Package 'affycomp’

April 22, 2016

Version 1.46.0Title Graphics Toolbox for Assessment of Affymetrix ExpressionMeasures
Author Rafael A. Irizarry rafa@jhu.edu and Zhijin Wu
zwu@stat.brown.edu with contributions from Simon Cawley
simon_cawley@affymetrix.com
Maintainer Rafael A. Irizarry rafa@jhu.edu
Depends R (>= 2.13.0), methods, Biobase ($>=2.3 .3$)
Suggests splines, affycompData
Description The package contains functions that can be used tocompare expression measures for Affymetrix OligonucleotideArrays.
License GPL (>= 2)biocViews OneChannel, Microarray, PreprocessingNeedsCompilation no
R topics documented:
affycomp.compfigs.auxiliary 2
affycomp.figures.auxiliary 4
affycompPlot 5
affycompTable 7
assessAll 8
assessDilution 9
assessSD 10
assessSpikeIn 10
assessSpikeIn2 11
dilution.phenodata 12
exprset.log 13
hgu133a.spikein.phenodata 13
hgu133a.spikein.xhyb 14
mas5.assessment 14
readin 15
remove.hgu133a.xhyb 16
SD 16
spikein.phenodata 17
Index 19
affycomp.compfigs.auxiliary Auxiliary functions to create comparitive Figures

Description

These functions are auxiliary function to affycompPlot. These Figures are used to compare expression measures. They take lists with components created by the assessDilution and assessSpikeIn functions.

Usage

affycomp.compfig2(l, method.names = as.character(1:length(l)), add.legend = TRUE, main = "Figure 2")
affycomp.compfig3(l, method.names = as.character(1:length(l)), main = "Figure 3")
affycomp.compfig4a(l, method.names = as.character(1:length(l)), add.legend $=$ TRUE, main = "Figure 4a")
affycomp.compfig4b(l, method.names = as.character(1:length(l)), add.legend = TRUE, main = "Figure 4b")
affycomp.compfig4c(l, method.names = as.character(1:length(l)), add.legend $=$ TRUE, rotate=TRUE, main = "Figure 4 c ")
affycomp.compfig5a(l, method.names = as.character(1:length(l)), add.legend $=$ TRUE, main = "Figure 5a", maxfp=100)
affycomp.compfig5b(l, method.names = as.character(1:length(l)), add.legend $=$ TRUE, main $=$ "Figure $5 b ", \operatorname{maxfp}=100$)
affycomp.compfig5cde(l, method.names = as.character(1:length(l)), add.legend $=$ TRUE, main $=$ "Figure 5c", maxfp=100, type=c("low", "med", "high"))
affycomp.compfig5c(l, method.names = as.character(1:length(l)), add.legend $=$ TRUE, main = "Figure 5c", maxfp=100)
affycomp.compfig5d(l, method.names = as.character(1:length(l)),

```
    add.legend = TRUE, main = "Figure 5d", maxfp=100)
affycomp.compfig5e(l, method.names = as.character(1:length(l)),
    add.legend = TRUE, main = "Figure 5e", maxfp=100)
```


Arguments

1
method.names a character vector with the names of the expression measures methodologies being compared.
add.legend logical. If TRUE a legend is added.
main title of the Figure.
rotate in the case of compfig4c one can eiher show the actual local slopes or the bias (local slope minus 1).
$\operatorname{maxfp} \quad$ range of the false positives in ROC will be from 0 to maxfp
type compfig5cdef is the engine for $5 \mathrm{c}, 5 \mathrm{~d}$, and 5 e . type tells is which of these 4 to run.

Details

These are similar to the functions defined in affycomp.figures.auxiliary. Main difference is that here you send lists with the result of the assessment functions as components.

Value

Figures are produced.

Author(s)

Rafael A. Irizarry

Examples

```
library(affycompData)
data(rma.assessment)
data(mas5.assessment)
affycomp.compfig2(list(rma.assessment$Dilution,mas5.assessment$Dilution))
affycomp.compfig3(list(rma.assessment$Dilution,mas5.assessment$Dilution))
affycomp.compfig4a(list(rma.assessment$Signal,mas5.assessment$Signal))
affycomp.compfig4b(list(rma.assessment$Dilution,mas5.assessment$Dilution))
affycomp.compfig5a(list(rma.assessment$FC,mas5.assessment$FC))
affycomp.compfig5b(list(rma.assessment$FC2,mas5.assessment$FC2))
```


Description

These functions are auxiliary function to affycompPlot. These Figures are used to assess an expression measure. They take components created by the assessDilution and assessSpikeIn functions.

Usage

affycomp.figure1(l,main="Figure 1",xlim=NULL,ylim=NULL)
affycomp.figure1b(l,main="Figure 1b",xlim=NULL, ylim=NULL, cex=0.85, all=FALSE)
affycomp.figure2(1, main="Figure 2")
affycomp.figure2b(l,main="Figure 2b")
affycomp.figure3(1, main = "Figure 3")
affycomp.figure4a(l, main = "Figure 4a", equal.lims=FALSE)
affycomp.figure4b(l, main = "Figure 4b")
affycomp.figure $4 c$ (l, rotate=TRUE, main = "Figure 4 c ")
affycomp.figure5a(l, main = "Figure 5a", maxfp=100)
affycomp.figure5b(l, main = "Figure 5b", maxfp=100)
affycomp.figure5c(l, main = "Figure $5 c "$, maxfp=100)
affycomp.figure5d(l, main = "Figure 5d", maxfp=100)
affycomp.figure5e(l, main = "Figure $5 \mathrm{e} ", \operatorname{maxfp=100)}$
affycomp.figure6a(l, main = "Figure 6a",xlim = NULL, ylim = NULL)
affycomp.figure6b(l, main = "Figure 6b",xlim = NULL, ylim = NULL)

Arguments

1
main Title for the Figure.
$\operatorname{maxfp} \quad$ range of the false positives in ROC will be from 0 to maxfp
xlim $\quad x$-axis limits.
ylim $\quad y$-axis limits.
cex size of numbers in figure 1 b .
all logical. If TRUE all spikeins are shown. Otherwise, only those resulting in smaller, realistic, fold changes are shown.
equal.lims
rotate in the case of compfig4c one can eiher show the actual local slopes or the bias (local slope minus 1).

Details

Read the vignette for more details on what each Figure is. You can read assessSpikeIn and assessDilution to see which assessments are needed.

Value

Figures are produced.

Author(s)

Rafael A. Irizarry

Examples

```
library(affycompData)
data(rma.assessment)
affycomp.figure1(rma.assessment$MA)
affycomp.figure2(rma.assessment$Dilution)
affycomp.figure3(rma.assessment$Dilution)
affycomp.figure4a(rma.assessment$Signal)
affycomp.figure4b(rma.assessment$Dilution)
affycomp.figure5a(rma.assessment$FC)
affycomp.figure5b(rma.assessment$FC2)
affycomp.figure6a(rma.assessment$FC)
affycomp.figure6b(rma.assessment$FC)
```

 affycompPlot Assessment Plots

Description

Function that makes assessment plot

Usage

affycompPlot(..., assessment.list=NULL, method. names=NULL, figure1.xlim=c $(-4,15)$, figure1.ylim=c $(-10,12)$, figure1b. xlim=c $(-2,14)$, figure1b.ylim=c $(-6,5)$, figure6a.xlim=c $(-12,12)$, figure6a.ylim=c $(-12,12)$, figure6b.xlim=c $(-3,3)$, figure6b.ylim=c $(-6,6)$)
affycomp.compfigs(l, method.names = NULL, figure1.xlim = c(-4, 15), figure1.ylim $=c(-10,12)$, figure1b.xlim $=c(-4,15)$, figure1b.ylim $=c(-4,4)$, figure6a.xlim $=c(-12,12)$, figure6a.ylim $=c(-12,12)$, figure6b.xlim $=c(-3,3)$, figure6b.ylim $=c(-6,6))$
affycomp.figures(1)
affycomp.figure.calls(what)
affycomp.compfigs.calls(what)

Arguments

$\ldots \quad$ lists produced by the assessment functions (one for each method) separated by commas.
assessment.list
Alternatively, one can also send a list of lists produced by one of the assessment functions.
method.names A character vector with the names of the epxression measure methodology.
figure1.xlim $\quad x$-axis lim used for the plots in Figure 1.
figure1.ylim $\quad y$-axis lim used for the plots in Figure 1.
figure1b. xlim $\quad x$-axis lim used for the plots in Figure 1b.
figure1b.ylim y-axis lim used for the plots in Figure 1b.
figure6a.xlim $\quad x$-axis lim used for the plots in Figure 6 a.
figure6a.ylim y-axis lim used for the plots in Figure 6a.
figure6b.xlim $\quad x$-axis lim used for the plots in Figure 6 b .
figure6b.ylim $\quad y$-axis lim used for the plots in Figure 6 b.
$1 \quad$ list with assessment lists as components.
what a dummy variable to know what function call to create.

Details

Read the vignette for more details on what each Figure is. Once an assessment is used this function knows what to do. You can call any of the assessment functions described in assessSpikeIn, assessDilution and assessSD.
affycomp.figures, affycomp.figure.calls, affycomp.compfigs.calls are auxiliary functions.

Value

Figures are produced.

Author(s)

Rafael A. Irizarry

Examples

```
library(affycompData)
data(rma.assessment)
data(mas5.assessment)
affycompPlot(rma.assessment,mas5.assessment)
affycompPlot(rma.assessment$FC)
affycompPlot(rma.assessment$Dilution,mas5.assessment$Dilution)
affycompPlot(rma.assessment$Dilution,mas5.assessment$Dilution)
affycompPlot(rma.assessment$Signal,mas5.assessment$Signal)
affycompPlot(rma.assessment$Dilution,mas5.assessment$Dilution)
affycompPlot(rma.assessment$FC2,mas5.assessment$FC2)
```


Description

These functions take as an argument the output of the assessment functions.

Usage

affycompTable(...,Table=NULL, assessment.list=NULL, method.names=NULL)
tableAll(..., assessment.list=NULL, method. names=NULL)
tableDilution(l, method.names=NULL)
tableFC(1, method.names=NULL)
tableFC2(1, method.names=NULL)
tableSignal(l, method.names=NULL)
tableLS(l, method.names=NULL)
tableSpikeInSD(l, method.names=NULL)
tableMA2(1, method.names=NULL)
tableOverallSNR(..., assessment.list=NULL, method. names=NULL, ngenes=12626)
tableRanks(. . ., assessment.list=NULL, method. names=NULL, ngenes=12626, rank=TRUE)

Arguments

... lists produced by the assessment functions
Table If TableAll was used one can send it through this argument
assessment.list
Alternatively, one can also send a list of lists produced by tableAll.
method. names A character vector with the names of the epxression measure methodology.

1
rank if TRUE tableRanks will present ranks instead of local slopes.
ngenes when computing ranks, out of how many genes should we do it?

Details

Read the vignette for more details on what the entries of the table are. affycompTable has a few entries per graph. tableAll has more entries. Once an assessment is used this function knows what to do. You can call any of the assessment functions described in assessSpikeIn, assessDilution, assessSD, assessLS, assessMA2, and assessSpikeInSD.
Note tableRanks and tableOverallSNR work on the results from assessSpikeIn2.

Value

A matrix. One column per each method and one row for each comparison. tableOverallSNR is an exception. Where rows represnt methods.

Author(s)

Rafael A. Irizarry

Examples

```
library(affycompData)
data(rma.assessment) ##this was produced with affycomp.assess
data(mas5.assessment) ##this one too
tmp <- affycompTable(mas5.assessment,rma.assessment)
format(tmp,digit=2)
```

```
assessAll Assessment functions
```


Description

Assessment functions. Takes a couple of ExpressionSet, one for spike in another for the dilution and returns a list with necessary information to create assessment plots.

Usage

assessAll(d,s,method.name=NULL, verbose=TRUE)
affycomp(d, s,method.name=NULL, verbose=TRUE, return.it=TRUE)

Arguments

d
s
method.name Name of expression measure being assessed.
verbose verbosity flag.
return.it if TRUE returns assessment lists.

Details

assessAll performs assessments for Figures 1-6. It is a wrapper for assessDilution and assessSpikeIn. affycomp is a wrapper that does it all... including the plotting and creation of table.

Value

Lists with the necessary information to make the Figures.

Author(s)

Rafael A. Irizarry

```
assessDilution Assessment functions for Dilution Data
```


Description

Assessment function. Takes an ExpressionSet and returns a list with necessary information to create assessment plots.

Usage
 assessDilution(exprset,method.name=NULL)

Arguments

exprset An ExpressionSet containing expression measures for GeneLogic's dilution experiment.
method.name Name of expression measure being assessed.

Details

assessDilution performs the assessment for the plots related to Dilution (Figures 2, 3, 4b)

Value

Lists with the necessary information to make the Figures.

Author(s)

Rafael A. Irizarry

Description

Assessment function for standard deviation estimates. Takes a dilution data ExpressionSet and returns a list with necessary information to create assessment plot.

Usage

assessSD(exprset, method.name=NULL, logx=FALSE)

Arguments

exprset An ExpressionSet containing expression measures for Affymetrix's dilution experiment.
method.name Name of expression measure being assessed.
$\log x \quad$ Logical indicating whether the average expression being computed should be logged, default no. See details.

Details

assessSD does the assessment for Figure 7. This requires the ExpressionSet to have standard error estimates for the expression measure. Some expression measures (e.g. dChip) will have SEs in original scale, where others (e.g. RMA) will have them in log scale. For the former, use $\log x=T R U E$.

Value

Lists with the necessary information to make the Figures.

Author(s)

Rafael A. Irizarry

```
assessSpikeIn
```

Assessment functions for Spike In Data

Description

These functions are assessment functions. Each takes an ExpressionSet and returns a list with necessary information to create assessment plots.

Usage

```
assessSpikeIn(s,method.name=NULL,verbose=TRUE)
assessMA(exprset,method.name=NULL)
assessSignal(exprset,method.name=NULL)
assessFC(exprset,method.name=NULL)
assessFC2(exprset,method.name=NULL)
```


Arguments

S
exprset An ExpressionSet containing expression measures for Affymetrix's spike-in experiment.
method.name Name of expression measure being assessed.
verbose logical. If TRUE show messages.

Details

assessMA performs the assessment for the MA-plot (Figure 1), assessSignal performs the assessment for signal detection plot (Figure 4a), assessFC performs assessments used by fold-change related plots (Figures 5a, 6a, 6b). assessFC2 is for the ROC for genes with nominal fold changes of 2 (Figure 5 b). assessSpikeIn is a wrapper for all these and returns a list of lists.

Value

Lists with the necessary information to make the Figures.

Author(s)

Rafael A. Irizarry

```
assessSpikeIn2 New Assessment functions for Spike In Data
```


Description

These functions are assessment functions. Each takes an ExpressionSet and returns a list with necessary information to create assessment plots.

Usage

```
assessSpikeIn2(s, method.name=NULL, verbose=TRUE)
assessSpikeInSD(exprset, method.name=NULL, span=1/3)
assessLS(exprset, method.name=NULL)
assessMA2(exprset, method.name=NULL)
```


Arguments

s
exprset An ExpressionSet containing expression measures for Affymetrix's spike-in experiment.
method. name Name of expression measure being assessed.
verbose logical. If TRUE show messages.
span span used in call to loess.

Details

assessMA2 performs the assessment for the second MA-plot (Figure 1b), and assessLS performs the assessment for signal detection plot (Figure 4c). assessMA2 also performs assessments used by fold-change related plots (Figures 5a,b) and the ROC plots (Figures 5c,d,e). assessSpikeInSD is for the standard deviation assessment in Figure 2b. assessSpikeIn2 is a wrapper for all these and returns a list of lists.

Value

Lists with the necessary information to make the Figures.

Author(s)

Rafael A. Irizarry
dilution.phenodata Phenotypic Information for Dilution Study

Description

This objact is of class phenoData with necessary information for the assessemnts.

Usage

data(dilution.phenodata)

Format

An object of class phenoData

Source

Two sources of cRNA A (human liver tissue) and B (Central Nervous System cell line) have been hybridized to human array (HGU95Av2) in a range of proportions and dilutions. This object described these.
For more information see Irizarry, R.A., et al. (2001) http://www.biostat.jhsph.edu/~ririzarr/ papers/index.html
exprset.log Take log base 2 of Expression

Description

Take log base 2 of the expression matrix in an ExpressionSet

Usage

exprset. $\log ($ exprset)

Arguments

exprset ExpressionSet

Details

This functions takes log base 2 of the expression matrix in an ExpressionSet. Negatives are converted to the smallest non-negative entry.

Value

An ExpressionSet

Author(s)

Rafael A. Irizarry
hgu133a.spikein. phenodata
phenotypic information for HGU133A spike in study

Description

This objact is of class phenoData with necessary information for the assessemnts.

Usage

data(hgu133a.spikein. phenodata)

Format

An object of class phenoData

Source

This comes from an experiments where 16 different cRNA fragments have been added to the hybridization mixture of the GeneChip arrays at different pM concentrations. For more information see Irizarry, R.A., et al. (2001) http://www.biostat.jhsph.edu/~ririzarr/papers/index. html

hgu133a.spikein.xhyb Cross hybridizers

Description

Probe Sets likely to crosshybridize to spiked-in probesets in the Affymetrix HGU133A spike in. This objact is list. Each component of the list contains probeset names of possible crosshybridizers. The sequences of each spiked-in clone were collected and blasted against all HG-U133A target sequences. Target sequences are the $\sim 600 \mathrm{bp}$ regions from which probes were selected. Thresholds of 100,150 and 200bp were used and define the three components of the list.

Usage

data(hgu133a.spikein.xhyb)

Format

A list

Source

Simon Cawley simon_cawley@affymetrix.com
mas5.assessment Example of the result of assessments

Description

The Dilution and both (HGU95 and HGU133) types of Spike-in data were processed with Affymetrix MAS 5.0 software, yielding three "MAS 5.0" ExpressionSet's. (These are available, in csv-format, at http://affycomp.jhsph.edu/AFFY2/rafa@jhu.edu/030424.1033/.) Then various assessment functions from the affycomp package (most recently, version 1.28.0) were applied. mas5. assessment resulted from assessAll on Dilution and HGU95. See mas5.assessment in affycompData for results of other assessments.

Usage

data(mas5.assessment)

Format

A list of list.
readin Read Expression Date Sets

Description

Reads a comma-delimited file containing the expression values of the dilution and spike-in data sets and creates a ExpressionSet

Usage

read.dilution(filename)
read.spikein(filename, cdfName=c("hgu95a","hgu133a"), remove.xhyb=TRUE)
read.newspikein(filename)

Arguments

filename	character containing the filename to be read.
cdfName	are we reading data from the hgu95a or hgu133a spike-in experiment?
remove.xhyb	logical. If TRUE possible cross hybridizers are removed from the HGU133A spikein. See remove. hgu133a. xhyb.

Details

The file to be read must be comma-delimited with the first row containing the cel filenames (case sensitive). The first column must be the Affymetrix gene identifiers. read. dilution will put things in the right place.
read. newspikein is a wrapper to read results from the hgu133a spikein experiment.

Value

An ExpressionSet.

Author(s)

Rafael A. Irizarry
remove.hgu133a.xhyb Remove crosshybridizers

Description

This functions removes possible cross hybridizers from Affymetrix HGU133A spike-in experiment

Usage

remove.hgu133a.xhyb(s, bp = c("200", "150", "100"))

Arguments

s an ExpressionSet containing the HGU133A spike-in
bp number of base pair matches needed to define a possible cross hybridizer

Details

Some details are contained in the help file for hgu133a.spikein. xhyb

Value

An ExpressionSet with probeset removed

See Also

hgu133a.spikein.xhyb

SD	SD Assessment Functions

Description

These functions create assessments, figures, and tables for expression standard errors

Usage

affycomp.figure7(l,main="Figure 7")
affycomp.compfig7(l, method.names=as.character(1:length(1)), main="Figure 7")
tableSD (1, method.names=NULL)

Arguments

1
method.names a character vector with the names of the expression measures methodologies being compared.
main title of the Figure.

Details

This uses the dilution data. The exprsets need to have standard error estimates in the assayDataElement (exprset, "se. expr Read the vignette for more details. The functions work similarly to those assessing expression measures.

All these files need the result of assessSD

Value

Depends on the call.

Author(s)

Rafael A. Irizarry

Examples

```
library(affycompData)
data(rma.sd.assessment) ##this was produced with affycomp.assess
data(lw.sd.assessment) ##this one too
affycomp.compfig7(list(rma.sd.assessment,lw.sd.assessment))
affycomp.figure7(rma.sd.assessment)
```

```
spikein.phenodata phenotypic information for spike in study
```


Description

This objact is of class phenoData with necessary information for the assessemnts.

Usage

data(spikein.phenodata)

Format

An object of class phenoData

Source

This comes from an experiments where 16 different cRNA fragments have been added to the hybridization mixture of the GeneChip arrays at different pM concentrations. For more information see Irizarry, R.A., et al. (2001) http://www.biostat.jhsph.edu/~ririzarr/papers/index. html

Index

*Topic datasets

dilution. phenodata, 12
hgu133a.spikein. phenodata, 13
hgu133a.spikein.xhyb, 14
mas5.assessment, 14
spikein. phenodata, 17
*Topic hplot
affycomp.compfigs.auxiliary, 2
affycomp.figures.auxiliary, 4
affycompPlot, 5
*Topic manip
affycompTable, 7
assessAll, 8
assessDilution, 9
assessSD, 10
assessSpikeIn, 10
assessSpikeIn2, 11
exprset.log, 13
readin, 15
remove.hgu133a.xhyb, 16
SD, 16
affycomp (assessAll), 8
affycomp.compfig2
(affycomp.compfigs.auxiliary), 2
affycomp. compfig2b
(affycomp.compfigs.auxiliary), 2
affycomp.compfig3
(affycomp.compfigs.auxiliary), 2
affycomp. compfig4a
(affycomp.compfigs.auxiliary), 2
affycomp.compfig4b
(affycomp.compfigs.auxiliary), 2
affycomp. compfig4c
(affycomp.compfigs.auxiliary),

2
affycomp.compfig5a (affycomp.compfigs.auxiliary), 2
affycomp.compfig5b
(affycomp.compfigs.auxiliary), 2
affycomp.compfig5c
(affycomp.compfigs.auxiliary), 2
affycomp. compfig5cde
(affycomp.compfigs.auxiliary), 2
affycomp.compfig5d
(affycomp.compfigs.auxiliary), 2
affycomp.compfig5e
(affycomp.compfigs.auxiliary), 2
affycomp. compfig7 (SD), 16
affycomp.compfigs (affycompPlot), 5
affycomp.compfigs.auxiliary, 2
affycomp.figure.calls (affycompPlot), 5
affycomp.figure1
(affycomp.figures.auxiliary), 4
affycomp.figure1b
(affycomp.figures.auxiliary), 4
affycomp.figure2
(affycomp.figures.auxiliary), 4
affycomp.figure2b
(affycomp.figures.auxiliary), 4
affycomp.figure3
(affycomp.figures.auxiliary), 4
affycomp.figure4a
(affycomp.figures.auxiliary), 4
affycomp.figure4b
(affycomp.figures.auxiliary), 4
affycomp.figure4c
(affycomp.figures.auxiliary), 4
affycomp.figure5a
(affycomp.figures.auxiliary), 4 affycomp.figure5b
(affycomp.figures.auxiliary), 4
affycomp.figure5c
(affycomp.figures.auxiliary), 4
affycomp.figure5d
(affycomp.figures.auxiliary), 4
affycomp.figure5e
(affycomp.figures.auxiliary), 4
affycomp.figure6a
(affycomp.figures.auxiliary), 4
affycomp.figure6b
(affycomp.figures.auxiliary), 4
affycomp. figure7 (SD), 16
affycomp.figures (affycompPlot), 5
affycomp.figures.auxiliary, 3, 4
affycompPlot, 2, 4, 5
affycompTable, 7
assessAll, 8,14
assessDilution, $2,4,6,8,9$
assessFC (assessSpikeIn), 10
assessFC2 (assessSpikeIn), 10
assessLS, 8
assessLS (assessSpikeIn2), 11
assessMA (assessSpikeIn), 10
assessMA2, 8
assessMA2 (assessSpikeIn2), 11
assessSD, 6, 8, 10, 17
assessSignal (assessSpikeIn), 10
assessSpikeIn, 2, 4, 6, 8, 10
assessSpikeIn2, 8,11
assessSpikeInSD, 8
assessSpikeInSD (assessSpikeIn2), 11
dilution. phenodata, 12
ExpressionSet, 8-15
exprset.log, 13
hgu133a.spikein. phenodata, 13
hgu133a.spikein.xhyb, 14, 16
mas5.assessment, 14,14
phenoData, 12, 13, 17
read.dilution (readin), 15
read.newspikein(readin), 15
read.spikein(readin), 15
readin, 15
remove.hgu133a.xhyb, 15, 16
SD, 16
spikein. phenodata, 17
tableAll, 7
tableAll (affycompTable), 7
tableDilution (affycompTable), 7
tableFC (affycompTable), 7
tableFC2 (affycompTable), 7
tableLS (affycompTable), 7
tableMA2 (affycompTable), 7
tableOverallSNR (affycompTable), 7
tableRanks (affycompTable), 7
tableSD (SD), 16
tableSignal (affycompTable), 7
tableSpikeInSD (affycompTable), 7

