BiocNeighbors 1.22.0
Another application of the KMKNN or VP tree algorithms is to identify all neighboring points within a certain distance1 The default here is Euclidean, but again, we can set distance="Manhattan"
in the BNPARAM
object if so desired. of the current point.
We first mock up some data:
nobs <- 10000
ndim <- 20
data <- matrix(runif(nobs*ndim), ncol=ndim)
We apply the findNeighbors()
function to data
:
fout <- findNeighbors(data, threshold=1)
head(fout$index)
## [[1]]
## [1] 9096 6638 1316 5273 3917 5838 2861 7257 5903 9440 2881 7004 1 3044 1119
## [16] 9978 8071 3781 3108 7954 9977 2415 606 5245
##
## [[2]]
## [1] 2945 8359 801 7223 5611 4258 4456 5214 5889 2
##
## [[3]]
## [1] 5940 6788 1556 3 4140
##
## [[4]]
## [1] 194 7710 5661 6281 4 8183
##
## [[5]]
## [1] 3872 518 3143 5 2432 3245
##
## [[6]]
## [1] 501 9935 9190 6
head(fout$distance)
## [[1]]
## [1] 0.9986447 0.9737673 0.9704686 0.9410031 0.9492621 0.9657446 0.9425821
## [8] 0.9409706 0.9009410 0.9877590 0.8336302 0.8556853 0.0000000 0.7598298
## [15] 0.9878030 0.9310380 0.9853556 0.9952218 0.9797951 0.9373093 0.9863493
## [22] 0.9503523 0.9652413 0.9906854
##
## [[2]]
## [1] 0.9353288 0.9768538 0.8929048 0.9655462 0.9879069 0.9977974 0.9662870
## [8] 0.9988136 0.9917239 0.0000000
##
## [[3]]
## [1] 0.9930690 0.9935282 0.9194090 0.0000000 0.9946956
##
## [[4]]
## [1] 0.9985820 0.9880177 0.9951931 0.9244196 0.0000000 0.9821734
##
## [[5]]
## [1] 0.9092710 0.9715955 0.8917316 0.0000000 0.9817525 0.9561494
##
## [[6]]
## [1] 0.9245113 0.8790179 0.8978410 0.0000000
Each entry of the index
list corresponds to a point in data
and contains the row indices in data
that are within threshold
.
For example, the 3rd point in data
has the following neighbors:
fout$index[[3]]
## [1] 5940 6788 1556 3 4140
… with the following distances to those neighbors:
fout$distance[[3]]
## [1] 0.9930690 0.9935282 0.9194090 0.0000000 0.9946956
Note that, for this function, the reported neighbors are not sorted by distance. The order of the output is completely arbitrary and will vary depending on the random seed. However, the identity of the neighbors is fully deterministic.
The queryNeighbors()
function is also provided for identifying all points within a certain distance of a query point.
Given a query data set:
nquery <- 1000
ndim <- 20
query <- matrix(runif(nquery*ndim), ncol=ndim)
… we apply the queryNeighbors()
function:
qout <- queryNeighbors(data, query, threshold=1)
length(qout$index)
## [1] 1000
… where each entry of qout$index
corresponds to a row of query
and contains its neighbors in data
.
Again, the order of the output is arbitrary but the identity of the neighbors is deterministic.
Most of the options described for findKNN()
are also applicable here.
For example:
subset
to identify neighbors for a subset of points.get.distance
to avoid retrieving distances when unnecessary.BPPARAM
to parallelize the calculations across multiple workers.raw.index
to return the raw indices from a precomputed index.Note that the argument for a precomputed index is precomputed
:
pre <- buildIndex(data, BNPARAM=KmknnParam())
fout.pre <- findNeighbors(BNINDEX=pre, threshold=1)
qout.pre <- queryNeighbors(BNINDEX=pre, query=query, threshold=1)
Users are referred to the documentation of each function for specific details.
sessionInfo()
## R version 4.4.0 beta (2024-04-15 r86425 ucrt)
## Platform: x86_64-w64-mingw32/x64
## Running under: Windows Server 2022 x64 (build 20348)
##
## Matrix products: default
##
##
## locale:
## [1] LC_COLLATE=C
## [2] LC_CTYPE=English_United States.utf8
## [3] LC_MONETARY=English_United States.utf8
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.utf8
##
## time zone: America/New_York
## tzcode source: internal
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] BiocParallel_1.38.0 BiocNeighbors_1.22.0 knitr_1.46
## [4] BiocStyle_2.32.0
##
## loaded via a namespace (and not attached):
## [1] cli_3.6.2 rlang_1.1.3 xfun_0.43
## [4] jsonlite_1.8.8 S4Vectors_0.42.0 htmltools_0.5.8.1
## [7] stats4_4.4.0 sass_0.4.9 rmarkdown_2.26
## [10] grid_4.4.0 evaluate_0.23 jquerylib_0.1.4
## [13] fastmap_1.1.1 yaml_2.3.8 lifecycle_1.0.4
## [16] bookdown_0.39 BiocManager_1.30.22 compiler_4.4.0
## [19] codetools_0.2-20 Rcpp_1.0.12 lattice_0.22-6
## [22] digest_0.6.35 R6_2.5.1 parallel_4.4.0
## [25] bslib_0.7.0 Matrix_1.7-0 tools_4.4.0
## [28] BiocGenerics_0.50.0 cachem_1.0.8