Contents

1 Getting started

brgedata includes a collection of BRGE omic and exposome data from the same cohort. The diferent objects guarantees a minimum of samples in common between all sets.

Data available in this R package:

Data Type Number of Samples Number of Features Technology Object Name Class
Exposome 110 15 brge_expo ExposomeSet
Transcriptome 75 67528 Affymetrix HTA 2.0 brge_gexp ExpressionSet
Methylome 20 392277 Illumina Human Methylation 450K brge_methy GenomicRatioSet
Proteome 90 47 brge_prot ExpressionSet

sex and age was included as phenotipic data in each set. Moreover, the ExposomeSet includes asthma status and rhinitis status of each sample.

2 Data Resources

2.1 Exposome Data

To load the exposome data, stored in an ExposomeSet, run the follow commands:

data("brge_expo", package = "brgedata")
brge_expo
## Object of class 'ExposomeSet' (storageMode: environment)
##  . exposures description:
##     . categorical:  0 
##     . continuous:  15 
##  . exposures transformation:
##     . categorical: 0 
##     . transformed: 0 
##     . standardized: 0 
##     . imputed: 0 
##  . assayData: 15 exposures 110 individuals
##     . element names: exp, raw 
##     . exposures: Ben_p, ..., PCB153 
##     . individuals: x0001, ..., x0119 
##  . phenoData: 110 individuals 6 phenotypes
##     . individuals: x0001, ..., x0119 
##     . phenotypes: Asthma, ..., Age 
##  . featureData: 15 exposures 12 explanations
##     . exposures: Ben_p, ..., PCB153 
##     . descriptions: Family, ..., .imp 
## experimentData: use 'experimentData(object)'
## Annotation:

The summary of the data contained by brge_expo:

Data Type Number of Samples Number of Features Technology Object Name Class
Exposome 110 15 brge_expo ExposomeSet

2.2 Transcriptome Data

To load the transcriptome data, saved in an ExpressionSet, run the follow commands:

data("brge_gexp", package = "brgedata")
brge_gexp
## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 67528 features, 100 samples 
##   element names: exprs 
## protocolData: none
## phenoData
##   sampleNames: x0001 x0002 ... x0139 (100 total)
##   varLabels: age sex
##   varMetadata: labelDescription
## featureData
##   featureNames: TC01000001.hg.1 TC01000002.hg.1 ...
##     TCUn_gl000247000001.hg.1 (67528 total)
##   fvarLabels: transcript_cluster_id probeset_id ... notes (11 total)
##   fvarMetadata: labelDescription
## experimentData: use 'experimentData(object)'
## Annotation:

The summary of the data contained by brge_gexp:

Data Type Number of Samples Number of Features Technology Object Name Class
Transcriptome 75 67528 Affymetrix HTA 2.0 brge_gexp ExpressionSet

2.3 Methylome Data

To load the methylation data, encapsulated in a GenomicRatioSet, run the follow commands:

data("brge_methy", package = "brgedata")
brge_methy
## class: GenomicRatioSet 
## dim: 392277 20 
## metadata(0):
## assays(1): Beta
## rownames(392277): cg13869341 cg24669183 ... cg26251715 cg25640065
## rowData names(14): Forward_Sequence SourceSeq ...
##   Regulatory_Feature_Group DHS
## colnames(20): x0017 x0043 ... x0077 x0079
## colData names(9): age sex ... Mono Neu
## Annotation
##   array: IlluminaHumanMethylation450k
##   annotation: ilmn12.hg19
## Preprocessing
##   Method: NA
##   minfi version: NA
##   Manifest version: NA

The summary of the data contained by brge_methy:

Data Type Number of Samples Number of Features Technology Object Name Class
Methylome 20 392277 Illumina Human Methylation 450K brge_methy GenomicRatioSet

2.4 Proteome Data

To load the protein data, stored in an ExpressionSet, run the follow commands:

data("brge_prot", package = "brgedata")
brge_prot
## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 47 features, 90 samples 
##   element names: exprs 
## protocolData: none
## phenoData
##   sampleNames: x0001 x0002 ... x0090 (90 total)
##   varLabels: age sex
##   varMetadata: labelDescription
## featureData
##   featureNames: Adiponectin_ok Alpha1AntitrypsinAAT_ok ...
##     VitaminDBindingProte_ok (47 total)
##   fvarLabels: chr start end
##   fvarMetadata: labelDescription
## experimentData: use 'experimentData(object)'
## Annotation:

The summary of the data contained by brge_prot:

Data Type Number of Samples Number of Features Technology Object Name Class
Proteome 90 47 brge_prot ExpressionSet

Session info

## R version 4.3.1 (2023-06-16)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.2 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.17-bioc/R/lib/libRblas.so 
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_GB              LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: America/New_York
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] parallel  stats4    stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] minfi_1.46.0                bumphunter_1.42.0          
##  [3] locfit_1.5-9.8              iterators_1.0.14           
##  [5] foreach_1.5.2               Biostrings_2.68.1          
##  [7] XVector_0.40.0              SummarizedExperiment_1.30.2
##  [9] MatrixGenerics_1.12.2       matrixStats_1.0.0          
## [11] GenomicRanges_1.52.0        GenomeInfoDb_1.36.1        
## [13] IRanges_2.34.1              S4Vectors_0.38.1           
## [15] rexposome_1.22.0            Biobase_2.60.0             
## [17] BiocGenerics_0.46.0         BiocStyle_2.28.0           
## 
## loaded via a namespace (and not attached):
##   [1] splines_4.3.1             norm_1.0-11.1            
##   [3] BiocIO_1.10.0             bitops_1.0-7             
##   [5] filelock_1.0.2            tibble_3.2.1             
##   [7] preprocessCore_1.62.1     XML_3.99-0.14            
##   [9] rpart_4.1.19              lifecycle_1.0.3          
##  [11] base64_2.0.1              lattice_0.21-8           
##  [13] MASS_7.3-60               scrime_1.3.5             
##  [15] flashClust_1.01-2         backports_1.4.1          
##  [17] magrittr_2.0.3            limma_3.56.2             
##  [19] Hmisc_5.1-0               sass_0.4.6               
##  [21] rmarkdown_2.23            jquerylib_0.1.4          
##  [23] yaml_2.3.7                askpass_1.1              
##  [25] doRNG_1.8.6               RColorBrewer_1.1-3       
##  [27] DBI_1.1.3                 minqa_1.2.5              
##  [29] multcomp_1.4-25           zlibbioc_1.46.0          
##  [31] quadprog_1.5-8            purrr_1.0.1              
##  [33] RCurl_1.98-1.12           nnet_7.3-19              
##  [35] TH.data_1.1-2             rappdirs_0.3.3           
##  [37] sandwich_3.0-2            circlize_0.4.15          
##  [39] GenomeInfoDbData_1.2.10   ggrepel_0.9.3            
##  [41] genefilter_1.82.1         annotate_1.78.0          
##  [43] DelayedMatrixStats_1.22.2 codetools_0.2-19         
##  [45] DelayedArray_0.26.6       DT_0.28                  
##  [47] xml2_1.3.5                tidyselect_1.2.0         
##  [49] gmm_1.8                   shape_1.4.6              
##  [51] beanplot_1.3.1            lme4_1.1-34              
##  [53] BiocFileCache_2.8.0       base64enc_0.1-3          
##  [55] illuminaio_0.42.0         GenomicAlignments_1.36.0 
##  [57] jsonlite_1.8.7            multtest_2.56.0          
##  [59] Formula_1.2-5             survival_3.5-5           
##  [61] emmeans_1.8.7             tools_4.3.1              
##  [63] progress_1.2.2            pryr_0.1.6               
##  [65] Rcpp_1.0.11               glue_1.6.2               
##  [67] gridExtra_2.3             xfun_0.39                
##  [69] HDF5Array_1.28.1          dplyr_1.1.2              
##  [71] BiocManager_1.30.21       fastmap_1.1.1            
##  [73] rhdf5filters_1.12.1       boot_1.3-28.1            
##  [75] fansi_1.0.4               openssl_2.0.6            
##  [77] caTools_1.18.2            digest_0.6.33            
##  [79] R6_2.5.1                  estimability_1.4.1       
##  [81] imputeLCMD_2.1            colorspace_2.1-0         
##  [83] gtools_3.9.4              biomaRt_2.56.1           
##  [85] RSQLite_2.3.1             tidyr_1.3.0              
##  [87] utf8_1.2.3                generics_0.1.3           
##  [89] data.table_1.14.8         rtracklayer_1.60.0       
##  [91] prettyunits_1.1.1         httr_1.4.6               
##  [93] htmlwidgets_1.6.2         S4Arrays_1.0.4           
##  [95] scatterplot3d_0.3-44      pkgconfig_2.0.3          
##  [97] gtable_0.3.3              blob_1.2.4               
##  [99] siggenes_1.74.0           impute_1.74.1            
## [101] htmltools_0.5.5           bookdown_0.34            
## [103] multcompView_0.1-9        scales_1.2.1             
## [105] tmvtnorm_1.5              leaps_3.1                
## [107] png_0.1-8                 corrplot_0.92            
## [109] knitr_1.43                rstudioapi_0.15.0        
## [111] tzdb_0.4.0                reshape2_1.4.4           
## [113] rjson_0.2.21              coda_0.19-4              
## [115] checkmate_2.2.0           nlme_3.1-162             
## [117] curl_5.0.1                nloptr_2.0.3             
## [119] rhdf5_2.44.0              cachem_1.0.8             
## [121] zoo_1.8-12                GlobalOptions_0.1.2      
## [123] stringr_1.5.0             KernSmooth_2.23-22       
## [125] foreign_0.8-84            AnnotationDbi_1.62.2     
## [127] restfulr_0.0.15           GEOquery_2.68.0          
## [129] reshape_0.8.9             pillar_1.9.0             
## [131] grid_4.3.1                vctrs_0.6.3              
## [133] gplots_3.1.3              pcaMethods_1.92.0        
## [135] dbplyr_2.3.3              xtable_1.8-4             
## [137] cluster_2.1.4             htmlTable_2.4.1          
## [139] evaluate_0.21             readr_2.1.4              
## [141] GenomicFeatures_1.52.1    mvtnorm_1.2-2            
## [143] cli_3.6.1                 compiler_4.3.1           
## [145] Rsamtools_2.16.0          rlang_1.1.1              
## [147] crayon_1.5.2              rngtools_1.5.2           
## [149] nor1mix_1.3-0             mclust_6.0.0             
## [151] plyr_1.8.8                stringi_1.7.12           
## [153] BiocParallel_1.34.2       lsr_0.5.2                
## [155] munsell_0.5.0             glmnet_4.1-7             
## [157] Matrix_1.6-0              hms_1.1.3                
## [159] sparseMatrixStats_1.12.2  bit64_4.0.5              
## [161] Rhdf5lib_1.22.0           ggplot2_3.4.2            
## [163] KEGGREST_1.40.0           FactoMineR_2.8           
## [165] memoise_2.0.1             bslib_0.5.0              
## [167] bit_4.0.5