fgsea
is an R-package for fast preranked gene set enrichment analysis (GSEA). This package allows to quickly and accurately calculate arbitrarily low GSEA P-values for a collection of gene sets. P-value estimation is based on an adaptive multi-level split Monte-Carlo scheme. See the preprint for algorithmic details.
Loading example pathways and gene-level statistics and setting random seed:
Running fgsea:
The resulting table contains enrichment scores and p-values:
## pathway pval padj
## 1: 5990979_Cell_Cycle,_Mitotic 6.690481e-27 3.920622e-24
## 2: 5990980_Cell_Cycle 3.312565e-26 9.705816e-24
## 3: 5991851_Mitotic_Prometaphase 8.470173e-19 1.654507e-16
## 4: 5992217_Resolution_of_Sister_Chromatid_Cohesion 2.176649e-18 3.188791e-16
## 5: 5991454_M_Phase 1.873997e-14 2.196325e-12
## 6: 5991599_Separation_of_Sister_Chromatids 8.733223e-14 8.529448e-12
## log2err ES NES size leadingEdge
## 1: 1.3422338 0.5594755 2.769070 317 66336,66977,12442,107995,66442,12571,...
## 2: 1.3267161 0.5388497 2.705894 369 66336,66977,12442,107995,66442,19361,...
## 3: 1.1239150 0.7253270 2.972690 82 66336,66977,12442,107995,66442,52276,...
## 4: 1.1053366 0.7347987 2.957518 74 66336,66977,12442,107995,66442,52276,...
## 5: 0.9759947 0.5576247 2.554076 173 66336,66977,12442,107995,66442,52276,...
## 6: 0.9545416 0.6164600 2.670030 116 66336,66977,107995,66442,52276,67629,...
As you can see from the warning, fgsea
has a default lower bound eps=1e-10
for estimating P-values. If you need to estimate P-value more accurately, you can set the eps
argument to zero in the fgsea
function.
fgseaRes <- fgsea(pathways = examplePathways,
stats = exampleRanks,
eps = 0.0,
minSize = 15,
maxSize = 500)
head(fgseaRes[order(pval), ])
## pathway pval padj
## 1: 5990980_Cell_Cycle 2.535645e-26 1.485888e-23
## 2: 5990979_Cell_Cycle,_Mitotic 9.351994e-26 2.740134e-23
## 3: 5991851_Mitotic_Prometaphase 3.633805e-19 7.098033e-17
## 4: 5992217_Resolution_of_Sister_Chromatid_Cohesion 2.077985e-17 3.044248e-15
## 5: 5991454_M_Phase 2.251818e-14 2.639131e-12
## 6: 5991502_Mitotic_Metaphase_and_Anaphase 3.196758e-14 3.122167e-12
## log2err ES NES size leadingEdge
## 1: 1.3344975 0.5388497 2.664606 369 66336,66977,12442,107995,66442,19361,...
## 2: 1.3188888 0.5594755 2.740246 317 66336,66977,12442,107995,66442,12571,...
## 3: 1.1330899 0.7253270 2.926512 82 66336,66977,12442,107995,66442,52276,...
## 4: 1.0768682 0.7347987 2.920436 74 66336,66977,12442,107995,66442,52276,...
## 5: 0.9759947 0.5576247 2.547515 173 66336,66977,12442,107995,66442,52276,...
## 6: 0.9653278 0.6052907 2.639370 123 66336,66977,107995,66442,52276,67629,...
One can make an enrichment plot for a pathway:
plotEnrichment(examplePathways[["5991130_Programmed_Cell_Death"]],
exampleRanks) + labs(title="Programmed Cell Death")
Or make a table plot for a bunch of selected pathways:
topPathwaysUp <- fgseaRes[ES > 0][head(order(pval), n=10), pathway]
topPathwaysDown <- fgseaRes[ES < 0][head(order(pval), n=10), pathway]
topPathways <- c(topPathwaysUp, rev(topPathwaysDown))
plotGseaTable(examplePathways[topPathways], exampleRanks, fgseaRes,
gseaParam=0.5)
From the plot above one can see that there are very similar pathways in the table (for example 5991502_Mitotic_Metaphase_and_Anaphase
and 5991600_Mitotic_Anaphase
). To select only independent pathways one can use collapsePathways
function:
collapsedPathways <- collapsePathways(fgseaRes[order(pval)][padj < 0.01],
examplePathways, exampleRanks)
mainPathways <- fgseaRes[pathway %in% collapsedPathways$mainPathways][
order(-NES), pathway]
plotGseaTable(examplePathways[mainPathways], exampleRanks, fgseaRes,
gseaParam = 0.5)
To save the results in a text format data:table::fwrite
function can be used:
To make leading edge more human-readable it can be converted using mapIdsList
(similar to AnnotationDbi::mapIds
) function and a corresponding database (here org.Mm.eg.db
for mouse):
Also, fgsea
is parallelized using BiocParallel
package. By default the first registered backend returned by bpparam()
is used. To tweak the parallelization one can either specify BPPARAM
parameter used for bplapply
of set nproc
parameter, which is a shorthand for setting BPPARAM=MulticoreParam(workers = nproc)
.
For convenience there is reactomePathways
function that obtains pathways from Reactome for given set of genes. Package reactome.db
is required to be installed.
pathways <- reactomePathways(names(exampleRanks))
fgseaRes <- fgsea(pathways, exampleRanks, maxSize=500)
head(fgseaRes)
## pathway pval
## 1: 5-Phosphoribose 1-diphosphate biosynthesis 0.854684512
## 2: A tetrasaccharide linker sequence is required for GAG synthesis 0.495543672
## 3: ABC transporters in lipid homeostasis 0.181609195
## 4: ABC-family proteins mediated transport 0.408450704
## 5: ABO blood group biosynthesis 0.977035491
## 6: ADP signalling through P2Y purinoceptor 1 0.006655376
## padj log2err ES NES size
## 1: 0.94572960 0.05080541 -0.5732978 -0.7615585 1
## 2: 0.76476169 0.07362127 0.3755168 0.9660172 10
## 3: 0.51075367 0.15631240 -0.4385385 -1.2574076 12
## 4: 0.71888017 0.07687367 0.2614189 1.0268252 66
## 5: 0.99130958 0.04870109 0.5120427 0.6902345 1
## 6: 0.06801469 0.40701792 0.6097588 1.7826019 17
## leadingEdge
## 1: 19139
## 2: 14733,20971,20970,12032,29873,218271,...
## 3: 19299,27403,11307,11806,217265,27409,...
## 4: 17463,26440,26444,19179,228769,56325,...
## 5: 14344
## 6: 14696,14702,14700,14682,14676,66066,...
One can also start from .rnk
and .gmt
files as in original GSEA:
rnk.file <- system.file("extdata", "naive.vs.th1.rnk", package="fgsea")
gmt.file <- system.file("extdata", "mouse.reactome.gmt", package="fgsea")
Loading ranks:
ranks <- read.table(rnk.file,
header=TRUE, colClasses = c("character", "numeric"))
ranks <- setNames(ranks$t, ranks$ID)
str(ranks)
## Named num [1:12000] -63.3 -49.7 -43.6 -41.5 -33.3 ...
## - attr(*, "names")= chr [1:12000] "170942" "109711" "18124" "12775" ...
Loading pathways:
## List of 6
## $ 1221633_Meiotic_Synapsis : chr [1:64] "12189" "13006" "15077" "15078" ...
## $ 1368092_Rora_activates_gene_expression : chr [1:9] "11865" "12753" "12894" "18143" ...
## $ 1368110_Bmal1:Clock,Npas2_activates_circadian_gene_expression : chr [1:16] "11865" "11998" "12753" "12952" ...
## $ 1445146_Translocation_of_Glut4_to_the_Plasma_Membrane : chr [1:55] "11461" "11465" "11651" "11652" ...
## $ 186574_Endocrine-committed_Ngn3+_progenitor_cells : chr [1:4] "18012" "18088" "18506" "53626"
## $ 186589_Late_stage_branching_morphogenesis_pancreatic_bud_precursor_cells: chr [1:4] "11925" "15205" "21410" "246086"
And running fgsea:
## pathway
## 1: 1221633_Meiotic_Synapsis
## 2: 1445146_Translocation_of_Glut4_to_the_Plasma_Membrane
## 3: 442533_Transcriptional_Regulation_of_Adipocyte_Differentiation_in_3T3-L1_Pre-adipocytes
## 4: 508751_Circadian_Clock
## 5: 5334727_Mus_musculus_biological_processes
## 6: 573389_NoRC_negatively_regulates_rRNA_expression
## pval padj log2err ES NES size
## 1: 0.52733686 0.7023168 0.06994587 0.2885754 0.9555535 27
## 2: 0.70270270 0.8438192 0.05412006 0.2387284 0.8520084 39
## 3: 0.09859155 0.2414835 0.21925035 -0.3640706 -1.3316877 31
## 4: 0.80580762 0.8943244 0.05111480 0.2516324 0.7430580 17
## 5: 0.35240964 0.5521713 0.08266464 0.2469065 1.0626023 106
## 6: 0.39564428 0.5975452 0.08653997 0.3607407 1.0652494 17
## leadingEdge
## 1: 15270,12189,71846,19357
## 2: 17918,19341,20336,22628,22627,20619,...
## 3: 76199,19014,26896,229003,17977,17978,...
## 4: 20893,59027,19883
## 5: 60406,19361,15270,20893,12189,68240,...
## 6: 60406,20018,245688,20017