Package ‘csaw’

October 13, 2024

Version 1.38.0

Date 2023-11-29

Title ChIP-Seq Analysis with Windows

Depends GenomicRanges, SummarizedExperiment

Imports Rcpp, Matrix, BiocGenerics, Rsamtools, edgeR, limma, methods,
S4Vectors, IRanges, GenomelnfoDDb, stats, BiocParallel, metapod,
utils

Suggests AnnotationDbi, org.Mm.eg.db,
TxDb.Mmusculus.UCSC.mm10.knownGene, testthat, GenomicFeatures,
GenomicAlignments, knitr, BiocStyle, rmarkdown, BiocManager

LinkingTo Rhtslib, zlibbioc, Repp

biocViews MultipleComparison, ChIPSeq, Normalization, Sequencing,
Coverage, Genetics, Annotation, DifferentialPeakCalling

Description Detection of differentially bound regions in ChIP-seq data with sliding windows,
with methods for normalization and proper FDR control.

License GPL-3

NeedsCompilation yes
SystemRequirements C++11, GNU make
VignetteBuilder knitr

RoxygenNote 7.1.1

git_url https://git.bioconductor.org/packages/csaw
git_branch RELEASE_3_19

git_last_ commit 8000717
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-10-13

Author Aaron Lun [aut, cre],
Gordon Smyth [aut]

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

1

2

Contents

Index

Contents

calculateCPM e e e 3
checkBimodality e 4
cluster-direction L e e e 6
clusterFDR e e e 8
clusterWindows L e e e e e e e 10
clusterWindowsList e e e 12
combineTests e e e e e e e 14
correlateReads e 17
csawUsersGuide e e e 19
defunct e e 20
detailRanges L 21
empiricalFDRo 23
extractReads 25
filterWindows L e e 27
findMaxima e e 31
getBestTest L 32
getPESizes 35
getWidths 36
maximizeCcf e 37
mergeWindows e 39
mergeWindowsList 41
minimalTests e e e e 43
mixedTests e e e e 45
normFactors e e e 47
normOAffsets L e e e 49
overlapStats L L e e 50
profileSites 53
readParam L L 56
regionCOUNES v ot e e e e e e e e 58
Result wrappers e 60
ResultList wrappers e e 61
scaledAverage 63
SEmethods e e e 65
strandedCounts L e e e e e e e e 66
upweightSummit e 68
windowCounts L e e e e e e e e 70
WWHIM . . o e e e 72
74

calculateCPM 3

calculateCPM Calculate CPM

Description

Calculate counts-per-million (CPM) values for each feature.

Usage

calculateCPM(object, use.norm.factors=TRUE, use.offsets=FALSE,
log=TRUE, prior.count=1, assay.id="counts")

Arguments

object A SummarizedExperiment object containing a count matrix, as produced by
windowCounts.

use.norm. factors
A logical scalar indicating whether to use normalization factors, if available.

use.offsets A logical scalar indicating whether to use offsets, if available.
log A logical scalar indicating whether log2-transformed CPM values should be
returned.
prior.count A numeric scalar specifying the prior count to add when 1og=TRUE.
assay.id A string or integer scalar indicating which assay of y contains the counts.
Details

CPMs are calculated in the standard manner when 1log=FALSE, use.offsets=FALSE and use.norm. factors=FALSE.

When 1og=TRUE, a library size-adjusted prior count is added to both the counts and the library sizes,
see cpm for details.

When use.norm. factors=TRUE, the effective library size is used for computing CPMs, provided
that normalization factors are available in object. This is defined as the product of the library size
in object$totals and the normalization factor in object$norm.factors.

If use.offsets=TRUE, the offsets are converted into effective library sizes using scaleOffset.
If 1og=TRUE, this is done after addition of a prior count to both the counts and library sizes, see
addPriorCount for details.

Value
A matrix of the same dimensions as object, containing (log-)transformed CPM values for each
feature in each sample.

Author(s)

Aaron Lun

4 checkBimodality

See Also

cpm, scaleOffset, addPriorCount

Examples

bamFiles <- system.file("”exdata"”, c("repl.bam”, "rep2.bam"), package="csaw")
datal <- windowCounts(bamFiles, width=50, filter=1)
head(calculateCPM(datal))

datal$norm.factors <- c(0.5, 1.5)
head(calculateCPM(datal))

head(calculateCPM(datal, log=FALSE))

With offsets:

assay(datal, "offset”) <- matrix(rnorm(nrow(datal)*ncol(datal)),
nrow=nrow(datal), ncol=ncol(datal))

head(calculateCPM(datal, use.offsets=TRUE))

head(calculateCPM(datal, use.offsets=FALSE))

checkBimodality Check bimodality of regions

Description

Compute the maximum bimodality score across all base pairs in each region.

Usage

checkBimodality(bam.files, regions, width=100@, param=readParam(),
prior.count=2, invert=FALSE, BPPARAM=SerialParam())

Arguments

bam.files A character vector containing paths to sorted and indexed BAM files. Alterna-
tively, a list of BamFile objects.

regions A GenomicRanges object specifying the regions over which bimodality is to be
calculated.

width An integer scalar or list indicating the span with which to compute bimodality.

param A readParam object containing read extraction parameters.

prior.count A numeric scalar specifying the prior count to compute bimodality scores.

invert A logical scalar indicating whether bimodality score should be inverted.

BPPARAM A BiocParallelParam specifying how parallelization is to be performed across

files.

checkBimodality 5

Details

Consider a base position x. This function counts the number of forward- and reverse-strand reads
within the interval [x-width+1, x]. It then calculates the forward:reverse ratio after adding prior.count
to both counts. This is repeated for the interval [x, x+width-1], and the reverse:forward ratio is

then computed. The smaller of these two ratios is used as the bimodality score.

Sites with high bimodality scores will be enriched for forward- and reverse-strand enrichment on
the left and right of the site, respectively. Given a genomic region, this function will treat each base
position as a site. The largest bimodality score across all positions will be reported for each region.
The idea is to assist with the identification of transcription factor binding sites, which exhibit strong
strand bimodality. The function will be less useful for broad targets like histone marks.

If multiple bam. files are specified, they are effectively pooled so that counting uses all reads in
all files. A separate value of width can be specified for each library, to account for differences in
fragmentation — see the ext argument for windowCounts for more details. In practice, this is usually
unnecessary. Setting width to the average fragment length yields satisfactory results in most cases.

If invert is set, the bimodality score will be flipped around, i.e., it will be maximized when reverse-
strand coverage dominates on the left, and forward-strand coverage dominates on the right. This
is designed for use in CAGE analyses where this inverted bimodality is symptomatic of enhancer
RNAs.

Value

A numeric vector containing the maximum bimodality score across all bases in each region.

Author(s)

Aaron Lun

Examples

bamFiles <- system.file("exdata”, c("repl.bam”, "rep2.bam"), package="csaw")
incoming <- GRanges(c('chrA', 'chrA', 'chrB', 'chrC'),
IRanges(c(1, 500, 100, 1000), c(100, 580, 500, 1500)))

checkBimodality(bamFiles, incoming)

checkBimodality(bamFiles, incoming, width=200)

checkBimodality(bamFiles, incoming, param=readParam(ming=20, dedup=TRUE))
checkBimodality(bamFiles, incoming, prior.count=5)

Works on PE data; scores are computed from paired reads.

bamFile <- system.file("exdata”, "pet.bam"”, package="csaw")
checkBimodality(bamFile, incoming[1:3], param=readParam(pe="both"))
checkBimodality(bamFile, incoming[1:3], param=readParam(pe="both"”, max.frag=100))

6 cluster-direction

cluster-direction Reporting cluster-level direction in csaw

Description

An overview of the strategies used to obtain cluster-level summaries of the direction of change,
based on the directionality information of individual tests. This is relevant to all functions that
aggregate per-test statistics into a per-cluster summary, e.g., combineTests, minimalTests. It
assumes that there are zero, one or many columns of log-fold changes in the data.frame of per-test
statistics, typically specified using a fc.cols argument.

Counting the per-test directions

For each cluster, we will report the number of tests that are up (positive values) or down (nega-
tive) for each column of log-fold change values listed in fc.col. This provide some indication
of whether the change is generally positive or negative - or both - across tests in the cluster. If a
cluster contains non-negligble numbers of both up and down tests, this indicates that there may be
a complex differential event within that cluster (see comments in mixedTests).

To count up/down tests, we apply a multiple testing correction to the p-values within each cluster.
Only the tests with adjusted p-values no greater than fc.threshold are counted as being up or
down. We can interpret this as a test of conditional significance; assuming that the cluster is inter-
esting (i.e., contains at least one true positive), what is the distribution of the signs of the changes
within that cluster? Note that this procedure has no bearing on the p-value reported for the cluster
itself.

The nature of the per-test correction within each cluster varies with each function. In most cases,
there is a per-test correction that naturally accompanies the per-cluster p-value:

 For combineTests, the Benjamini-Hochberg correction is used.
e For minimalTests, the Holm correction is used.

e For getBestTest with by.pval=TRUE, the Holm correction is used. We could also use the
Bonferroni correction here but Holm is universally more powerful so we use that instead.

» For getBestTest with by.pval=FALSE, all tests bar the one with the highest abundance are
simply ignored, which mimics the application of an independent filter. No correction is applied
as only one test remains.

* For mixedTests and empiricalFDR, the Benjamini-Hochberg correction is used, given that
both functions just call combineTests on the one-sided p-values in each direction. Here, the
number of up tests is obtained using the one-sided p-values for a positive change; similarly,
the number of down tests is obtained using the one-sided p-values for a negative change.

Representative tests and their log-fold changes

For each combining procedure, we identify a representative test for the entire cluster. This is based
on the observation that, in each method, there is often one test that is especially important for
computing the cluster-level p-value.

cluster-direction 7

* For combineTests, the representative is the test with the lowest BH-adjusted p-value before
enforcing monotonicity. This is because the p-value for this test is directly used as the com-
bined p-value in Simes’ method.

» For minimalTests, the test with the zth-smallest p-value is used as the representative. See
the function’s documentation for the definition of z.

* For getBestTest with by.pval=TRUE, the test with the lowest p-value is used.
» For getBestTest with by.pval=FALSE, the test with the highest abundance is used.

* For mixedTests, two representative tests are reported in each direction. The representative
test in each direction is defined using combineTests as described above.

e For empiricalFDR, the test is chosen in the same manner as described for combineTests after
converting all p-values to their one-sided counterparts in the “desirable” direction, i.e., up tests
when neg. down=TRUE and down tests otherwise.

The index of the associated test is reported in the output as the "rep.test” field along with its
log-fold changes. For clusters with simple differences, the log-fold change for the representative is
a good summary of the effect size for the cluster.

Determining the cluster-level direction

When only one log-fold change column is specified, we will try to determine which direction con-
tributes to the combined p-value. This is done by tallying the directions of all tests with (weighted)
p-values below that of the representative test. If all tests in a cluster have positive or negative log-
fold changes, that cluster’s direction is reported as "up” or "down” respectively; otherwise it is
reported as "mixed". This is stored as the "direction” field in the returned data frame.

Assessing the contribution of per-test p-values to the cluster-level p-value is roughly equivalent to
asking whether the latter would increase if all tests in one direction were assigned p-values of unity.
If there is an increase, then tests changing in that direction must contribute to the combined p-value
calculations. In this manner, clusters are labelled based on whether their combined p-values are
driven by tests with only positive, negative or mixed log-fold changes. (Note that this interpretation
is not completely correct for minimalTests due to equality effects from enforcing monotonicity in
the Holm procedure, but this is of little practical consequence.)

Users should keep in mind that the label only describes the direction of change among the most
significant tests in the cluster. Clusters with complex differences may still be labelled as changing
in only one direction, if the tests changing in one direction have much lower p-values than the tests
changing in the other direction (even if both sets of p-values are significant). More rigorous checks
for mixed changes should be performed with mixedTests.

There are several functions for which the "direction” is set to a constant value:

* For mixedTests, it is simply set to "mixed” for all clusters. This reflects the fact that the
reported p-value represents the evidence for mixed directionality in this function; indeed, the
field itself is simply reported for consistency, given that we already know we are looking for
mixed clusters!

e For empiricalFDR, it is set to "up” when neg.down=FALSE and "down" otherwise. This
reflects the fact that the empirical FDR reflects the significance of changes in the desired
direction.

8 clusterFDR

Author(s)

Aaron Lun

See Also

combineTests, minimalTests, getBestTest, empiricalFDR annd mixedTests for the functions
that do the work.

clusterFDR Compute the cluster-level FDR

Description

Compute the FDR across clusters based on the test-level FDR threshold
Usage
clusterFDR(ids, threshold, weights=NULL)

controlClusterFDR(target, adjp, FUN, ..., weights=NULL,
grid.length=21, iterations=4)

Arguments
ids An integer vector of cluster IDs for each significant test below threshold.
threshold A numeric scalar, specifying the FDR threshold used to define the significant
tests.
target A numeric scalar specifying the desired cluster-level FDR threshold.
adjp A numeric vector of window-level adjusted p-values.
FUN A clustering function that takes a logical vector indicating which windows are
significant, and returns an integer vector of cluster IDs (see below).
Additional arguments to be passed to FUN.
weights A numeric vector of frequency weights, for internal use.
grid.length Integer scalar specifying the number of points to use in the grid search.
iterations Integer scalar specifying the number of iterations of the grid search.
Value

For clusterFDR, a numeric scalar is returned as the cluster-level FDR.

For controlClusterFDR, alist is returned containing two numeric scalars — threshold, the window-
level FDR threshold to control the cluster-level FDR near target; and FDR, the estimate of the
cluster-level FDR corresponding to threshold.

clusterFDR 9

Definition of the cluster-level FDR

The clusterFDR function computes an informal estimate of the cluster-level FDR, where each
cluster is formed by aggregating only significant tests. In the context of ChIP-seq, each significant
test refers to a DB window that is detected at a FDR below threshold. The idea is to obtain an
error rate while reporting the precise coordinates of a DB subinterval in a complex region.

This complements the standard pipeline based on combineTests, which defines regions indepen-
dently of the DB status of the windows. In a complex region, the precise coordinates of the DB
subinterval cannot be reported. Here, we overcome this by clustering directly on DB windows and
applying post-hoc control of the cluster-level FDR. See clusterWindows for more details.

The cluster-level FDR is defined as the proportion of reported clusters that have no true positives.
Simply using threshold on the window-level adjusted p-values is not sufficient to control this,
as the cluster- and window-level FDRs are not equivalent. Instead, the observed number of false
positive tests is estimated based on threshold and the total number of significant tests, and a
conservative estimate for the number of false positive clusters (where all tests are true nulls) is
computed.

However, note that the calculation of the cluster-level FDR here is not statistically rigorous. This is
not guaranteed to be an upper bound, especially with few or correlated tests. Thus, users should use
the standard combineTests-based pipeline wherever possible. Clustering on significant windows
should only be performed where the precise coordinates of the DB subinterval are important for
interpretation.

Searching for the best threshold

controlClusterFDR will identify the window-level FDR threshold required to control the cluster-
level FDR at target. The former is not a simple function of the latter (neither continuous nor
guaranteed to be monotonic), so a grid search is used. Clusters of significant windows are iden-
tified at each window-level threshold, and the corresponding cluster-level FDR is computed with
clusterFDR.

The grid is initially defined with grid.length equally spaced points in [0, target]. At each
iteration, the grid points with cluster-level FDRs above and below target are chosen, and the
grid is redefined within that interval. This is repeated for iterations iterations, and the largest
window-level threshold that achieves a cluster-level FDR below target is chosen.

The FUN argument should be a function that accepts a logical vector specifying significance, and
returns an integer vector of cluster IDs. If, for example, it accepts an input vector ix, then the output
should contain cluster IDs corresponding to the entries of which(ix). This is because cluster IDs
are only defined for significant tests, given that only those tests are used for clustering.

A consequence of this search strategy is that the returned window-level FDR threshold will always
be less than target. In other words, each window should be significantly DB on its own merits
(i.e., after controlling the window-level FDR) before it is placed into a cluster. This protects against
scenarios where very large thresholds yield low cluster-level FDRs, due to the formation of a few
large clusters.

Note about weights

In both functions, the weights argument is assumed to contain frequency weights of significant
tests/windows. For example, a weight of 2 for a test would be equivalent to repeating that test (i.e.,

10 clusterWindows

repeating the same window so it shows up twice in your analysis). These weights should be the
same as those used during weighted FDR control to compute adjusted p-values. In general, you
should not set this argument unless you know what you’re doing.

Author(s)

Aaron Lun

See Also

mergeWindows, combineTests, clusterWindows

Examples

Setting up the windows and p-values.

set.seed(100)

windows <- GRanges("chrA", IRanges(1:1000, 1:1000))

test.p <- runif(1000)

test.plc(1:10, 100:110, 220:240)] <- 0 # 3 significant subintervals.

Defining significant windows.
threshold <- 0.05
is.sig <- p.adjust(test.p, method="BH") <= threshold

Assuming that we only cluster significant windows.
merged <- mergeWindows(windows[is.sig], tol=0)
clusterFDR(merged$id, threshold)

Setting up another example with more subintervals.

test.p <- runif(1000)

test.plrep(1:2, 50) + rep(0:49, each=2) * 20] <- @

adj.p <- p.adjust(test.p, method="BH")

clusterFUN <- function(x) { mergeWindows(windows[x], tol=0)$id }
controlClusterFDR(@.05, adj.p, clusterFUN)

clusterWindows Cluster DB windows into clusters

Description

Clusters significant windows into clusters while controlling the cluster-level FDR.

Usage

clusterWindows(
ranges,
tab,
target,
pval.col = NULL,

clusterWindows 11

fc.col = NULL,
signs = FALSE,
tol,

weights = NULL,
grid.length = 21,
iterations = 4

)
Arguments

ranges A GRanges or RangedSummarizedExperiment object containing window coor-
dinates.

tab A data.frame of results with a PValue field for each window.

target A numeric scalar indicating the desired cluster-level FDR.

pval.col A string or integer scalar specifying the column of tab with the p-values. De-
faults to "PValue”.

fc.col A string or integer scalar specifying the column of tab with the log-fold changes.
Defaults to "1ogFC".

signs A logical scalar indicating whether the sign of the log-fold change (specified by
fc.col) should be used in mergeWindows.

tol, ... Arguments to be passed to mergeWindows.

weights, grid.length, iterations
Arguments to be passed to controlClusterFDR.

Details

In this function, windows are identified as significantly DB based on the BH-adjusted p-values in
tab. Only those windows are then used directly for clustering via mergeWindows, which subse-
quently yields DB regions consisting solely of DB windows. If tol is not specified, it is set to 100
bp by default and a warning is raised. If fc. col is used to specify the column of log-fold changes,
clusters are formed according to the sign of the log-fold change in mergeWindows.

DB-based clustering is obviously not blind to the DB status, so standard methods for FDR control
are not valid. Instead, post-hoc control of the cluster-level FDR is applied by using controlClusterFDR,
which attempts to control the cluster-level FDR at target (which is set to 0.05 if not specified).
Our aim here is to provide some interpretable results when DB-blind clustering is not appropriate,
e.g., for diffuse marks involving long stretches of the genome. Reporting each marked stretch in its
entirety would be cumbersome, so this method allows the DB subintervals to be identified directly.

The output stats DataFrame is generated by running combineTests on the ids and tab for only
the significant windows. Here, the fc.threshold argument is set to the p-value threshold used to
identify significant windows. We also remove the FDR field from the output as this has little meaning
when the clusters are not blind to the clustering. Indeed, the p-value is only retained for purposes
of ranking.

12 clusterWindowsList

Value

A named list containing:
* ids, an integer vector of cluster IDs for each window in ranges. Non-significant windows
that were not used to construct regions are marked with NA values.
* regions, a GRanges containing the coordinates for each cluster.
* FDR, a numeric scalar containing the estimate of the cluster-level FDR for the returned regions.

* threshold, a numeric scalar containing the per-window FDR threshold used to identify sig-
nificant windows.

* stats, a DataFrame containing some descriptive per-cluster statistics.

Author(s)

Aaron Lun

See Also

mergeWindows, controlClusterFDR

Examples

set.seed(10)

X <= round(runif (100, 100, 1000))

gr <- GRanges("chrA", IRanges(x, x+5))

tab <- data.frame(PValue=rbeta(length(x), 1, 50), logFC=rnorm(length(x)))

clusterWindows(gr, tab, target=0.05, tol=10)
clusterWindows(gr, tab, target=0.05, tol=10, fc.col="logFC")

clusterWindowsList Consolidate DB clusters

Description

Consolidate DB results from multiple analyses with cluster-level FDR control.

Usage

clusterWindowsList(ranges.list, tab.list, equiweight=TRUE, ...)

clusterWindowsList 13

Arguments
ranges.list A list of GRanges or RangedSummarizedExperiment objects, usually containing
windows of varying sizes from separate calls to windowCounts.
tab.list A list of data.frames of differential binding results, usually from separate anal-
yses at differing window sizes. Each should contain one row per interval for the
corresponding entry of ranges.list.
equiweight a logical scalar indicating whether equal weighting from each analysis should
be enforced
arguments to be passed to clusterWindows
Details

This function consolidates DB results from multiple analyses, typically involving different window
sizes. The aim is to provide comprehensive detection of DB at a range of spatial resolutions. Sig-
nificant windows from each analysis are identified and used for clustering with clusterWindows.
This represents the post-hoc counterpart to mergeResultsList.

Some effort is required to equalize the contribution of the results from each analysis. This is done
by setting equiweight=TRUE, where the weight of each window is inversely proportional to the
number of windows from that analysis. These weights are used as frequency weights for window-
level FDR control (to identify DB windows prior to clustering). Otherwise, the final results would
be dominated by large number of small windows.

Users can cluster by the sign of log-fold changes, to obtain clusters of DB windows of the same
sign. However, note that nested windows with opposite signs may give unintuitive results - see
mergeWindows for details.

Value

A named list is returned containing:

ranges: A GRanges object containing the concatenated intervals from all elements of x. The
element-wise metadata of this object contains the integer field origin, an integer field speci-
fying the index of x from which each interval was obtained.

ids: An integer vectors indicating the cluster ID for each window in ranges. Non-significant
windows that were not assigned to a cluster have IDs of NA, as described in ?clusterWindows.

regions: A GRanges object containing the coordinates for each cluster.

FDR: A numeric scalar containing the cluster-level FDR estimate.

Author(s)

Aaron Lun

See Also

clusterWindows, the equivalent function for a single GRanges input.

mergeResultslList, for a more rigorous approach to clustering windows.

14 combineTests

Examples

Making up some GRanges.

low <- GRanges("chrA", IRanges(runif(100, 1, 1000), width=5))
med <- GRanges("chrA", IRanges(runif(40, 1, 1000), width=10))
high <- GRanges("chrA", IRanges(runif(10, 1, 1000), width=20))

Making up some DB results.

dbl <- data.frame(logFC=rnorm(length(low)), PValue=rbeta(length(low), 1, 20))
dbm <- data.frame(logFC=rnorm(length(med)), PValue=rbeta(length(med), 1, 20))
dbh <- data.frame(logFC=rnorm(length(high)), PValue=rbeta(length(high), 1, 20))
result.list <- list(dbl, dbm, dbh)

Consolidating.

cons <- clusterWindowsList(list(low, med, high), result.list, tol=20)
cons$region

cons$id

cons$FDR

Without weights.

cons <- clusterWindowsList(list(low, med, high), result.list, tol=20,
equiweight=FALSE)

cons$FDR

Using the signs.

cons <- clusterWindowsList(list(low, med, high), result.list, tol=20,
fc.col="1ogFC")

cons$FDR

combineTests Combine statistics across multiple tests

Description

Combines p-values across clustered tests using Simes’ method to control the cluster-level FDR.

Usage

combineTests(
ids,
tab,
weights = NULL,
pval.col = NULL,
fc.col = NULL,
fc.threshold = 0.05

combineTests 15

Arguments
ids An integer vector or factor containing the cluster ID for each test.
tab A data.frame of results with PValue and at least one 1ogFC field for each test.
weights A numeric vector of weights for each test. Defaults to 1 for all tests.
pval.col An integer scalar or string specifying the column of tab containing the p-values.
Defaults to "PValue”.
fc.col An integer or character vector specifying the columns of tab containing the

log-fold changes. Defaults to all columns in tab starting with "logFC".

fc.threshold A numeric scalar specifying the FDR threshold to use within each cluster for
counting tests changing in each direction, see ?"cluster-direction” for more
details.

Details

All tests with the same value of ids are used to define a single cluster. This function applies
Simes’ procedure to the per-test p-values to compute the combined p-value for each cluster, which
represents evidence against the global null hypothesis, i.e., all individual nulls are true in each
cluster. The BH method is then applied to control the FDR across all clusters.

Rejection of the global null is more relevant than the significance of each individual test when
multiple tests in a cluster represent parts of the same underlying event, e.g., differentially bound
genomic regions consisting of clusters of windows. Control of the FDR across tests may not equate
to control of the FDR across clusters; we ensure the latter by explicitly computing cluster-level
p-values for use in the BH method.

We use Simes’ method as it is relatively relaxed and rejects the global null upon observing any
change in the cluster. More stringent methods are available in functions like minimalTests and
getBestTest.

The importance of each test within a cluster can be adjusted by supplying different relative weights
values. This may be useful for downweighting low-confidence tests, e.g., those in repeat regions. In
Simes’ procedure, weights are interpreted as relative frequencies of the tests in each cluster. Note
that these weights have no effect between clusters.

To obtain ids, a simple clustering approach for genomic windows is implemented in mergeWindows.
However, anything can be used so long as it is independent of the p-values and does not compro-
mise type I error control, e.g., promoters, gene bodies, independently called peaks. Any tests with
NA values for ids will be ignored.

Value

A DataFrame with one row per cluster and various fields:

* An integer field num. tests, specifying the total number of tests in each cluster.

» Two integer fields num.up.* and num. down. * for each log-FC column in tab, containing the
number of tests with log-FCs significantly greater or less than 0, respectively. See ?"cluster-direction”
for more details.

* A numeric field containing the cluster-level p-value. If pval.col=NULL, this column is named
PValue, otherwise its name is set to colnames(tab[,pval.col]).

16 combineTests

* A numeric field FDR, containing the BH-adjusted cluster-level p-value.

* A character field direction (if fc.col is of length 1), specifying the dominant direction of
change for tests in each cluster. See ?"cluster-direction” for more details.

* One integer field rep. test containing the row index (for tab) of a representative test for each
cluster. See ?"cluster-direction” for more details.

* One numeric field rep.x for each log-FC column in tab, containing a representative log-fold
change for the differential tests in the cluster. See ?"cluster-direction” for more details.

Each row is named according to the ID of the corresponding cluster.

Author(s)

Aaron Lun

References

Simes RJ (1986). An improved Bonferroni procedure for multiple tests of significance. Biometrika
73, 751-754.

Benjamini Y and Hochberg Y (1995). Controlling the false discovery rate: a practical and powerful
approach to multiple testing. J. R. Stat. Soc. Series B 57, 289-300.

Benjamini Y and Hochberg Y (1997). Multiple hypotheses testing with weights. Scand. J. Stat. 24,
407-418.

Lun ATL and Smyth GK (2014). De novo detection of differentially bound regions for ChIP-seq
data using peaks and windows: controlling error rates correctly. Nucleic Acids Res. 42, €95

See Also

groupedSimes, which does the heavy lifting.
minimalTests and getBestTest, for another method of combining p-values for each cluster.
mergeWindows, for one method of generating ids.

glmQLFTest, for one method of generating tab.

Examples

ids <- round(runif(iee, 1, 10))

tab <- data.frame(logFC=rnorm(100), logCPM=rnorm(100), PValue=rbeta(100, 1, 2))
combined <- combineTests(ids, tab)

head(combined)

With window weighting.

w <- round(runif(10e@, 1, 5))

combined <- combineTests(ids, tab, weights=w)
head(combined)

With multiple log-FCs.
tab$logFC.whee <- rnorm(100, 5)
combined <- combineTests(ids, tab)
head(combined)

correlateReads 17

Manual specification of column IDs.
combined <- combineTests(ids, tab, fc.col=c(1,4), pval.col=3)
head(combined)

combined <- combineTests(ids, tab, fc.col="logFC.whee"”, pval.col="PValue")
head(combined)

correlateReads Compute correlation coefficients between reads

Description
Computes the auto- or cross-correlation coefficients between read positions across a set of delay
intervals.

Usage

correlateReads(bam.files, max.dist=1000, cross=TRUE, param=readParam(),
BPPARAM=SerialParam())

Arguments
bam.files A character vector containing paths to sorted and indexed BAM files. Alterna-
tively, a list of BamFile objects.
max.dist An integer scalar specifying the maximum delay distance over which correlation
coefficients will be calculated.
cross A logical scalar specifying whether cross-correlations should be computed.
param A readParam object containing read extraction parameters.
BPPARAM A BiocParallelParam specifying how parallelization is to be performed across
files.
Details

If cross=TRUE, reads are separated into those mapping on the forward and reverse strands. Positions
on the forward strand are shifted forward by a delay interval. The chromosome-wide correlation co-
efficient between the shifted forward positions and the original reverse positions are computed. This
is repeated for all delay intervals less than max.dist. A weighted mean for the cross-correlation is
taken across all chromosomes, with weighting based on the number of reads.

Cross-correlation plots can be used to check the quality of immunoprecipitation for ChIP-Seq ex-
periments involving transcription factors or punctate histone marks. Strong immunoprecipitation
should result in a peak at a delay corresponding to the fragment length. A spike may also be ob-
served at the delay corresponding to the read length. This is probably an artefact of the mapping
process where unique mapping occurs to the same sequence on each strand.

18 correlateReads

By default, marked duplicate reads are removed from each BAM file prior to calculation of co-
efficients. This is strongly recommended, even if the rest of the analysis will be performed with
duplicates retained. Otherwise, the read length spike will dominate the plot, such that the fragment
length peak will no longer be easily visible.

If cross=FALSE, auto-correlation coefficients are computed without use of strand information. This
is designed to guide estimation of the average width of enrichment for diffuse histone marks. For
example, the width can be defined as the delay distance at which the autocorrelations become neg-
ligble. However, this tends to be ineffective in practice as diffuse marks tend to have very weak
correlations to begin with.

If multiple BAM files are specified in bam. files, the reads from all libraries are pooled prior to
calculation of the correlation coefficients. This is convenient for determining the average correlation
profile across an entire dataset. Separate calculations for each file will require multiple calls to
correlateReads.

Paired-end data is also supported, whereby correlations are computed using only those reads in
proper pairs. This may be less meaningful as the presence of proper pairs will inevitably result in a
strong peak at the fragment length. Instead, IP efficiency can be diagnosed by treating paired-end
data as single-end, e.g., with pe="first"” in readParam.

Value
A numeric vector of length max.dist+1 containing the correlation coefficients for each delay inter-
val from O to max.dist.

Author(s)

Aaron Lun

References

Kharchenko PV, Tolstorukov MY and Park, PJ (2008). Design and analysis of ChIP-seq experi-
ments for DNA-binding proteins. Nat. Biotechnol. 26, 1351-1359.

See Also

ccf

Examples

n <- 20
bamFile <- system.file("exdata”, "repl.bam", package="csaw")
par(mfrow=c(2,2))

X <- correlateReads(bamFile, max.dist=n)
plot(@:n, x, xlab="delay (bp)", ylab="ccf")

X <- correlateReads(bamFile, max.dist=n, param=readParam(dedup=TRUE))
plot(@:n, x, xlab="delay (bp)", ylab="ccf")

x <- correlateReads(bamFile, max.dist=n, cross=FALSE)
plot(@:n, x, xlab="delay (bp)", ylab="acf")

csawUsersGuide 19

Also works on paired-end data.

bamFile <- system.file("exdata”, "pet.bam"”, package="csaw")
x <- correlateReads(bamFile, param=readParam(pe="both"))
head(x)
csawUsersGuide View csaw user’s guide
Description

Finds the location of the user’s guide and opens it for viewing.

Usage

csawUsersGuide()

Details

The csaw package is designed for de novo detection of differentially bound regions from ChIP-
seq data. It provides methods for window-based counting, normalization, filtering and statistical
analyses via edgeR. The user guide for this package can be obtained by running this function.

The user’s guide is obtained online from the esawUsersGuide package. We do not build the guide
as a vignette in csaw itself due to the time-consuming nature of the code when run on realistic case
studies. This does mean, though, that this function requires an internet connection to work properly.

Value

The user’s guide is opened on the system’s default browser.

Author(s)

Aaron Lun

See Also

browseURL

Examples

if (interactive()) csawUsersGuide()

20 defunct

defunct Defunct functions

Description

Functions that have passed on to the function afterlife. Their successors are also listed.

Usage

filterWindows(...)
consolidateWindows(...)
consolidateTests(...)

consolidateOverlaps(...)

Arguments

Ignored arguments.

Details

filterWindows is succeeded by filterWindowsGlobal and related functions, which provide a
more focused programmatic interface.

consolidateWindows is succeeded by mergeWindowsList and findOverlapsList.

consolidateTests and consolidateOverlaps are succeeded by mergeResultsList and overlapResultsList,
respectively.

Value

All functions error out with a defunct message pointing towards its descendent (if available).

Author(s)

Aaron Lun

Examples

try(filterWindows())

detailRanges 21

detailRanges Add annotation to ranges

Description

Add detailed exon-based annotation to specified genomic regions.

Usage

detailRanges(incoming, txdb, orgdb, dist=5000, promoter=c(3000, 1000),
key.field="ENTREZID", name.field="SYMBOL", ignore.strand=TRUE)

Arguments

incoming A GRanges object containing the ranges to be annotated.

txdb A TxDb object for the genome of interest.

orgdb An OrgDb object for the genome of interest.

dist An integer scalar specifying the flanking distance to annotate.

promoter An integer vector of length 2, where first and second values define the promoter
as some distance upstream and downstream from the TSS, respectively.

key.field A character scalar specifying the key type in orgdb corresponding to the gene
IDs in txdb.

name.field A character scalar specifying the column from orgdb to use as the gene name.

ignore.strand A logical scalar indicating whether strandedness in incoming should be ignored.

Details

This function adds annotations to a given set of genomic regions in the form of compact char-
acter strings specifying the features overlapping and flanking each region. The aim is to de-
termine the genic context of empirically identified regions, for some basic biological interpreta-
tion of binding/marking in those regions. All neighboring genes within a specified range are re-
ported, rather than just the closest gene to the region. If a region in incoming is stranded and
ignore.strand=FALSE, annotated features will only be reported if they lie on the same strand as
that region.

If incoming is missing, then the annotation will be provided directly to the user in the form of
a GRanges object. This may be more useful when further work on the annotation is required.
Features are labelled as exons ("E"), promoters ("P") or gene bodies ("G"). Overlaps to introns
can be identified by finding those regions that overlap with gene bodies but not with any of the
corresponding exons.

The default settings for key. field and name. field will work for human and mouse genomes, but
may not work for other organisms. The key. field should specify the key type in the orgdb object
that corresponds to the gene IDs of the txdb object. For example, in S. cerevisiae, key.field is
set to "ORF" to match the gene IDs in the corresponding TxDb object, while name. field is set to
"GENENAME" to obtain the gene symbols.

22 detailRanges

Value

If incoming is not provided, a GRanges object will be returned containing ranges for the exons,
promoters and gene bodies. Gene keys (e.g., Entrez IDs) are povided as row names. Gene symbols
and feature types are stored as metadata.

If incoming is a GRanges object, a list will be returned with overlap, left and right elements.
Each element is a character vector of length equal to the number of ranges in incoming. Each non-
empty string records the gene symbol, the overlapped exons and the strand. For left and right,
the gap between the range and the annotated feature is also included.

Explanation of fields

For annotated features overlapping a region, the character string in the overlap output vector will
be of the form GENE:STRAND:TYPE. GENE is the gene symbol by default, but reverts to the key
(default Entrez ID) if no symbol is defined. STRAND is simply the strand of the gene, either "+" or
"-"_ The TYPE indicates the feature types that are overlapped - exon ("E"), promoter ("P") and/or
intron ("I"). Note that intron overlaps are only reported if the region does not overlap an exon
directly.

For annotated features flanking the region within a distance of dist, the TYPE is instead the distance
to the feature. This represents the gap between the edge of the region and the closest exon for that
gene. Flanking promoters are not reported, as it is more informative to report the distance to the
exon directly; and flanking an intron should be impossible without overlapping an exon directly
(and thus should not be reported, see above). Note that exons directly overlapping the supplied
region are not considered for flanking annotation, as the distance would be negative.

The strand information is often useful in conjunction with the left/right flanking features. For ex-
ample, if an exon for a negative-strand gene is to the left, the current region must be upstream
of that exon. Conversely, if the exon for a positive-strand gene is to the left, the region must be
downstream. The opposite applies for features to the right of the current region.

Author(s)

Aaron Lun

Examples

library(org.Mm.eg.db)
library(TxDb.Mmusculus.UCSC.mm1@.knownGene)

current <- readRDS(system.file("exdata"”, "exrange.rds"”, package="csaw"))

output <- detailRanges(current, orgdb=org.Mm.eg.db,
txdb=TxDb.Mmusculus.UCSC.mm1@.knownGene)

head(output$overlap)

head(output$right)

head(output$left)

empirical FDR 23

empiricalFDR Control the empirical FDR

Description

Control the empirical FDR across clusters for comparisons to negative controls, based on tests that
are significant in the “wrong” direction.

Usage

empiricalFDR(
ids,
tab,
weights = NULL,
pval.col = NULL,
fc.col = NULL,
fc.threshold = 0.05,
neg.down = TRUE

)
Arguments
ids An integer vector or factor containing the cluster ID for each test.
tab A data.frame of results with PValue and at least one 1ogFC field for each test.
weights A numeric vector of weights for each test. Defaults to 1 for all tests.
pval.col An integer scalar or string specifying the column of tab containing the p-values.
Defaults to "PValue”.
fc.col An integer or string specifying the single column of tab containing the log-fold

change.

fc.threshold A numeric scalar specifying the FDR threshold to use within each cluster for
counting tests changing in each direction, see ?"cluster-direction” for more
details.

neg.down A logical scalar indicating if negative log-fold changes correspond to the “wrong”
direction.

Details

Some experiments involve comparisons to negative controls where there should be no signal/binding.
In such case, genuine differences should only occur in one direction, i.e., up in the non-control
samples. Thus, the number of significant tests that change in the wrong direction can be used as an
estimate of the number of false positives.

This function converts two-sided p-values in tab[,pval.col] to one-sided counterparts in the
wrong direction. It combines the one-sided p-values for each cluster using combineTests. The
number of significant clusters at some p-value threshold represents the estimated number of false
positive clusters.

24 empirical FDR

The same approach is applied for one-sided p-values in the right direction, where the number of
detected clusters at the threshold represents the total number of discoveries. Dividing the number
of false positives by the number of discoveries yields the empirical FDR at each p-value threshold.
Monotonicity is enforced (i.e., the empirical FDR only decreases with decreasing p-value) as is the
fact that the empirical FDR must be below unity.

The p-values specified in pval.col are assumed to be originally computed from some two-sided
test, where the distribution of p-values is the same regardless of the direction of the log-fold change
(under both the null and alternative hypothesis). This rules out p-values computed from ANODEV
where multiple contrasts are tested at once; or from methods that yield asymmetric p-value distri-
butions, e.g., GLM-based TREAT.

Value

A DataFrame with one row per cluster and various fields:

* An integer field num. tests, specifying the total number of tests in each cluster.

» Two integer fields num.up.* and num. down. * for each log-FC column in tab, containing the
number of tests with log-FCs significantly greater or less than 0, respectively. See ?"cluster-direction”
for more details.

* A numeric field containing the cluster-level p-value. If pval.col=NULL, this column is named
PValue, otherwise its name is set to colnames(tab[,pval.col]).

* A numeric field FDR, containing the empirical FDR corresponding to that cluster’s p-value.

* A character field direction (if fc.col is of length 1), specifying the dominant direction of
change for tests in each cluster. See ?"cluster-direction” for more details.

* One integer field rep. test containing the row index (for tab) of a representative test for each
cluster. See ?"cluster-direction” for more details.

* One numeric field rep. x for each log-FC column in tab, containing a representative log-fold
change for the differential tests in the cluster. See ?"cluster-direction” for more details.

Each row is named according to the ID of the corresponding cluster.

Caution

Control of the empirical FDR is best used for very noisy data sets where the BH method is not
adequate. The BH method only protects against statistical false positives under the null hypothesis
that the log-fold change is zero. However, the empirical FDR also protects against experimental
false positives, caused by non-specific binding that yields uninteresting (but statistically significant)
DB.

The downside is that the empirical FDR calculation relies on the availability of a good estimate of
the number of false positives. It also assumes that the distribution of p-values is the same for non-
specific binding events in both directions (i.e., known events with negative log-FCs and unknown
events among those with positive log-FCs). Even if the log-fold changes are symmetric around
zero, this does not mean that the p-value distributions will be the same, due to differences in library
size and number between control and ChIP samples.

In summary, the BH method in combineTests is more statistically rigorous and should be preferred
for routine analyses.

extractReads 25

Author(s)

Aaron Lun

References

Zhang Y et al. (2008). Model-based Analysis of ChIP-Seq (MACS). Genome Biol. 9, R137.

See Also

combineTests, used to combine the p-values in each direction.

Examples

ids <- round(runif (100, 1, 10))

tab <- data.frame(logFC=rnorm(100), logCPM=rnorm(100), PValue=rbeta(100, 1, 2))
empirical <- empiricalFDR(ids, tab)

head(empirical)

extractReads Extract reads from a BAM file

Description

Extract reads from a BAM file with the specified parameter settings.

Usage

extractReads(bam.file, region, ext=NA, param=readParam(), as.reads=FALSE)

Arguments

bam.file A character string containing the path to a sorted and indexed BAM file. Alter-
