster without modifying its classification

Examples

library(DelayedArray)

MyClassifier <- function(expr, clusters, target) {
c("T cell", 0.9)

advModifications 9

}
rna_expression <- DelayedArray(data.frame(CD4=c(0,0,0,0), CD8A=c(1,1,1,1),

CD8B=c(2,2,3,3)))
genes <- c("CD4", "CD8A")
clusters_id <- c("B cell","B cell","T cell","T cell")

advMaxChange(rna_expression, clusters_id,
"T cell", MyClassifier, advMethod="perc99")

advModifications Returns a modified RNA expression DelayedMatrix, or a modified Sin-
gleCellExperiment, for a given cluster, for a given modification.

Description

Returns a modified RNA expression DelayedMatrix, or a modified SingleCellExperiment, for a
given cluster, for a given modification.

Usage

advModifications(
exprs,
genes,
clusters,
target,
advMethod = "perc99",
advFixedValue = 3,
advFct = NULL,
argForClassif = "DelayedMatrix",
argForModif = "data.frame",
slot = NULL,
verbose = FALSE

)

Arguments

exprs DelayedMatrix of numeric RNA expression, cells are rows and genes are columns
- or a SingleCellExperiment object, a matrix or a data.frame. By default, these
are converted to a data.frame to increase speed performance during modifica-
tions. However, this conversion can consume a significant amount of memory,
see ’argForModif’ argument for options.

genes the character vector of genes to modify

clusters a character vector of the clusters to which the cells belong

target the name of the cluster to modify

advMethod the name of the method to use

advFixedValue the numeric value to use in case of advMethod=fixed

advFct the function to use in case advMethod belongs to the following list: full_row_fct,
target_row_fct, target_matrix_fct, full_matrix_fct

argForClassif the type of the first argument to feed to the classifier function. ’DelayedMatrix’
by default, can be ’SingleCellExperiment’ or ’data.frame’.

10 advModifications

argForModif type of matrix during for the modification, ’DelayedMatrix’ by default. Can be
’data.frame’, which is faster, but need more memory.

verbose logical, set to TRUE to activate verbose mode

Details

The motivation for this function is to standardize the modifications we want to study in the attacks.
We give as argument a DelayedMatrix of the RNA expression, the gene and the target cells we want
to modify. Then we have three arguments allowing to specify what modification we want to apply
on these cells. The advMethod contains, a specific prerecorded modification or an indication on
how to use the other two arguments. The prerecorded modifications available for the advMethod
argument are:

• ’perc1’, replace the value by the whole matrix 1 percentile value of the gene. It is as if we
biologically switched off the gene.

• ’perc99’, replace the value by the whole matrix 99 percentile value of the gene. It is as if we
biologically switched on the gene to the maximum.

• ’random’, replace the value by from a uniform distribution between min and max of the gene
on the dataset

• ’positive_aberrant’ replace value by 10,000 times the max value of the gene on the dataset

• ’negative_aberrant’ replace value by -10,000 times the max value of the gene on the dataset

• ’decile+X’, shifts the gene value by + X deciles.

• ’decile-X’, shifts the gene value by - X deciles. The value of the advMethod argument can
also be ’fixed’, in this case the modification would be to replace the value of the gene of
the wanted cells by the value of the argument ’advFixedValue’. This can be useful to test
aberrant values like negative integer, absurdly high values of character values. The value of
the advMethod argument can also be ’full_row_fct’, ’target_row_fct’, ’target_matrix_fct’ or
’full_matrix_fct’. They are used when we want to use a custom modification function, with
the ’advFct’ argument:

• ’full_row_fct’ indicate that the ’advFct’ function takes the whole gene values as input.

• ’target_row_fct’ indicate that the ’advFct’ function takes target cells gene values as input.

• ’full_matrix_fct’ indicate that the ’advFct’ function takes the whole gene expression values as
input.

• ’target_matrix_fct’ indicate that the ’advFct’ function takes target cells all genes values as
input.

Value

the matrix or a data.frame exprs modified on asked genes with the specified modification

Examples

library(DelayedArray)

rna_expression <- DelayedArray(data.frame(CD4=c(0,0,0,0), CD8A=c(1,1,1,1),
CD8B=c(2,2,3,3)))

genes <- c("CD4", "CD8A")
clusters_id <- c("B cell","B cell","T cell","T cell")

advModifications(rna_expression, genes, clusters_id,
"T cell", advMethod="perc99")

advRandWalkMinChange 11

advRandWalkMinChange Random walk search of min change adversarial attack.

Description

Random walk search of min change adversarial attack.

Usage

advRandWalkMinChange(
exprs,
clusters,
target,
classifier,
genes,
modifications = list(c("perc1"), c("perc99")),
firstBatch = 100,
walkLength = 100,
stepChangeRatio = 0.2,
whileMaxCount = 10000,
changeType = "any",
argForClassif = "data.frame",
argForModif = "data.frame",
verbose = FALSE

)

Arguments

exprs DelayedMatrix of numeric RNA expression, cells are rows and genes are columns
- or a SingleCellExperiment object, a matrix or a data.frame. By default matrix
and data.frame are converted to DelayedMatrix for memory performance, see
’argForModif’ argument for options.

clusters a character vector of the clusters to which the cells belong

target the name of the cluster to modify

classifier a classifier in the suitable format. A classifier function should be formated as
follow: classifier = function(expr, clusters, target) # Making the classification
c("cell type", score)
score should be numeric between 0 and 1, 1 being the highest confidance into
the cell type classification. The matrix expr contains RNA expression values,
the vector clusters consists of the cluster IDs for each cell in expr, and target
is the ID of the cluster for which we want to have a classification. The function
returns a vector with the classification result, and a score.

genes the character vector of genes to study

modifications the list of the modifications to study

firstBatch the maximum number of try in step 1

walkLength the maximum number of try in step 2
stepChangeRatio

ratio of parameters change in new walk step

12 advRandWalkMinChange

whileMaxCount the maximum number of try when looking for new combination of parameters

changeType any consider each misclassification, not_na consider each misclassification but
NA.

argForClassif the type of the first argument to feed to the classifier function. ’data.frame’ by
default, can be ’SingleCellExperiment’ or ’DelayedMatrix’.

argForModif type of matrix during for the modification, ’data.frame’ by default. Can be ’De-
layedMatrix’, which needs less memory but is slower.

verbose logical, set to TRUE to activate verbose mode

Details

The parameter search by grid can take a long time, this function aims to make a parameter search
faster. We have a function, advSingleGene, looking for one gene attacks. The advRandWalkMin-
Change function aims to find a multiple genes attack, with the fewer genes possible. At first the user
have to provide a list of genes to test, for example by running differential statistics between two cell
clusters. The user should also provide a list of modifications to test, to define as so - each item of the
list should be 1 or 2 length size. The 1 length vector must contain the prerecorded modifications,
’perc1’ or ’perc99’. The 2 length vector must have as first item:

• ’fixed’, in this case the second item should be the value to be replaced by.

• ’full_row_fct’, ’target_row_fct’, ’target_matrix_fct’ or ’full_matrix_fct’. In this case the sec-
ond item should be a function. Let’s say we want to analysis the susceptibility to min change
attack for 3 modifications: "perc1", the modification of each value of the cluster by 1000,
and a custom modification stored inside a function myFct. Then the ’modification’ parameter
should be: my_modifications = list(c("perc1"), c("fixed", 1000), c("full_matrix_fct", myFct))

Then the function will try to find the best combination of these genes and modifications to make
the min change attack. Step 1 is to find a seed by trying random combinations of genes and modifi-
cations on a cluster until the classification is altered. Step 2 is to perform a random walk search to
reduce the number of genes needed to change the classification. The

Value

DataFrame results of the classification of all the grid combinations

Examples

library(DelayedArray)

MyClassifier <- function(expr, clusters, target) {
c("T cell", 0.9)

}
rna_expression <- DelayedArray(data.frame(CD4=c(0,0,0,0), CD8A=c(1,1,1,1),

CD8B=c(2,2,3,3)))
genes <- c("CD4", "CD8A")
clusters_id <- c("B cell","B cell","T cell","T cell")

advRandWalkMinChange(rna_expression, clusters_id, "T cell",
MyClassifier, genes=genes,
modifications = list(c("perc1"), c("perc99")))

Stop at first attack discovery, whitout going into the walk
parameter search.
advRandWalkMinChange(rna_expression, clusters_id, "T cell",

advSingleGene 13

MyClassifier, genes=genes,
modifications = list(c("perc1"), c("perc99")), walkLength=0)

myModif = function(x, y){
return(sample(1:10,1))

}

my_modifications = list(c("perc1"),
c("fixed", 1000),
c("full_matrix_fct", myModif))

advRandWalkMinChange(rna_expression, clusters_id, "T cell",
MyClassifier, genes=genes, modifications = my_modifications)

advSingleGene Find a one gene min change adversarial attack list. A one gene min
change adversarial attack refers to the modification of a single gene
within a cluster, leading to a change in its classification. The function
returns a list of genes/new classification.

Description

Find a one gene min change adversarial attack list. A one gene min change adversarial attack refers
to the modification of a single gene within a cluster, leading to a change in its classification. The
function returns a list of genes/new classification.

Usage

advSingleGene(
exprs,
clusters,
target,
classifier,
exclGenes = c(),
genes = c(),
advMethod = "perc99",
advFixedValue = 3,
advFct = NULL,
firstDichot = 100,
maxSplitSize = 1,
returnFirstFound = FALSE,
changeType = "any",
argForClassif = "data.frame",
argForModif = "data.frame",
slot = NULL,
verbose = FALSE

)

Arguments

exprs DelayedMatrix of numeric RNA expression, cells are rows and genes are columns
- or a SingleCellExperiment object, a matrix or a data.frame. By default, these

14 advSingleGene

are converted to a data.frame to increase speed performance during modifica-
tions. However, this conversion can consume a significant amount of memory,
see ’argForModif’ argument for options.

clusters a character vector of the clusters to which the cells belong

target the name of the cluster to modify

classifier a classifier in the suitable format. A classifier function should be formated as
follow: classifier = function(expr, clusters, target) # Making the classification
c("cell type", score)
score should be numeric between 0 and 1, 1 being the highest confidance into
the cell type classification. The matrix expr contains RNA expression values,
the vector clusters consists of the cluster IDs for each cell in expr, and target
is the ID of the cluster for which we want to have a classification. The function
returns a vector with the classification result, and a score.

exclGenes a character vector of genes to exclude from the analysis

genes a character vector of genes in case you want to limit the attack on a subset of
genes

advMethod the name of the method to use

advFixedValue the numeric value to use in case of advMethod=fixed

advFct the function to use in case advMethod belongs to the following list: full_row_fct,
target_row_fct, target_matrix_fct, full_matrix_fct

firstDichot the initial number of slices before the dichotomic search

maxSplitSize max size of dichotomic slices
returnFirstFound

set to TRUE to return result when a the first misclassification is found

changeType any consider each misclassification, not_na consider each misclassification but
NA.

argForClassif the type of the first argument to feed to the classifier function. ’data.frame’ by
default, can be ’SingleCellExperiment’ or ’DelayedMatrix’.

argForModif type of matrix during for the modification, ’data.frame’ by default. Can be ’De-
layedMatrix’, which needs less memory but is slower.

verbose logical, set to TRUE to activate verbose mode

Details

This function aims to get all genes that when modified individually can lead to a misclassification.
You can refer to the ’advModifications’ function documentation to more details on how to define a
modification. The function is made as a two step parameter search. The first step is to split the genes
in ’firstDichot’ sets, 100 by default. Then each set is studied by a dichotomic process in a recursive
function. The aim of sarting by a high value of sets, instead of starting directly by the dichotomic
research is to avoid the following scenario: we modify 5000 genes, the modification of one gene
conpensates the modification of another. The classification remains unchanged, whereas there is
a one gene classification modifying inside the 5000. The dichotomic process runs as follow. The
function receives a list of genes, make the modification of the whole list and make the classification.
Three scenarios possible:

• the classification remains the same as the target cluster. The function returns, and the di-
chotomic process continues.

• the classification is changed. There is only one gene in the list, the function returns the gene
and the new classification.

getSignGenes 15

• the classification is changed. There is more than one gene in the list, the genes list is split in
two, and the dichotomic process continues.

Value

a list of genes/new classification tuples

Examples

library(DelayedArray)

MyClassifier <- function(expr, clusters, target) {
c("B cell", 0.9)

}
rna_expression <- DelayedArray(data.frame(CD4=c(0,0,0,0), CD8A=c(1,1,1,1),

CD8B=c(2,2,3,3)))
genes <- c("CD4", "CD8A")
clusters_id <- c("B cell","B cell","T cell","T cell")

advSingleGene(rna_expression, clusters_id,
"T cell", MyClassifier, advMethod="perc99")

getSignGenes The function getSignGenes orders the genes by maximizing the signif-
icance of the gene to differentiate the clusters and ensures that they
represent at most the variations across all possible pairs of clusters.

Description

The function getSignGenes orders the genes by maximizing the significance of the gene to differ-
entiate the clusters and ensures that they represent at most the variations across all possible pairs of
clusters.

Usage

getSignGenes(expr, clusters, method = "wilcox", verbose = FALSE)

Arguments

expr A matrix of gene expression data. Rows are cells and columns are genes.

clusters a character vector of the clusters to which the cells belong

method the statistical test to use. Either "wilcox" for the Wilcoxon rank sum test or
"ttest" for the t-test. Default is "wilcox".

verbose logical, set to TRUE to activate verbose mode

Details

The function getSignGenes orders the genes by maximizing the significance of the gene to differ-
entiate the clusters and ensures that they represent at most the variations across all possible pairs of
clusters.

16 matrixFromSCE

Examples

rna_expression <- data.frame(CD4=c(0,0,0,0), CD8A=c(1,1,1,1),
CD8B=c(2,2,3,3))

genes <- c("CD4", "CD8A")
clusters_id <- c("B cell","T cell","T cell","T cell")

getSignGenes(rna_expression, clusters_id, method="wilcox", verbose=TRUE)

matrixFromSCE Returns the RNA expression matrix from a SingleCellExperiment with
unique hgnc gene names in columns

Description

Returns the RNA expression matrix from a SingleCellExperiment with unique hgnc gene names in
columns

Usage

matrixFromSCE(sce)

Arguments

sce SingleCellExperiment object to convert

Details

This function retrieves from a SingleCellExperiment object the raw RNA expression value corre-
sponding to the hgnc genes. The resulting matrix can then be used with adverSCarial packages.

Value

the RNA expression matrix from a SingleCellExperiment with unique hgnc gene names in columns

Examples

library(TENxPBMCData)

pbmc <- TENxPBMCData(dataset = "pbmc3k")
mat_rna <- matrixFromSCE(pbmc)

maxChangeOverview 17

maxChangeOverview Gives an overview of the susceptibility to max change attacks, for each
cell type, for a given list of modifications.

Description

Gives an overview of the susceptibility to max change attacks, for each cell type, for a given list of
modifications.

Usage

maxChangeOverview(
exprs,
clusters,
classifier,
exclGenes = c(),
genes = c(),
modifications = list(c("perc1"), c("perc99")),
advMethod = "perc99",
advFixedValue = 3,
advFct = NULL,
maxSplitSize = 100,
argForClassif = "data.frame",
argForModif = "data.frame",
verbose = FALSE

)

Arguments

exprs DelayedMatrix of numeric RNA expression, cells are rows and genes are columns
- or a SingleCellExperiment object, a matrix or a data.frame. By default, these
are converted to a data.frame to increase speed performance during modifica-
tions. However, this conversion can consume a significant amount of memory,
see ’argForModif’ argument for options.

clusters a character vector of the clusters to which the cells belong

classifier a classifier in the suitable format. A classifier function should be formated as
follow: classifier = function(expr, clusters, target) # Making the classification
c("cell type", score)
score should be numeric between 0 and 1, 1 being the highest confidance into
the cell type classification. The matrix expr contains RNA expression values,
the vector clusters consists of the cluster IDs for each cell in expr, and target
is the ID of the cluster for which we want to have a classification. The function
returns a vector with the classification result, and a score.

exclGenes a character vector of genes to exclude from the analysis

genes a character vector of genes in case you want to limit the analysis on a subset of
genes

modifications the list of the modifications to study

advMethod the name of the method to use

advFixedValue the numeric value to use in case of advMethod=fixed

18 maxChangeOverview

advFct the function to use in case advMethod belongs to the following list: full_row_fct,
target_row_fct, target_matrix_fct, full_matrix_fct

maxSplitSize max size of dichotomic slices.

argForClassif the type of the first argument to feed to the classifier function. ’data.frame’ by
default, can be ’SingleCellExperiment’ or ’DelayedMatrix’.

argForModif type of matrix during for the modification, ’data.frame’ by default. Can be ’De-
layedMatrix’, which needs less memory but is slower.

verbose logical, set to TRUE to activate verbose mode

Details

Running the advMaxChange function for each cell type to see which ones are more vulerable can
take a long time. The aim of the maxChangeOverview function is to make this process faster. It
uses a default value of 100 for the ’maxSplitSize’ parameter. So, the dichotomic process of the
advMaxChange function stops as soon as the fold length is lower than 100. You can have more
accurate results with maxSplitSize=1, but it will take longer. This function aims also to run the
advMaxChange for several given modifications. You can specify a list of modifications as so - each
item of the list should be 1 or 2 length size. The 1 length vector must contain the prerecorded
modifications, ’perc1’ or ’perc99’. The 2 length vector must have as first item:

• ’fixed’, in this case the second item should be the value to be replaced by.

• ’full_row_fct’, ’target_row_fct’, ’target_matrix_fct’ or ’full_matrix_fct’. In this case the sec-
ond item should be a function. Let’s say we want to analysis the susceptibility to max change
attack for 3 modifications: "perc1", the modification of each value of the cluster by 1000,
and a custom modification stored inside a function myFct. Then the ’modification’ parameter
should be: my_modifications = list(c("perc1"), c("fixed", 1000), c("full_matrix_fct", myFct))

The function returns a dataframe with the number of genes of the max change attack for each
modification in columns, for each cell type in rows.

Value

a DataFrame storing the number of possible max change attacks for each cell type and each modi-
fication.

Examples

library(DelayedArray)

MyClassifier <- function(expr, clusters, target) {
c("T cell", 0.9)

}
rna_expression <- DelayedArray(data.frame(CD4=c(0,0,0,0), CD8A=c(1,1,1,1),

CD8B=c(2,2,3,3)))
genes <- c("CD4", "CD8A")
clusters_id <- c("B cell","B cell","T cell","T cell")

maxChangeOverview(rna_expression, clusters_id,
MyClassifier, modifications = list(c("perc1"), c("perc99")))

myModif = function(x, y){
return(sample(1:10,1))

}

MClassifier 19

my_modifications = list(c("perc1"),
c("fixed", 1000),
c("full_matrix_fct", myModif))

maxChangeOverview(rna_expression, clusters_id,
MyClassifier, modifications = my_modifications)

MClassifier Example cell type classifier for pbmc clustered datasets.

Description

Example cell type classifier for pbmc clustered datasets.

Usage

MClassifier(exprs, clusters, target)

Arguments

exprs DelayedMatrix of numeric RNA expression, cells are rows and genes are columns
- or a SingleCellExperiment object, a matrix or a data.frame.

clusters vector of clusters to which each cell belongs

target name of the cell cluster to classify

Details

This classifier aims at testing the adverSCarial package of real pbmc data. It is a simple marker
based classifier. It looks at the average value of a few genes inside a cluster, and returns the associ-
ated cell type. Markers where found by differential expressions.

Value

a vector with the classification, and the odd

Examples

library(TENxPBMCData)

pbmc <- TENxPBMCData(dataset = "pbmc3k")
mat_rna <- matrixFromSCE(pbmc)
cell_types <- system.file("extdata",

"pbmc3k_cell_types.tsv",
package = "adverSCarial"

)
cell_types <- read.table(cell_types, sep = "\t")$cell_type

MClassifier(mat_rna, cell_types, "DC")

20 predictWithNewValue

predictWithNewValue Returns a classification and an odd value from a RNA expression De-
layedMatrix or a SingleCellExperiment object, for given genes, for a
given cluster, for a given modification.

Description

Returns a classification and an odd value from a RNA expression DelayedMatrix or a SingleCell-
Experiment object, for given genes, for a given cluster, for a given modification.

Usage

predictWithNewValue(
exprs,
genes,
clusters,
target,
classifier,
advMethod = "perc99",
advFixedValue = 3,
advFct = NULL,
argForClassif = "data.frame",
argForModif = "data.frame",
slot = NULL,
verbose = FALSE

)

Arguments

exprs DelayedMatrix of numeric RNA expression, cells are rows and genes are columns
- or a SingleCellExperiment object, a matrix or a data.frame.

genes the character vector of genes to modify

clusters a character vector of the clusters to which the cells belong

target the name of the cluster to modify

classifier a classifier in the suitable format. A classifier function should be formated as
follow: classifier = function(expr, clusters, target) # Making the classification
c("cell type", score)
score should be numeric between 0 and 1, 1 being the highest confidance into
the cell type classification. The matrix expr contains RNA expression values,
the vector clusters consists of the cluster IDs for each cell in expr, and target
is the ID of the cluster for which we want to have a classification. The function
returns a vector with the classification result, and a score.

advMethod the name of the method to use

advFixedValue the numeric value to use in case of advMethod=fixed

advFct the function to use in case advMethod belongs to the following list: full_row_fct,
target_row_fct, target_matrix_fct, full_matrix_fct

argForClassif the type of the first argument to feed to the classifier function. ’data.frame’ by
default, can be ’SingleCellExperiment’ or ’DelayedMatrix’.

sceConvertToHGNC 21

argForModif type of matrix during for the modification, ’data.frame’ by default. Can be ’De-
layedMatrix’, which is slower, but need less memory.

verbose logical, set to TRUE to activate verbose mode

Details

This function aims to concatenate the following actions:

• modify the RNA gene expression

• classify the result This is a widely used function in the other functions of the package.

Value

a vector of the classification, and the associated odd

Examples

library(DelayedArray)

MyClassifier <- function(expr, clusters, target) {
c("T cell", 0.9)

}
rna_expression <- DelayedArray(data.frame(CD4=c(0,0,0,0),

CD8A=c(1,1,1,1),
CD8B=c(2,2,3,3)))

genes <- c("CD4", "CD8A")
clusters_id <- c("B cell","B cell","T cell","T cell")

predictWithNewValue(rna_expression, genes, clusters_id,
"T cell", MyClassifier, advMethod="perc99")

sceConvertToHGNC Returns a SingleCellExperiment object keeping unique HGNC gene

Description

Returns a SingleCellExperiment object keeping unique HGNC gene

Usage

sceConvertToHGNC(sce)

Arguments

sce SingleCellExperiment object to convert

Details

Sometimes classifiers need HGNC instead of ensemble genes to run. This function allows to make
the conversion.

Value

the SingleCellExperiment object keeping unique HGNC gene

22 singleGeneOverview

Examples

library(TENxPBMCData)

pbmc <- TENxPBMCData(dataset = "pbmc3k")
hgnc_pbmc <- sceConvertToHGNC(pbmc)

singleGeneOverview Gives an overview of the susceptibility to single gene attacks, for each
cell type, for a given list of modifications.

Description

Gives an overview of the susceptibility to single gene attacks, for each cell type, for a given list of
modifications.

Usage

singleGeneOverview(
exprs,
clusters,
classifier,
exclGenes = c(),
genes = c(),
modifications = list(c("perc1"), c("perc99")),
advMethod = "perc99",
advFixedValue = 3,
advFct = NULL,
firstDichot = 100,
maxSplitSize = 100,
changeType = "any",
argForClassif = "data.frame",
argForModif = "data.frame",
verbose = FALSE

)

Arguments

exprs DelayedMatrix of numeric RNA expression, cells are rows and genes are columns
- or a SingleCellExperiment object, a matrix or a data.frame. By default, these
are converted to a data.frame to increase speed performance during modifica-
tions. However, this conversion can consume a significant amount of memory,
see ’argForModif’ argument for options.

clusters a character vector of the clusters to which the cells belong
classifier a classifier in the suitable format. A classifier function should be formated as

follow: classifier = function(expr, clusters, target) # Making the classification
c("cell type", score)
score should be numeric between 0 and 1, 1 being the highest confidance into
the cell type classification. The matrix expr contains RNA expression values,
the vector clusters consists of the cluster IDs for each cell in expr, and target
is the ID of the cluster for which we want to have a classification. The function
returns a vector with the classification result, and a score.

singleGeneOverview 23

exclGenes a character vector of genes to exclude from the analysis

genes a character vector of genes in case you want to limit the analysis on a subset of
genes

modifications the list of the modifications to study

advMethod the name of the method to use

advFixedValue the numeric value to use in case of advMethod=fixed

advFct the function to use in case advMethod belongs to the following list: full_row_fct,
target_row_fct, target_matrix_fct, full_matrix_fct

firstDichot the initial number of slices before the dichotomic search

maxSplitSize max size of dichotomic slices.

changeType any consider each misclassification, not_na consider each misclassification but
NA.

argForClassif the type of the first argument to feed to the classifier function. ’data.frame’ by
default, can be ’SingleCellExperiment’ or ’DelayedMatrix’.

argForModif type of matrix during for the modification, ’data.frame’ by default. Can be ’De-
layedMatrix’, which needs less memory but is slower.

verbose logical, set to TRUE to activate verbose mode

Details

Running the advSingleGene function for each cell type to see which ones are more vulerable can
take a long time. The aim of the singleGeneOverview function is to make this process faster. It
uses a default value of 100 for the ’maxSplitSize’ parameter. So, the dichotomic process of the
advSingleGene function stops as soon as the fold length is lower than 100. You can have more
accurate results with maxSplitSize=1, but it will take longer. This function aims also to run the
advSingleGene for several given modifications. You can specify a list of modifications as so - each
item of the list should be 1 or 2 length size. The 1 length vector must contain the prerecorded
modifications, ’perc1’ or ’perc99’. The 2 length vector must have as first item:

• ’fixed’, in this case the second item should be the value to be replaced by.

• ’full_row_fct’, ’target_row_fct’, ’target_matrix_fct’ or ’full_matrix_fct’. In this case the sec-
ond item should be a function. Let’s say we want to analysis the susceptibility to single gene
attack for 3 modifications: "perc1", the modification of each value of the cluster by 1000,
and a custom modification stored inside a function myFct. Then the ’modification’ parameter
should be: my_modifications = list(c("perc1"), c("fixed", 1000), c("full_matrix_fct", myFct))

The function returns a dataframe with the number of genes of the max change attack for each
modification in columns, for each cell type in rows.

Value

a DataFrame storing the number of possible single gene attacks each cell type and each modifica-
tion.

Examples

library(DelayedArray)

MyClassifier <- function(expr, clusters, target) {
c("T cell", 0.9)

}

24 singleGeneOverview

rna_expression <- DelayedArray(data.frame(CD4=c(0,0,0,0), CD8A=c(1,1,1,1),
CD8B=c(2,2,3,3)))

genes <- c("CD4", "CD8A")
clusters_id <- c("B cell","B cell","T cell","T cell")

singleGeneOverview(rna_expression, clusters_id,
MyClassifier, modifications = list(c("perc1"), c("perc99")))

myModif = function(x, y){
return(sample(1:10,1))

}

my_modifications = list(c("perc1"),
c("fixed", 1000),
c("full_matrix_fct", myModif))

singleGeneOverview(rna_expression, clusters_id,
MyClassifier, modifications = my_modifications)

Index

advCGD, 2
advChar (advChar-class), 4
advChar-class, 4
advGridMinChange, 4
advList (advList-class), 6
advList-class, 6
advMaxChange, 7
advModifications, 9
advRandWalkMinChange, 11
advSingleGene, 13

getSignGenes, 15

matrixFromSCE, 16
maxChangeOverview, 17
MClassifier, 19

predictWithNewValue, 20

sceConvertToHGNC, 21
singleGeneOverview, 22

25

	advCGD
	advChar-class
	advGridMinChange
	advList-class
	advMaxChange
	advModifications
	advRandWalkMinChange
	advSingleGene
	getSignGenes
	matrixFromSCE
	maxChangeOverview
	MClassifier
	predictWithNewValue
	sceConvertToHGNC
	singleGeneOverview
	Index

