if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("SingleCellMultiModal")
library(MultiAssayExperiment)
library(SingleCellMultiModal)
CITE-seq data are a combination of two data types extracted at the same time from the same cell. First data type is scRNA-seq data, while the second one consists of about a hundread of antibody-derived tags (ADT). In particular this dataset is provided by Stoeckius et al. (2017).
The user can see the available dataset by using the default options
CITEseq(DataType="cord_blood", modes="*", dry.run=TRUE, version="1.0.0")
## Dataset: cord_blood
## ah_id mode file_size rdataclass rdatadateadded rdatadateremoved
## 1 EH3795 scADT_Counts 0.2 Mb matrix 2020-09-23 <NA>
## 2 EH3796 scRNAseq_Counts 22.2 Mb matrix 2020-09-23 <NA>
Or simply by setting dry.run = FALSE
it downloads the data and creates the
MultiAssayExperiment
object.
In this example, we will use one of the two available datasets scADT_Counts
:
mae <- CITEseq(
DataType="cord_blood", modes="*", dry.run=FALSE, version="1.0.0"
)
mae
## A MultiAssayExperiment object of 2 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 2:
## [1] scADT: matrix with 13 rows and 8617 columns
## [2] scRNAseq: matrix with 36280 rows and 8617 columns
## Functionality:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample coordination DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
## exportClass() - save data to flat files
Example with actual data:
experiments(mae)
## ExperimentList class object of length 2:
## [1] scADT: matrix with 13 rows and 8617 columns
## [2] scRNAseq: matrix with 36280 rows and 8617 columns
Check row annotations:
rownames(mae)
## CharacterList of length 2
## [["scADT"]] CD3 CD4 CD8 CD45RA CD56 CD16 CD10 CD11c CD14 CD19 CD34 CCR5 CCR7
## [["scRNAseq"]] ERCC_ERCC-00104 HUMAN_A1BG ... MOUSE_n-R5s25 MOUSE_n-R5s31
Take a peek at the sampleMap
:
sampleMap(mae)
## DataFrame with 17234 rows and 3 columns
## assay primary colname
## <factor> <character> <character>
## 1 scADT CTGTTTACACCGCTAG CTGTTTACACCGCTAG
## 2 scADT CTCTACGGTGTGGCTC CTCTACGGTGTGGCTC
## 3 scADT AGCAGCCAGGCTCATT AGCAGCCAGGCTCATT
## 4 scADT GAATAAGAGATCCCAT GAATAAGAGATCCCAT
## 5 scADT GTGCATAGTCATGCAT GTGCATAGTCATGCAT
## ... ... ... ...
## 17230 scRNAseq TTGCCGTGTAGATTAG TTGCCGTGTAGATTAG
## 17231 scRNAseq GGCGTGTAGTGTACTC GGCGTGTAGTGTACTC
## 17232 scRNAseq CGTATGCCGTCTTCTG CGTATGCCGTCTTCTG
## 17233 scRNAseq TACACGACGCTCTTCC TACACGACGCTCTTCC
## 17234 scRNAseq ACACGACGCTCTTCCG ACACGACGCTCTTCCG
The scRNA-seq data are accessible with the name scRNAseq
, which returns a
matrix object.
head(experiments(mae)$scRNAseq)[, 1:4]
## CTGTTTACACCGCTAG CTCTACGGTGTGGCTC AGCAGCCAGGCTCATT
## ERCC_ERCC-00104 0 0 0
## HUMAN_A1BG 0 0 0
## HUMAN_A1BG-AS1 0 0 0
## HUMAN_A1CF 0 0 0
## HUMAN_A2M 0 0 0
## HUMAN_A2M-AS1 0 0 0
## GAATAAGAGATCCCAT
## ERCC_ERCC-00104 0
## HUMAN_A1BG 0
## HUMAN_A1BG-AS1 0
## HUMAN_A1CF 0
## HUMAN_A2M 0
## HUMAN_A2M-AS1 0
The scADT data are accessible with the name scADT
, which returns a
matrix object.
head(experiments(mae)$scADT)[, 1:4]
## CTGTTTACACCGCTAG CTCTACGGTGTGGCTC AGCAGCCAGGCTCATT GAATAAGAGATCCCAT
## CD3 60 52 89 55
## CD4 72 49 112 66
## CD8 76 59 61 56
## CD45RA 575 3943 682 378
## CD56 64 68 87 58
## CD16 161 107 117 82
Because of already large use of some methodologies (such as
in the SingleCellExperiment vignette or CiteFuse Vignette where the
SingleCellExperiment
object is used for CITE-seq data,
we provide a function for the conversion of our CITE-seq MultiAssayExperiment
object into a SingleCellExperiment
object with scRNA-seq data as counts and
scADT data as altExp
s.
sce <- CITEseq(DataType="cord_blood", modes="*", dry.run=FALSE, version="1.0.0",
DataClass="SingleCellExperiment")
sce
## class: SingleCellExperiment
## dim: 36280 8617
## metadata(0):
## assays(1): counts
## rownames(36280): ERCC_ERCC-00104 HUMAN_A1BG ... MOUSE_n-R5s25
## MOUSE_n-R5s31
## rowData names(0):
## colnames(8617): CTGTTTACACCGCTAG CTCTACGGTGTGGCTC ... TACACGACGCTCTTCC
## ACACGACGCTCTTCCG
## colData names(0):
## reducedDimNames(0):
## mainExpName: NULL
## altExpNames(1): scADT
sessionInfo()
## R version 4.3.0 RC (2023-04-13 r84269)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.2 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.17-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] SingleCellMultiModal_1.12.2 MultiAssayExperiment_1.26.0
## [3] SummarizedExperiment_1.30.1 Biobase_2.60.0
## [5] GenomicRanges_1.52.0 GenomeInfoDb_1.36.0
## [7] IRanges_2.34.0 S4Vectors_0.38.1
## [9] BiocGenerics_0.46.0 MatrixGenerics_1.12.0
## [11] matrixStats_0.63.0 BiocStyle_2.28.0
##
## loaded via a namespace (and not attached):
## [1] DBI_1.1.3 bitops_1.0-7
## [3] formatR_1.14 rlang_1.1.1
## [5] magrittr_2.0.3 compiler_4.3.0
## [7] RSQLite_2.3.1 DelayedMatrixStats_1.22.0
## [9] png_0.1-8 vctrs_0.6.2
## [11] pkgconfig_2.0.3 SpatialExperiment_1.10.0
## [13] crayon_1.5.2 fastmap_1.1.1
## [15] magick_2.7.4 dbplyr_2.3.2
## [17] XVector_0.40.0 ellipsis_0.3.2
## [19] scuttle_1.10.1 utf8_1.2.3
## [21] promises_1.2.0.1 rmarkdown_2.21
## [23] purrr_1.0.1 bit_4.0.5
## [25] xfun_0.39 zlibbioc_1.46.0
## [27] cachem_1.0.8 beachmat_2.16.0
## [29] jsonlite_1.8.4 blob_1.2.4
## [31] later_1.3.1 rhdf5filters_1.12.1
## [33] DelayedArray_0.26.3 Rhdf5lib_1.22.0
## [35] BiocParallel_1.34.2 interactiveDisplayBase_1.38.0
## [37] parallel_4.3.0 R6_2.5.1
## [39] bslib_0.4.2 limma_3.56.1
## [41] jquerylib_0.1.4 Rcpp_1.0.10
## [43] bookdown_0.34 knitr_1.42
## [45] R.utils_2.12.2 httpuv_1.6.11
## [47] Matrix_1.5-4.1 tidyselect_1.2.0
## [49] yaml_2.3.7 codetools_0.2-19
## [51] curl_5.0.0 lattice_0.21-8
## [53] tibble_3.2.1 withr_2.5.0
## [55] shiny_1.7.4 KEGGREST_1.40.0
## [57] evaluate_0.21 BiocFileCache_2.8.0
## [59] ExperimentHub_2.8.0 Biostrings_2.68.1
## [61] pillar_1.9.0 BiocManager_1.30.20
## [63] filelock_1.0.2 generics_0.1.3
## [65] RCurl_1.98-1.12 BiocVersion_3.17.1
## [67] sparseMatrixStats_1.12.0 xtable_1.8-4
## [69] glue_1.6.2 tools_4.3.0
## [71] AnnotationHub_3.8.0 locfit_1.5-9.7
## [73] rhdf5_2.44.0 grid_4.3.0
## [75] DropletUtils_1.20.0 AnnotationDbi_1.62.1
## [77] edgeR_3.42.2 SingleCellExperiment_1.22.0
## [79] GenomeInfoDbData_1.2.10 HDF5Array_1.28.1
## [81] cli_3.6.1 rappdirs_0.3.3
## [83] fansi_1.0.4 S4Arrays_1.0.4
## [85] dplyr_1.1.2 R.methodsS3_1.8.2
## [87] sass_0.4.6 digest_0.6.31
## [89] dqrng_0.3.0 rjson_0.2.21
## [91] memoise_2.0.1 htmltools_0.5.5
## [93] R.oo_1.25.0 lifecycle_1.0.3
## [95] httr_1.4.6 mime_0.12
## [97] bit64_4.0.5
Stoeckius, Marlon, Christoph Hafemeister, William Stephenson, Brian Houck-Loomis, Pratip K Chattopadhyay, Harold Swerdlow, Rahul Satija, and Peter Smibert. 2017. “Simultaneous Epitope and Transcriptome Measurement in Single Cells.” Nature Methods 14 (9): 865.