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Abstract

exomeCopy is an R package implementing a hidden Markov model for predicting copy
number variants (CNVs) from exome sequencing experiments without paired control ex-
periments as in tumor/normal sequencing. It models read counts in genomic ranges using
negative binomial emission distributions depending on a hidden state of the copy number
and on positional covariates such as GC-content and background read depth. Normalization
and segmentation are performed simultaneously, eliminating the need for preprocessing of
the raw read counts.

Contents

1 Introduction 2

2 Quick start 2

3 Importing experiment data 3
3.1 Subdividing targeted regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Counting reads in genomic ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Calculating GC-content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4 Exome sequencing data from 1000 Genomes Project . . . . . . . . . . . . . . . . 6
3.5 Generating background read depth . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Introduction of the model 8

5 Simulating CNVs 9

6 Running exomeCopy 9
6.1 Running exomeCopy on one sample, one chromosome . . . . . . . . . . . . . . . . 9
6.2 Looping exomeCopy over multiple samples and chromosomes . . . . . . . . . . . . 10
6.3 Compiling results, filtering and plotting CNVs . . . . . . . . . . . . . . . . . . . 11
6.4 Inspecting model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

7 Session info 13

1



1 Introduction

The exomeCopy package was designed to address the following situation:

� Target enrichment, such as exome enrichment, leads to non-uniform read depth, which is
often correlated across samples.

� CNVs overlapping enriched regions can be detected as increases or decreases in read counts
relative to “background” read depth, generated by averaging over a control set.

� Individual samples can be more or less correlated with background read depth and have
different dependencies on GC-content.

While exome sequencing is not designed for CNV genotyping, it can nevertheless be used for
finding CNVs which overlap exons and are not common in the control set. It can provide an
independent data source to be used in combination with higher resolution array-based methods.
In this vignette we show how to import experiment data, generate background read depth, and
recover CNVs using exomeCopy . The model implemented in this package is described in [Love
et al., 2011]. On CRAN, the R package ReadDepth can be used for CNV detection in whole
genome. The methods in this package are not appropriate for cancer exome sequencing, where
amplifications can be high and not necessarily integer values. The ExomeCNV package on CRAN
is designed for tumor/normal paired exome sequencing data.

exomeCopy is designed to run on read counts from consecutive genomic ranges on a single
chromosome, as it tries to identify higher or lower read depth relative to a baseline. We will use
a wrapper function to loop the main function over multiple chromosomes and samples. Then
these results can be compiled across chromosomes and samples.

2 Quick start

Here is an abbreviated example of the code required for importing data, running the model
(note: on autosomal regions) and compiling results. For more details, please read the rest of the
vignette and try the help for various functions, e.g. ?compileCopyCountSegments.

> library(exomeCopy)

> target.file <- "targets.bed"

> bam.files <- c("/path/to/file1.bam", "/path/to/file2.bam",

+ "/path/to/file3.bam")

> sample.names <- c("sample1", "sample2", "sample3")

> reference.file <- "/path/to/reference_genome.fa"

> target.df <- read.delim(target.file, header = FALSE)

> target <- GRanges(seqname = target.df[, 1], IRanges(start = target.df[,

+ 2] + 1, end = target.df[, 3]))

> counts <- RangedData(space = seqnames(target), ranges = ranges(target))

> for (i in 1:length(bam.files)) {

+ counts[[sample.names[i]]] <- countBamInGRanges(bam.files[i],

+ target)

+ }

> counts[["GC"]] <- getGCcontent(target, reference.file)

> counts[["GC.sq"]] <- counts$GC^2

> counts[["bg"]] <- generateBackground(sample.names, counts,

+ median)

> counts[["log.bg"]] <- log(counts[["bg"]] + 0.1)

> counts[["width"]] <- width(counts)

> fit.list <- lapply(sample.names, function(sample.name) {

+ lapply(seqlevels(target), function(seq.name) {

+ exomeCopy(counts[seq.name], sample.name, X.names = c("log.bg",
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+ "GC", "GC.sq", "width"), S = 0:4, d = 2)

+ })

+ })

> compiled.segments <- compileCopyCountSegments(fit.list)

3 Importing experiment data

The necessary genomic range information, sample read counts and positional covariates (back-
ground read depth and GC-content) should be stored in a RangedData object. The user must
provide genomic ranges of targeted enrichment. For exome sequencing, one can use exon annota-
tions. The exomeCopy package provides the following convenience functions: subdivideGRanges
for subdividing the target ranges into nearly-equal sized ranges, countBamInGRanges for count-
ing reads from a BAM file in the target ranges, getGCcontent for calculating GC content in
the target ranges, and generateBackground for calculating the median read depth over a set of
background samples.

To minimize memory size, we first demonstrate with toy data how to construct a RangedData
object toy.counts from a BED file describing the targeted region, BAM files for the read
mapping and a FASTA file for the reference sequence. For demonstration of running the main
functions, we will use a prepackaged RangedData object exomecounts containing real exome
sequencing read counts. We will then simulate CNVs in a RangedData object, example.counts
and run exomeCopy.

3.1 Subdividing targeted regions

It is possible, but not necessary to subdivide large input ranges into multiple ranges of comparable
width to the average input range. It is not necessary, because exomeCopy can use range width as
a covariate for modeling read counts. subdivideGRanges divides the targeted genomic ranges
into a set of ranges of nearly equal width, which exactly cover the original ranges. The ranges
will be sorted and reduced if they are not already so. subdivideGRanges requires an input
GRanges object and returns a GRanges object.

> library(exomeCopy)

> gr <- GRanges(seqname = "seq1", IRanges(start = 1, end = 345))

> subdivideGRanges(gr)

GRanges object with 3 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] seq1 [ 1, 115] *

[2] seq1 [116, 230] *

[3] seq1 [231, 345] *

-------

seqinfo: 1 sequence from an unspecified genome; no seqlengths

The default setting of subdivideGRanges is to divide an input range into ranges around
s = 100bp, which is slightly less than the average exon width. Specifically, an input range
of width w will be divided evenly into max(1, bw/sc) regions. We can visualize the effect of
subdivideGRanges on ranges of increasing width.

> plot(0, 0, xlim = c(0, 500), ylim = c(0, 25), type = "n",

+ yaxt = "n", ylab = "", xlab = "width of input GRanges object",

+ main = "Effect of subdivideGRanges")

> abline(v = 1:5 * 100, col = "grey")

> for (i in 1:24) {

+ gr <- GRanges(seqname = "chr1", IRanges(start = 1,

+ width = (i * 20)))
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+ sbd.gr <- subdivideGRanges(gr)

+ arrows(start(sbd.gr), rep(i, length(sbd.gr)), end(sbd.gr),

+ rep(i, length(sbd.gr)), length = 0.04, angle = 90,

+ code = 3)

+ }

0 100 200 300 400 500

Effect of subdivideGRanges

width of input GRanges object

Here we demonstrate reading in a targeted region BED file, converting to a GRanges object
and the result from calling subdivideGRanges. Note that if the targeted region is read in from
a BED file, one should add 1 to the starting position for representation as a GRanges object.
It is important that the input ranges are sorted and non-overlapping, so we call reduce on the
target GRanges object.

> target.file <- system.file("extdata", "targets.bed",

+ package = "exomeCopy")

> target.df <- read.delim(target.file, header = FALSE,

+ col.names = c("seqname", "start", "end"))

> target <- GRanges(seqname = target.df$seqname, IRanges(start = target.df$start +

+ 1, end = target.df$end))

> target

GRanges object with 5 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] seq1 [101, 250] *

[2] seq1 [301, 650] *

[3] seq2 [ 1, 150] *

[4] seq2 [401, 550] *

[5] seq2 [701, 750] *

-------

seqinfo: 2 sequences from an unspecified genome; no seqlengths

> target <- reduce(target, min.gapwidth = 0)

> target.sub <- subdivideGRanges(target)

> target.sub
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GRanges object with 7 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] seq1 [101, 250] *

[2] seq1 [301, 417] *

[3] seq1 [418, 533] *

[4] seq1 [534, 650] *

[5] seq2 [ 1, 150] *

[6] seq2 [401, 550] *

[7] seq2 [701, 750] *

-------

seqinfo: 2 sequences from an unspecified genome; no seqlengths

3.2 Counting reads in genomic ranges

countBamInGRanges allows the user to count reads from a BAM read mapping file in genomic
ranges covering the targeted region. The function takes as input the BAM filename and a
GRanges object. It returns a vector of counts, representing the number of sequenced read starts
(leftmost position regardless of strand) with mapping quality above a minimum threshold (default
of 1) for each genomic range. It is also possible to count stranded read starts, all overlapping
reads and only reads mapping to unique positions (see ?countBamInGRanges).

Users should make sure the sequence names in the GRanges object are the same as the
sequence names in the BAM file (which can be listed using scanBamHeader in the Rsamtools
package). The BAM file requires a associated index file (see the man page for indexBam in the
Rsamtools package). We will count reads using the subdivided genomic ranges in target.sub

and store the counts as a new value column, sample1.

> bam.file <- system.file("extdata", "mapping.bam", package = "exomeCopy")

> scanBamHeader(bam.file)[[1]]$targets

seq1 seq2

800 800

> seqlevels(target.sub)

[1] "seq1" "seq2"

> toy.counts <- RangedData(space = seqnames(target.sub),

+ ranges = ranges(target.sub))

> sample.df <- data.frame(samples = "sample1", bam.files = bam.file,

+ stringsAsFactors = FALSE)

> for (i in 1:nrow(sample.df)) {

+ toy.counts[[sample.df$samples[i]]] <- countBamInGRanges(sample.df$bam.files[i],

+ target.sub)

+ }

> toy.counts

RangedData with 7 rows and 1 value column across 2 spaces

space ranges | sample1

<factor> <IRanges> | <integer>

1 seq1 [101, 250] | 73

2 seq1 [301, 417] | 59

3 seq1 [418, 533] | 61

4 seq1 [534, 650] | 54

5 seq2 [ 1, 150] | 80

6 seq2 [401, 550] | 69

7 seq2 [701, 750] | 31
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3.3 Calculating GC-content

exomeCopy can model read counts from samples which are not perfectly correlated with back-
ground read depth using GC-content (ratio of G and C bases to total number of bases). The
GC-content of DNA fragments is known to be a factor in the efficiency of high-throughput
sequencing. To obtain the GC-content information, we only need the targeted ranges and a
reference FASTA file.

> reference.file <- system.file("extdata", "reference.fa",

+ package = "exomeCopy")

> toy.counts[["GC"]] <- getGCcontent(target.sub, reference.file)

> toy.counts

RangedData with 7 rows and 2 value columns across 2 spaces

space ranges | sample1 GC

<factor> <IRanges> | <integer> <numeric>

1 seq1 [101, 250] | 73 0.4533333

2 seq1 [301, 417] | 59 0.4273504

3 seq1 [418, 533] | 61 0.5689655

4 seq1 [534, 650] | 54 0.5213675

5 seq2 [ 1, 150] | 80 0.5733333

6 seq2 [401, 550] | 69 0.4800000

7 seq2 [701, 750] | 31 0.3600000

3.4 Exome sequencing data from 1000 Genomes Project

For demonstrating the use of exomeCopy , we have provided a sample dataset, exomecounts,
of exome sequencing read counts. The genomic ranges used in this dataset are generated from
a small subset of the CCDS regions on chromosome 1 [Pruitt et al., 2009]. The regions are
downloaded from the hg19 tables of the UCSC Genome Browser (http://genome.ucsc.edu/
cgi-bin/hgGateway). Alternatively, one could use the GenomicFeatures package to download
the CCDS regions. The original CCDS regions are subdivided using subdivideGRanges with
default settings as in the example code above. The CCDS regions are convenient to use as
genomic ranges for CNV detection in exome sequencing data, as they are often in the center of
the targeted region in exome enrichment protocols and tend to have less variable coverage than
the flanking regions.

The read counts are taken from exome enriched, paired-end sequencing data of the 1000
Genomes Project for 16 samples of the PUR population [1000 Genomes Project Consortium,
2010]. The BAM read mapping files and descriptions of the experiments are available at the
1000 Genomes Project website (http://www.1000genomes.org/data). The ftp addresses used
are listed in the file 1000Genomes_files.txt in the extdata directory. The sample names are
included as column names in the provided datatset.

> data(exomecounts)

> dim(exomecounts)

[1] 1000 17

> exomecounts[1:5, 1:3]

RangedData with 5 rows and 3 value columns across 1 space

space ranges | GC HG00551 HG00641

<factor> <IRanges> | <numeric> <numeric> <numeric>

1 chr1 [861322, 861393] | 0.6389 139 223

2 chr1 [865535, 865716] | 0.6484 45 90

3 chr1 [866419, 866469] | 0.5882 77 123

4 chr1 [871152, 871276] | 0.6480 254 285

5 chr1 [874420, 874509] | 0.6111 24 40
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The genomic ranges in exomecounts have been filtered such that only ranges with nonzero
read count over the 16 samples are retained. The range of the 1000 genomic ranges is from 0.8
to 7.8 Mb on chromosome 1. Plotting the counts for one sample in a region of 1 Mb, one can
observe both the irregular spacing of the ranges as well as the non-uniformities in read counts
per range.

> plot(start(exomecounts), exomecounts$HG00551, xlim = c(8e+05,

+ 1800000), xlab = "genomic position", ylab = "counts",

+ main = "HG00551 read counts in exonic ranges")
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3.5 Generating background read depth

In order to run exomeCopy , we first generate background read depth. For demonstration of
working with multiple chromosomes, we will copy the chr1 data as a new chromosome “chr1a”.

> chr1a <- exomecounts

> chr1a.ranges <- ranges(chr1a)

> names(chr1a.ranges) <- "chr1a"

> chr1a <- RangedData(chr1a.ranges, as.data.frame(exomecounts)[,

+ -c(1:4)])

> chr1a <- chr1a[, colnames(chr1a) %in% colnames(exomecounts)]

> example.counts <- c(exomecounts, chr1a)

The background is generated by a simple function which performs 3 simple steps: 1) given
a vector of names of samples to be used as background, extract the read counts data frame
from the RangedData object, 2) divide each sample by its mean read count (column means),
3) calculate the median of these normalized read counts (row medians). The function can also
be used to calculate any function across the rows of normalized read counts. For example, we
also show how to calculate the variance of the normalized read counts, though we will not use
covariate in this vignette.

Note that if the control set is a mix of males and females, the allosome portion of chrX will
be a mixture of copy counts 1 and 2. In this case, one should created separate RangedData
objects for chrX and chrY and run males and females separately with the appropriate expected
copy count.
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> exome.samples <- grep("HG.+", colnames(example.counts),

+ value = TRUE)

> example.counts[["bg"]] <- generateBackground(exome.samples,

+ example.counts, median)

> example.counts[["log.bg"]] <- log(example.counts[["bg"]] +

+ 0.1)

> example.counts[["bg.var"]] <- generateBackground(exome.samples,

+ example.counts, var)

We have already removed ranges have zero background coverage, but if we had not we could
use the following lines. If there is zero coverage in the control set, this is most likely a region
which is difficult to enrich, and we should not try to infer the copy number here.

> summary(example.counts[["bg"]])

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0915 0.3052 0.7549 0.9945 1.3190 8.5180

> example.counts <- example.counts[example.counts[["bg"]] >

+ 0, ]

The relationship between read counts and GC-content over the ranges varies across protocols
and samples. It can be roughly approximated per sample using second-order polynomial terms
of GC-content. We store the square of GC-content as a new value column. Other functions of
GC-content could be used as well. We also store the width of the ranges as a value column.

> example.counts[["GC.sq"]] <- example.counts$GC^2

> example.counts[["width"]] <- width(example.counts)

4 Introduction of the model

exomeCopy models the sample read counts on one chromosome, O, as emitted observations of a
hidden Markov model (HMM), where the hidden state is the copy number of the sample. The
emission distributions are modeled with negative binomial distributions, as the read counts from
high-throughput sequencing are often overdispersed for the Poisson distribution.

Ot ∼ NB(µti, φ)

µti =
Si
d
e(xt∗β)

The mean parameter, µti, for genomic range t and hidden state i is a product of the possible
copy number state Si over the expected copy number d and an estimate of the positional effects.
The positional effect modeling comes from an exponentiated (xt∗β), where xt∗ is the t-th row of
X and β is a column vector of coefficients. The estimated positional effect is a combination of
log background read depth, GC-content, range width, and any other useful covariates which are
stored in the matrix X, with a row for each range and a column for each covariate. We use the
log of background read depth so that the counts and read depth come out on the same scale.

The coefficients β are fit by the model, using the forward equations to assess the likelihood
of the HMM over all hidden state paths. In this way, the normalization and segmentation steps
are combined into one step of maximizing the likelihood of the parameters given the data. The
Viterbi algorithm is then applied to provide the most likely path.

The base model uses a scalar estimate for the dispersion parameter φ (equivalent to 1/size in
the function dnbinom). An extension of this model also tries to fit the variance using positional
information such as the log variance of the background read depth stored in a matrix Y .

Ot ∼ NB(µti, φt)

log(φt) = yt∗γ
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Table 1: Summary of notation
Ot observed count of reads in the t-th genomic range
µti the mean parameter for f at range t in copy state i
φ the dispersion parameter for f
Si the copy number for state i (Si ∈ {0, 1, 2, . . .})
d the expected background copy number (2 for diploid, 1 for haploid)
X the matrix of covariates for estimating µ
Y the matrix of covariates for estimating φ
β the fitted coefficients for estimating µ
γ the fitted coefficients for estimating φ

5 Simulating CNVs

Next we simulate CNVs in 8 samples on both chromosomes representing regions with a copy
number of 0,1,3 and 4, relative to a background copy number of 2. This is accomplished by
selecting a fraction of the reads contained in the CNV bounds and removing or doubling them.

> simulateCNV <- function(x, indices, multiply, prob) {

+ x[indices] <- x[indices] + multiply * rbinom(length(indices),

+ prob = prob, size = x[indices])

+ return(x)

+ }

> set.seed(2)

> cnv.probs <- rep(c(0.99, 0.5, 0.5, 0.95), each = 2)

> cnv.mult <- rep(c(-1, 1), each = 4)

> cnv.starts <- rep(c(1, 301, 601, 901), each = 2)

> for (i in 1:8) {

+ example.counts[[exome.samples[i]]] <- simulateCNV(example.counts[[exome.samples[i]]],

+ cnv.starts[i]:(cnv.starts[i] + 99), multiply = cnv.mult[i],

+ prob = cnv.probs[i])

+ example.counts[[exome.samples[i]]] <- simulateCNV(example.counts[[exome.samples[i]]],

+ 1000 + cnv.starts[i]:(cnv.starts[i] + 99), multiply = cnv.mult[i],

+ prob = cnv.probs[i])

+ }

6 Running exomeCopy

6.1 Running exomeCopy on one sample, one chromosome

We can now run exomeCopy using the read counts for one of the simulated CNV samples. Later
we will show how to write a simple wrapper function to loop the exomeCopy function over multiple
chromosomes and samples. We specify the possible copy number values with S from 0 to 6 and
the expected copy number state with d of 2.

> fit <- exomeCopy(example.counts["chr1"], sample.name = exome.samples[3],

+ X.names = c("log.bg", "GC", "GC.sq", "width"), S = 0:6,

+ d = 2)

> show(fit)

ExomeCopy object

sample name: HG00731

percent normal state: 90%

After fitting, we call the function copyCountSegments on the ExomeCopy object, which
provides the segmentation with the predicted copy number, the log odds of read counts being

9



emitted from predicted copy count over normal copy count, the number of input genomic ranges
contained within each segment, the number of targeted basepairs contained in the segments, and
the name of the sample to help compile the segments across samples. The columns log.odds

and nranges can be useful for filtering, see ?copyCountSegments for details.

> copyCountSegments(fit)

RangedData with 3 rows and 5 value columns across 1 space

space ranges | copy.count log.odds nranges

<factor> <IRanges> | <integer> <numeric> <numeric>

1 chr1 [ 861322, 1421615] | 2 0.00 300

2 chr1 [1423243, 2125213] | 1 728.96 100

3 chr1 [2125214, 7838229] | 2 0.00 600

targeted.bp sample.name

<integer> <character>

1 34275 HG00731

2 11524 HG00731

3 69553 HG00731

Calling plot on the ExomeCopy object draws segments of constant predicted copy number
as colored horizontal lines and normalized read counts as points. If no colors are provided, the
function will use red for copy counts less than d and blue for copy counts higher than d.

> cnv.cols <- c("red", "orange", "black", "deepskyblue",

+ "blue", "blue2", "blue4")

> plot(fit, col = cnv.cols)
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6.2 Looping exomeCopy over multiple samples and chromosomes

In order to apply exomeCopy to a full dataset of multiple chromosomes and samples, we write a
wrapper function runExomeCopy. We will only model duplications up to 4 copies. The wrapper
construction allows for distribution of fitting each samples across workstations. Keep in mind
that the non-PAR region of chrX, in male samples should be fit separately, with d = 1.
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> runExomeCopy <- function(sample.name, seqs) {

+ lapply(seqs, function(seq.name) exomeCopy(example.counts[seq.name],

+ sample.name, X.names = c("log.bg", "GC", "GC.sq",

+ "width"), S = 0:4, d = 2))

+ }

We can now run exomeCopy using either lapply or using a function like clusterApplyLB

from the snow package. We apply runExomeCopy for 8 samples over 2 chromosomes and the
result is stored as a named list of named lists.

> seqs <- c("chr1", "chr1a")

> names(seqs) <- seqs

> samples <- exome.samples[1:8]

> names(samples) <- samples

> t0 <- as.numeric(proc.time()[3])

> fit.list <- lapply(samples, runExomeCopy, seqs)

> t1 <- as.numeric(proc.time()[3])

> time.elapsed <- as.numeric(t1 - t0)

> paste(round(time.elapsed), "seconds for", length(samples),

+ "samples,", round(sum(width(example.counts))/1000),

+ "kb of target")

[1] "22 seconds for 8 samples, 231 kb of target"

> paste("~", round(time.elapsed/60/(8 * sum(width(example.counts))) *

+ 3.2e+07, 1), " minutes for 1 sample, 32 Mb of target",

+ sep = "")

[1] "~6.4 minutes for 1 sample, 32 Mb of target"

6.3 Compiling results, filtering and plotting CNVs

Using compileCopyCountSegments on the list of lists, we can compile the segments across sam-
ples into a RangedData object. We remove the segments with copy count 2, leaving the predicted
CNVs for autosomal ranges.

> compiled.segments <- compileCopyCountSegments(fit.list)

> CNV.segments <- compiled.segments[compiled.segments$copy.count !=

+ 2, ]

Some non-CNV ranges with too high or low read counts might be predicted to be CNV,
despite the use of positional covariates and overdispersion in the emission distributions of the
HMM. Often the majority of these cases can be removed by requiring a minimum number of
ranges (for example requiring the nranges column returned by copyCountSegments to be greater
than 5). The filtered CNV segments can be exported to tab-delimited files using as.data.frame

and then write.table.
copyCountSegments also provides a column of log odds for each segment. This is the log ratio

of the probability density function for the fitted predicted distribution over the fitted normal
state distribution, then summed over all ranges in a segment (details of these are given in the
help for copyCountSegments.) By definition these will be zero for the segments predicted normal
and positive for the CNV segments.

> CNV.segments[1:6, ]

RangedData with 6 rows and 5 value columns across 2 spaces

space ranges | copy.count log.odds nranges

<factor> <IRanges> | <integer> <numeric> <numeric>

1 chr1 [ 861322, 985971] | 0 1190.80 100
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2 chr1 [4715486, 4772259] | 4 17.61 4

3 chr1 [ 861322, 985971] | 0 1069.61 100

4 chr1 [1635263, 1635783] | 3 13.01 3

5 chr1 [1423243, 2125213] | 1 675.70 100

6 chr1 [1423243, 2125213] | 1 845.56 100

targeted.bp sample.name

<integer> <character>

1 12007 HG00551

2 329 HG00551

3 12007 HG00641

4 347 HG00641

5 11524 HG00731

6 11524 HG00732

> table(CNV.segments$nranges)

1 3 4 5 24 75 99 100

2 1 1 1 1 1 2 13

> CNV.segments <- CNV.segments[CNV.segments$nranges > 5,

+ ]

To find overlaps within our calls across patients, it helps to convert the RangedData object
into a GRanges object. We can then use findOverlaps to create a matrix of overlaps between
our predicted CNVs in different samples.

> CNV.segments$strand <- "*"

> CNV.segments.granges <- as(CNV.segments, "GRanges")

> CNV.overlaps.matrix <- as.matrix(findOverlaps(CNV.segments.granges,

+ ignoreSelf = TRUE))

> head(CNV.overlaps.matrix)

queryHits subjectHits

[1,] 1 2

[2,] 2 1

[3,] 3 4

[4,] 4 3

[5,] 5 6

[6,] 6 5

plotCompiledCNV will plot the CNVs for a given sequence across samples if given an object
returned by compileCopyCountSegments and the sequence name.

> par(mfrow = c(2, 1), mar = c(4, 3, 2, 1))

> cnv.cols <- c("red", "orange", "black", "deepskyblue",

+ "blue")

> plotCompiledCNV(CNV.segments = CNV.segments, seq.name = "chr1",

+ col = cnv.cols)

> plotCompiledCNV(CNV.segments = CNV.segments, seq.name = "chr1a",

+ col = cnv.cols)
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6.4 Inspecting model parameters

Finally, we can inspect a number of fitted parameters in the ExomeCopy object, such as the β
vector which is adjusted in optimizing the likelihood of the HMM. The β vector is initialized
using a linear regression of counts on the covariates, and this and other initial parameter values
can be accessed in the init.par slot of the ExomeCopy object. These coefficients are adjusted
while optimizing the likelihood of the HMM. The final β vector and other final parameter values
are accessible in the final.par slot.

> fit.list[[1]][[1]]@init.par$beta.hat

intercept log.bg GC GC.sq width

4.257472098 0.872083736 0.758468897 -1.065806294 -0.005971696

> fit.list[[1]][[1]]@final.par$beta

intercept log.bg GC GC.sq width

4.79500051 0.86625909 1.24278690 -1.24764491 0.01973945

7 Session info

> sessionInfo()

R version 3.2.2 (2015-08-14)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 14.04.3 LTS

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
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attached base packages:

[1] stats4 parallel stats graphics grDevices utils

[7] datasets methods base

other attached packages:

[1] exomeCopy_1.16.0 Rsamtools_1.22.0 Biostrings_2.38.0

[4] XVector_0.10.0 GenomicRanges_1.22.0 GenomeInfoDb_1.6.0

[7] IRanges_2.4.0 S4Vectors_0.8.0 BiocGenerics_0.16.0

loaded via a namespace (and not attached):

[1] bitops_1.0-6 futile.options_1.0.0 zlibbioc_1.16.0

[4] futile.logger_1.4.1 BiocParallel_1.4.0 lambda.r_1.1.7

[7] tools_3.2.2
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