A comprehensive guide to using the yamss package for analyzing high-throughput metabolomics data
yamss 1.26.0
The yamss (yet another mass spectrometry software) package provides tools to preprocess raw mass spectral data files arising from metabolomics experiments with the primary goal of providing high-quality differential analysis. Currently, yamss implements a preprocessing method “bakedpi”, which stands for bivariate approximate kernel density estimation for peak identification.
Alternatives to this package include xcms (Smith et al. 2006) (available on Bioconductor) and MZMine 2 (Pluskal et al. 2010). These packages also provide preprocessing functionality but focus more on feature detection and alignment in individual samples. The input data to yamss are standard metabolomics mass spectral files which can be read by mzR.
The “bakedpi” algorithm is a new preprocessing algorithm for untargeted metabolomics data (Myint et al. 2017). The output of “bakedpi” is essentially a table with dimension peaks (adducts) by samples, containing quantified intensity measurements representing the abundance of metabolites. This table, which is very similar to output in gene expression analysis, can directly be used in standard statistical packages, such as limma, to identify differentially abundant metabolites between conditions. It is critical that all samples which are to be analyzed together are processed together through bakedpi.
Please cite our paper when using yamss (Myint et al. 2017).
This document has the following dependencies
library(yamss)
library(mtbls2)
We will be looking at data provided in the mtbls2
data package. In this experiment, investigators exposed wild-type and mutant Arabidopsis thaliana leaves to silver nitrate and performed global LC/MS profiling. The experiment was repeated twice, but we will only be looking at the first replicate. There are 4 wild-type and 4 mutant plants in this experiment.
filepath <- file.path(find.package("mtbls2"), "mzML")
files <- list.files(filepath, pattern = "MSpos-Ex1", recursive = TRUE, full.names = TRUE)
classes <- rep(c("wild-type", "mutant"), each = 4)
The first step is to read the raw mass spec data into an R representation using readMSdata()
:
colData <- DataFrame(sampClasses = classes, ionmode = "pos")
cmsRaw <- readMSdata(files = files, colData = colData, mzsubset = c(500,520), verbose = TRUE)
## [readRaw]: Reading 8 files
cmsRaw
## class: CMSraw
## Representing 8 data files
## Number of scans: 3389
## M/Z: 500.000120 - 519.998100
The output of readMSdata()
is an object of class CMSraw
representating raw (unprocessed) data. We use the colData
argument to store phenotype information about the different samples.
The next step is to use bakedpi()
to preprocess these samples. This function takes a while to run, so we only run it on a small slice of M/Z values, using the mzsubset
argument. This is only done for speed.
cmsProc <- bakedpi(cmsRaw, dbandwidth = c(0.01, 10), dgridstep = c(0.01, 1),
outfileDens = NULL, dortalign = TRUE, mzsubset = c(500, 520), verbose = TRUE)
## [bakedpi] Background correction
## [bakedpi] Retention time alignment
## [bakedpi] Density estimation
cmsProc
## class: CMSproc
## Representing 8 data files
## Number of scans: 3389
## M/Z: 500.000120 - 519.998100
The dbandwidth
and dgridstep
arguments influence the bivariate kernel density estimation which forms the core of bakedpi. dgridstep
is a vector of length 2 that specifies the spacing of the grid upon which the density is estimated. The first component specifies the spacing in the M/Z direction, and the second component specifies the spacing in the scan (retention time) direction. To showcase a fast example, we have specified the M/Z and scan spacings to be 0.01
and 1
respectively, but we recommend keeping the defaults of 0.005
and 1
because this will more accurately define the M/Z and scan bounds of the detected peaks. dbandwidth
is a vector of length 2 that specifies the kernel density bandwidth in the M/Z and scan directions in the first and second components respectively. Note that dbandwidth[1]
should be greater than or equal to dgridstep[1]
and dbandwidth[2]
should be greater than or equal to dgridstep[2]
. Because a binning strategy is used to speed up computation of the density estimate, this is to ensure that data points falling into the same grid location all have the same distances associated with them.
For experiments with a wide range of M/Z values or several thousands of scans, the computation of the density estimate can be time-intensive. For this reason, it can be useful to save the density estimate in an external file specified by the outfileDens
argument. If outfileDens
is set to NULL
, then the density estimate is not saved and must be recomputed if we wish to process the data again. Specifying the filename of the saved density estimate in outfileDens
when rerunning bakedpi()
skips the density estimation phase which can save a lot of time.
The resulting object is an instance of class CMSproc
which contains the bivariate kernel density estimate as well as some useful preprocessing metadata. In order to obtain peak bounds and quantifications, the last step is to run slicepi()
, which computes a global threshold for the density, uses this threshold to call peak bounds, and quantifies the peaks. If the cutoff
argument is supplied as a number, then slicepi()
will use this as the density threshold. Otherwise if cutoff
is left as the default NULL
, a data-driven threshold will be identified.
cmsSlice <- slicepi(cmsProc, cutoff = NULL, verbose = TRUE)
## [slicepi] Computing cutoff
## [slicepi] Computing peak bounds
## [slicepi] Quantifying peaks
cmsSlice
## An object of class 'CMSslice'
## Representing 8 data files
## Number of scans: 3389
## M/Z: 500.000120 - 519.998100
## Number of peaks: 72
The output of slicepi()
is an instance of class CMSslice
and contains the peak bounds and quantifications as well as sample and preprocessing metadata.
We can access the differential analysis report with diffrep()
. This is a convenience function, similar to diffreport()
from the xcms package. In our case it uses limma to do differential analysis; the output of diffrep()
is basically topTable()
from limma.
dr <- diffrep(cmsSlice, classes = classes)
head(dr)
## logFC AveExpr t P.Value adj.P.Val B
## 25 3.474403 15.32845 70.51488 9.110811e-12 3.650248e-10 17.95487
## 54 -2.156827 17.52813 -69.50470 1.013958e-11 3.650248e-10 17.84146
## 21 1.209102 17.87641 44.72779 2.655826e-10 4.527970e-09 14.29968
## 55 -2.004350 15.66532 -43.91037 3.044188e-10 4.527970e-09 14.14912
## 4 -1.137775 16.23114 -43.71853 3.144424e-10 4.527970e-09 14.11336
## 47 1.252761 17.88478 35.34145 1.515174e-09 1.818209e-08 12.36901
Let’s look at the peak bound information for the peaks with the strongest differential signal. We can store the IDs for the top 10 peaks with
topPeaks <- as.numeric(rownames(dr)[1:10])
topPeaks
## [1] 25 54 21 55 4 47 46 16 59 17
We can access the peak bound information with peakBounds()
and select the rows corresponding to topPeaks
.
bounds <- peakBounds(cmsSlice)
idx <- match(topPeaks, bounds[,"peaknum"])
bounds[idx,]
## DataFrame with 10 rows and 5 columns
## mzmin mzmax scanmin scanmax peaknum
## <numeric> <numeric> <numeric> <numeric> <numeric>
## 1 501.04 501.07 795 822 25
## 2 501.25 501.29 2095 2138 54
## 3 516.08 516.12 703 748 21
## 4 502.26 502.29 2104 2126 55
## 5 508.19 508.21 207 233 4
## 6 516.05 516.09 1586 1636 47
## 7 500.09 500.12 1583 1628 46
## 8 501.60 501.63 666 710 16
## 9 513.30 513.31 2813 2831 59
## 10 515.61 515.63 668 686 17
CMSproc
objects contain information useful in exploring your data.
The bivariate kernel density estimate matrix can be accessed with densityEstimate()
.
dmat <- densityEstimate(cmsProc)
We can make a plot of the density estimate in a particular M/Z and scan region with plotDensityRegion()
.
mzrange <- c(bounds[idx[1], "mzmin"], bounds[idx[1], "mzmax"])
scanrange <- c(bounds[idx[1], "scanmin"], bounds[idx[1], "scanmax"])
plotDensityRegion(cmsProc, mzrange = mzrange + c(-0.5,0.5), scanrange = scanrange + c(-30,30))
Peaks are called by thresholding the density estimate. If we wish to investigate the impact of varying this cutoff, we can use densityCutoff
to obtain the original cutoff and updatePeaks()
to re-call peaks and quantify them. Quantiles of the non-zero density values are also available via densityQuantiles()
.
cmsSlice2 <- slicepi(cmsProc, densityCutoff(cmsSlice)*0.99)
## [slicepi] Computing peak bounds
## [slicepi] Quantifying peaks
dqs <- densityQuantiles(cmsProc)
head(dqs)
## 0.0% 0.1% 0.2% 0.3% 0.4% 0.5%
## 2.270341e-22 8.066129e-20 1.616783e-19 2.473895e-19 3.376696e-19 4.398691e-19
cmsSlice3 <- slicepi(cmsProc, dqs["98.5%"])
## [slicepi] Computing peak bounds
## [slicepi] Quantifying peaks
nrow(peakBounds(cmsSlice)) # Number of peaks detected - original
## [1] 72
nrow(peakBounds(cmsSlice2)) # Number of peaks detected - updated
## [1] 72
nrow(peakBounds(cmsSlice3)) # Number of peaks detected - updated
## [1] 206
R version 4.3.0 RC (2023-04-13 r84269) Platform: x86_64-pc-linux-gnu (64-bit) Running under: Ubuntu 22.04.2 LTS
Matrix products: default BLAS: /home/biocbuild/bbs-3.17-bioc/R/lib/libRblas.so LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_GB LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
time zone: America/New_York tzcode source: system (glibc)
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] mtbls2_1.29.0 yamss_1.26.0
[3] SummarizedExperiment_1.30.0 Biobase_2.60.0
[5] GenomicRanges_1.52.0 GenomeInfoDb_1.36.0
[7] IRanges_2.34.0 S4Vectors_0.38.0
[9] MatrixGenerics_1.12.0 matrixStats_0.63.0
[11] BiocGenerics_0.46.0 BiocStyle_2.28.0
loaded via a namespace (and not attached):
[1] bitops_1.0-7 rlang_1.1.0 magrittr_2.0.3
[4] clue_0.3-64 MassSpecWavelet_1.66.0 compiler_4.3.0
[7] png_0.1-8 fftwtools_0.9-11 vctrs_0.6.2
[10] ProtGenerics_1.32.0 pkgconfig_2.0.3 fastmap_1.1.1
[13] magick_2.7.4 XVector_0.40.0 utf8_1.2.3
[16] rmarkdown_2.21 preprocessCore_1.62.0 xcms_3.22.0
[19] xfun_0.39 zlibbioc_1.46.0 cachem_1.0.7
[22] jsonlite_1.8.4 highr_0.10 DelayedArray_0.26.0
[25] BiocParallel_1.34.0 jpeg_0.1-10 tiff_0.1-11
[28] parallel_4.3.0 cluster_2.1.4 R6_2.5.1
[31] bslib_0.4.2 RColorBrewer_1.1-3 limma_3.56.0
[34] jquerylib_0.1.4 iterators_1.0.14 Rcpp_1.0.10
[37] bookdown_0.33 knitr_1.42 Matrix_1.5-4
[40] splines_4.3.0 tidyselect_1.2.0 abind_1.4-5
[43] yaml_2.3.7 EBImage_4.42.0 doParallel_1.0.17
[46] codetools_0.2-19 affy_1.78.0 lattice_0.21-8
[49] tibble_3.2.1 plyr_1.8.8 evaluate_0.20
[52] survival_3.5-5 pillar_1.9.0 affyio_1.70.0
[55] BiocManager_1.30.20 foreach_1.5.2 MSnbase_2.26.0
[58] MALDIquant_1.22.1 ncdf4_1.21 generics_0.1.3
[61] RCurl_1.98-1.12 ggplot2_3.4.2 munsell_0.5.0
[64] scales_1.2.1 glue_1.6.2 MsFeatures_1.8.0
[67] tools_4.3.0 mzID_1.38.0 robustbase_0.95-1
[70] data.table_1.14.8 vsn_3.68.0 mzR_2.34.0
[73] locfit_1.5-9.7 RANN_2.6.1 XML_3.99-0.14
[76] grid_4.3.0 impute_1.74.0 MsCoreUtils_1.12.0
[79] colorspace_2.1-0 GenomeInfoDbData_1.2.10 cli_3.6.1
[82] fansi_1.0.4 dplyr_1.1.2 pcaMethods_1.92.0
[85] gtable_0.3.3 DEoptimR_1.0-12 sass_0.4.5
[88] digest_0.6.31 htmlwidgets_1.6.2 htmltools_0.5.5
[91] multtest_2.56.0 lifecycle_1.0.3 MASS_7.3-59
Myint, Leslie, Andre Kleensang, Liang Zhao, Thomas Hartung, and Kasper D Hansen. 2017. “Joint Bounding of Peaks Across Samples Improves Differential Analysis in Mass Spectrometry-Based Metabolomics.” Analytical Chemistry 89 (6): 3517–23. https://doi.org/10.1021/acs.analchem.6b04719.
Pluskal, Tomás, Sandra Castillo, Alejandro Villar-Briones, and Matej Oresic. 2010. “MZmine 2: Modular Framework for Processing, Visualizing, and Analyzing Mass Spectrometry-Based Molecular Profile Data.” BMC Bioinformatics 11: 395. https://doi.org/10.1186/1471-2105-11-395.
Smith, Colin A, Elizabeth J Want, Grace O’Maille, Ruben Abagyan, and Gary Siuzdak. 2006. “XCMS: Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification.” Analytical Chemistry 78: 779–87. https://doi.org/10.1021/ac051437y.