
gmapR: Use the GMAP Suite of Tools in R

Michael Lawrence, Cory Barr

April 25, 2023

Contents
1 Introduction 2

2 What is GMAP, GSNAP, and bam_tally? 2

3 Create a GmapGenome Object 2

4 Aligning with GSNAP 3

5 Using bam_tally 5

6 Creating a GmapGenome Package 6

1



1 Introduction
The gmapR packages provides users with a way to access GSNAP, bam_tally, and other utilities from the GMAP
suite of tools within an R session. In this vignette, we briefly look at the GMAP suite of tools available through the
gmapR package and work through an example.

2 What is GMAP, GSNAP, and bam_tally?
The GMAP suite offers useful tools for the following:

• Genomic mapping: Given a cDNA, find where it best aligns to an entire genome

• Genomic alignment: Given a cDNA and a genomic segment, provide a nucleotide-level correspondence for the
exons of the cDNA to the genomic segment

• Summarization via coverage plus reference and allele nucleotide polymorphism counts for an aligned set of
sequencing reads over a given genomic location

GMAP (Genomic Mapping and Alignment Program) is particularly suited to relatively long mRNA and EST
sequences such as those that are obtained from Roche 454 or Pacific Biosciences sequencing technologies. (At present,
only GSNAP is available through the gmapR. GMAP integration is scheduled for the near future.)

GSNAP (Genomic Short-read Nucleotide Alignment Program) also provides users with genomic mapping and
alignment capabilities, but is optimized to handle issues that arise when dealing with the alignment of short reads
generated from sequencing technologies such as those from Illumina/Solexa or ABI/SOLiD. GSNAP offers the fol-
lowing functionality, as mentioned in Fast and SNP-tolerant detection of complex variants and splicing in short reads
by Thomas D. Wu and Serban Nacu:

• fast detection of complex variants and splicing in short reads, based on a successively constrained search process
of merging and filtering position lists from a genomic index

• alignment of both single- and paired-end reads as short as 14 nt and of arbitrarily long length

• detection of short- and long-distance splicing, including interchromosomal splicing, in individual reads, using
probabilistic models or a database of known splice sites

• SNP-tolerant alignment to a reference space of all possible combinations of major and minor alleles

• alignment of reads from bisulfite-treated DNA for the study of methylation state

bam_tally provides users with the coverage as well as counts of both reference alleles, alternative alleles, and
indels over a genomic region.

For more detailed information on the GMAP suite of tools including a detailed explication of algorithmic specifics,
see http://research-pub.gene.com/gmap/.

3 Create a GmapGenome Object
To align reads with GMAP or GSNAP, or to use bam_tally, you will need to either obtain or create a GmapGenome
object. GmapGenome objects can be created from FASTA files or BSgenome objects, as the following example demon-
strates:

2

http://bioinformatics.oxfordjournals.org/content/26/7/873.full
http://research-pub.gene.com/gmap/


> library(gmapR)
> if (!suppressWarnings(require(BSgenome.Dmelanogaster.UCSC.dm3))) {
+ if (!requireNamespace("BiocManager", quietly=TRUE))
+ install.packages("BiocManager")
+ BiocManager::install("BSgenome.Dmelanogaster.UCSC.dm3")
+ library(BSgenome.Dmelanogaster.UCSC.dm3)
+ }
> gmapGenomePath <- file.path(getwd(), "flyGenome")
> gmapGenomeDirectory <- GmapGenomeDirectory(gmapGenomePath, create = TRUE)
> ##> gmapGenomeDirectory
> ##GmapGenomeDirectory object
> ##path: /reshpcfs/home/coryba/projects/gmapR2/testGenome
>
> gmapGenome <- GmapGenome(genome=Dmelanogaster,
+ directory=gmapGenomeDirectory,
+ name="dm3",
+ create=TRUE,
+ k = 12L)
> ##> gmapGenome
> ##GmapGenome object
> ##genome: dm3
> ##directory: /reshpcfs/home/coryba/projects/gmapR2/testGenome

4 Aligning with GSNAP
The GSNAP algorithm incorporates biological knowledge to provide accurate alignments, particularly for RNA-seq
data. In this section, we will align reads from an RNA-seq experiment provided in a fastq file to a selected region
of the human genome. In this example, we will align to the region of the human genome containing TP53 plus an
additional one megabase on each side of this gene.

First we need to obtain the desired region of interest from the genome:

> library("org.Hs.eg.db")
> library("TxDb.Hsapiens.UCSC.hg19.knownGene")
> eg <- org.Hs.eg.db::org.Hs.egSYMBOL2EG[["TP53"]]
> txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
> tx <- transcripts(txdb, filter = list(gene_id = eg))
> roi <- range(tx) + 1e6
> strand(roi) <- "*"

Next we get the genetic sequence and use it to create a GmapGenome object. (Please note that the TP53_demo
GmapGenome object is used by many examples and tests in the gmapR and VariationTools packages. If the object has
been created before, its subsequent creation will be instantaneous.)

> library("BSgenome.Hsapiens.UCSC.hg19")
> library("gmapR")
> p53Seq <- getSeq(BSgenome.Hsapiens.UCSC.hg19::Hsapiens, roi,
+ as.character = FALSE)
> names(p53Seq) <- "TP53"
> gmapGenome <- GmapGenome(genome = p53Seq,
+ name = paste0("TP53_demo_",
+ packageVersion("TxDb.Hsapiens.UCSC.hg19.knownGene")),

3



+ create = TRUE,
+ k = 12L)

We add the known transcripts (splice sites) to the genome index:

> exons <- gmapR:::subsetRegion(exonsBy(txdb), roi, "TP53")
> spliceSites(gmapGenome, "knownGene") <- exons

The data package LungCancerLines contains fastqs of reads obtained from sequencing H1993 and H2073 cell
lines. We will use these fastqs to demonstrate GSNAP alignment with gmapR.

> library("LungCancerLines")
> fastqs <- LungCancerFastqFiles()

GSNAP is highly configurable. Users create GsnapParam objects to specify desired GSNAP behavior.

> ##specify how GSNAP should behave using a GsnapParam object
> gsnapParam <- GsnapParam(genome=gmapGenome,
+ unique_only=FALSE,
+ suboptimal_levels=2L,
+ npaths=10L,
+ novelsplicing=TRUE,
+ splicing="knownGene",
+ indel_penalty=1L,
+ distant_splice_penalty=1L,
+ clip_overlap=TRUE)

Now we are ready to align.

> gsnapOutput <- gsnap(input_a=fastqs["H1993.first"],
+ input_b=fastqs["H1993.last"],
+ params=gsnapParam)
>
> ##gsnapOutput
> ##An object of class "GsnapOutput"
> ##Slot "path":
> ##[1] "/local/Rtmporwsvr"
> ##
> ##Slot "param":
> ##A GsnapParams object
> ##genome: dm3 (/reshpcfs/home/coryba/projects/gmapR2/testGenome)
> ##part: NULL
> ##batch: 2
> ##max_mismatches: NULL
> ##suboptimal_levels: 0
> ##snps: NULL
> ##mode: standard
> ##nthreads: 1
> ##novelsplicing: FALSE
> ##splicing: NULL
> ##npaths: 10
> ##quiet_if_excessive: FALSE
> ##nofails: FALSE

4



> ##split_output: TRUE
> ##extra: list()
> ##
> ##Slot "version":
> ## [1] NA NA NA NA NA NA NA NA NA NA NA NA
> ##

The gsnapOutput object will be of the class GsnapOutput. It will provide access to the BAM files of alignments
that GSNAP outputs along with other utilities.

> ##> dir(path(gsnapOutput), full.names=TRUE, pattern="\\.bam$")
> ##[1] "/local/Rtmporwsvr/file1cbc73503e9.1.nomapping.bam"
> ##[2] "/local/Rtmporwsvr/file1cbc73503e9.1.unpaired_mult.bam"
> ##[3] "/local/Rtmporwsvr/file1cbc73503e9.1.unpaired_transloc.bam"
> ##[4] "/local/Rtmporwsvr/file1cbc73503e9.1.unpaired_uniq.bam"

5 Using bam_tally
Running the bam_tally method will return a GRanges of information per nucleotide. Below is an example demon-
strating how to find variants in the TP53 gene of the human genome. See the documentation for the bam_tally
method for more details.

gmapR provides access to a demo genome for examples. This genome encompasses the TP53 gene along with a
1-megabase flanking region on each side.

> genome <- TP53Genome()

The LungCancerLines R package contains a BAM file of reads aligned to the TP53 region of the human genome.
We’ll use this file to demonstrate the use of bam_tally through the gmapR package. The resulting data structure will
contain the needed information such as number of alternative alleles, quality scores, and read position for each allele.

The call to bam_tally returns an opaque pointer to a C-level data structure. We anticipate having multiple
means of summarizing these data into R data structures. For now, there is one: variantSummary, which returns a
VRanges object describing putative genetic variants in the sample.

> bam_file <- system.file("extdata/H1993.analyzed.bam",
+ package="LungCancerLines", mustWork=TRUE)
> breaks <- c(0L, 15L, 60L, 75L)
> bqual <- 56L
> mapq <- 13L
> param <- BamTallyParam(genome,
+ minimum_mapq = mapq,
+ concordant_only = FALSE, unique_only = FALSE,
+ primary_only = FALSE,
+ min_depth = 0L, variant_strand = 1L,
+ ignore_query_Ns = TRUE,
+ indels = FALSE, include_soft_clips = 1L, xs=TRUE,
+ min_base_quality = 23L)
> tallies <-bam_tally(bam_file,
+ param)
> variantSummary(tallies)

5



6 Creating a GmapGenome Package
After creating a GmapGenome object, you might want to distribute it for collaboration or version it for reproducible
research. The function makeGmapGenomePackage allows you to do this. Continuing on with the D. melanogaster
example from above, here is how to archive the D. melanogaster GmapGenome object in a GmapGenome package:

> makeGmapGenomePackage(gmapGenome=gmapGenome,
+ version="1.0.0",
+ maintainer="<your.name@somewhere.com>",
+ author="Your Name",
+ destDir="myDestDir",
+ license="Artistic-2.0",
+ pkgName="GmapGenome.Dmelanogaster.UCSC.dm3")

After creating the package, you can run R CMD INSTALL myDestDir to install it, or run R CMD build
myDestDir to create a distribution of the package.

Many users with be working with the human genome. Many of the examples used in gmapR make use of a
particular build of the human genome. As such, creating a GmapGenome of hg19 is recommended. Here is one way
to create it, using a BSgenome object:

> if (!suppressWarnings(require(BSgenome.Hsapiens.UCSC.hg19))) {
+ if (!requireNamespace("BiocManager", quietly=TRUE))
+ install.packages("BiocManager")
+ BiocManager::install("BSgenome.Hsapiens.UCSC.hg19")
+ library(BSgenome.Hsapiens.UCSC.hg19)
+ }
> gmapGenome <- GmapGenome(genome=Hsapiens,
+ directory = "Hsapiens",
+ name = "hg19",
+ create = TRUE)
> destDir <- "HsapiensGmapGenome"
> pkgName <- "GmapGenome.Hsapiens.UCSC.hg19"
> makeGmapGenomePackage(gmapGenome=gmapGenome,
+ version="1.0.0",
+ maintainer="<your.name@somewhere.com>",
+ author="Your Name",
+ destDir=destDir,
+ license="Artistic-2.0",
+ pkgName="GmapGenome.Hsapiens.UCSC.hg19")

After running the above code, you should be able to run R CMD INSTALL GmapGenome.Hsapiens.UCSC.hg19
in the appropriate directory from the command line, submit GmapGenome.Hsapiens.UCSC.hg19 to a repository, etc.
After installation, library("GmapGenome.Hsapiens.UCSC.hg19") will load a GmapGenome object that
has the same name as the package.

> sessionInfo()

R version 4.3.0 RC (2023-04-13 r84269)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.04.2 LTS

Matrix products: default
BLAS: /home/biocbuild/bbs-3.17-bioc/R/lib/libRblas.so

6



LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_GB LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

time zone: America/New_York
tzcode source: system (glibc)

attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base

other attached packages:
[1] LungCancerLines_0.37.0
[2] gmapR_1.42.0
[3] Rsamtools_2.16.0
[4] BSgenome.Hsapiens.UCSC.hg19_1.4.3
[5] BSgenome_1.68.0
[6] rtracklayer_1.60.0
[7] Biostrings_2.68.0
[8] XVector_0.40.0
[9] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
[10] GenomicFeatures_1.52.0
[11] GenomicRanges_1.52.0
[12] GenomeInfoDb_1.36.0
[13] org.Hs.eg.db_3.17.0
[14] AnnotationDbi_1.62.0
[15] IRanges_2.34.0
[16] S4Vectors_0.38.0
[17] Biobase_2.60.0
[18] BiocGenerics_0.46.0

loaded via a namespace (and not attached):
[1] KEGGREST_1.40.0 SummarizedExperiment_1.30.0
[3] rjson_0.2.21 lattice_0.21-8
[5] vctrs_0.6.2 tools_4.3.0
[7] bitops_1.0-7 generics_0.1.3
[9] curl_5.0.0 parallel_4.3.0
[11] tibble_3.2.1 fansi_1.0.4
[13] RSQLite_2.3.1 blob_1.2.4
[15] pkgconfig_2.0.3 Matrix_1.5-4
[17] dbplyr_2.3.2 lifecycle_1.0.3
[19] GenomeInfoDbData_1.2.10 compiler_4.3.0
[21] stringr_1.5.0 progress_1.2.2
[23] codetools_0.2-19 RCurl_1.98-1.12
[25] yaml_2.3.7 pillar_1.9.0

7



[27] crayon_1.5.2 BiocParallel_1.34.0
[29] cachem_1.0.7 DelayedArray_0.26.0
[31] tidyselect_1.2.0 digest_0.6.31
[33] stringi_1.7.12 VariantAnnotation_1.46.0
[35] dplyr_1.1.2 restfulr_0.0.15
[37] grid_4.3.0 biomaRt_2.56.0
[39] fastmap_1.1.1 cli_3.6.1
[41] magrittr_2.0.3 XML_3.99-0.14
[43] utf8_1.2.3 prettyunits_1.1.1
[45] filelock_1.0.2 rappdirs_0.3.3
[47] bit64_4.0.5 httr_1.4.5
[49] matrixStats_0.63.0 bit_4.0.5
[51] png_0.1-8 hms_1.1.3
[53] memoise_2.0.1 BiocIO_1.10.0
[55] BiocFileCache_2.8.0 rlang_1.1.0
[57] glue_1.6.2 DBI_1.1.3
[59] xml2_1.3.3 R6_2.5.1
[61] MatrixGenerics_1.12.0 GenomicAlignments_1.36.0
[63] zlibbioc_1.46.0

8


	Introduction
	What is GMAP, GSNAP, and bam_tally?
	Create a GmapGenome Object
	Aligning with GSNAP
	Using bam_tally
	Creating a GmapGenome Package

