Contents

1 Introduction

In this vignette, we provide an overview of the basic functionality and usage of the scds package, which interfaces with SingleCellExperiment objects.

2 Installation

Install the scds package using Bioconductor:

if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")
BiocManager::install("scds", version = "3.9")

Or from github:

library(devtools)
devtools::install_github('kostkalab/scds')

3 Quick start

scds takes as input a SingleCellExperiment object (see here SingleCellExperiment), where raw counts are stored in a counts assay, i.e. assay(sce,"counts"). An example dataset created by sub-sampling the cell-hashing cell-lines data set (see https://satijalab.org/seurat/hashing_vignette.html) is included with the package and accessible via data("sce").Note that scds is designed to workd with larger datasets, but for the purposes of this vignette, we work with a smaller example dataset. We apply scds to this data and compare/visualize reasults:

3.1 Example data set

Get example data set provided with the package.

library(scds)
library(scater)
library(rsvd)
library(Rtsne)
library(cowplot)
set.seed(30519)
data("sce_chcl")
sce = sce_chcl #- less typing
dim(sce)
## [1] 2000 2000

We see it contains 2,000 genes and 2,000 cells, 216 of which are identified as doublets:

table(sce$hto_classification_global)
## 
##  Doublet Negative  Singlet 
##      216       83     1701

We can visualize cells/doublets after projecting into two dimensions:

logcounts(sce) = log1p(counts(sce))
vrs            = apply(logcounts(sce),1,var)
pc             = rpca(t(logcounts(sce)[order(vrs,decreasing=TRUE)[1:100],]))
ts             = Rtsne(pc$x[,1:10],verb=FALSE)

reducedDim(sce,"tsne") = ts$Y; rm(ts,vrs,pc)
plotReducedDim(sce,"tsne",color_by="hto_classification_global")