Load the package with the library function.
library(tidyverse)
library(ggplot2)
library(dce)
set.seed(42)
We provide access to the following topological pathway databases using graphite (Sales et al. 2012) in a processed format. This format looks as follows:
dce::df_pathway_statistics %>%
arrange(desc(node_num)) %>%
head(10) %>%
knitr::kable()
database | pathway_id | pathway_name | node_num | edge_num |
---|---|---|---|---|
reactome | R-HSA-162582 | Signaling Pathways | 2488 | 62068 |
reactome | R-HSA-1430728 | Metabolism | 2047 | 85543 |
reactome | R-HSA-392499 | Metabolism of proteins | 1894 | 52807 |
reactome | R-HSA-1643685 | Disease | 1774 | 55469 |
reactome | R-HSA-168256 | Immune System | 1771 | 58277 |
panther | P00057 | Wnt signaling pathway | 1644 | 195344 |
reactome | R-HSA-74160 | Gene expression (Transcription) | 1472 | 32493 |
reactome | R-HSA-597592 | Post-translational protein modification | 1394 | 26399 |
kegg | hsa:01100 | Metabolic pathways | 1343 | 22504 |
reactome | R-HSA-73857 | RNA Polymerase II Transcription | 1339 | 25294 |
Let’s see how many pathways each database provides:
dce::df_pathway_statistics %>%
count(database, sort = TRUE, name = "pathway_number") %>%
knitr::kable()
database | pathway_number |
---|---|
pathbank | 48685 |
smpdb | 48671 |
reactome | 2406 |
wikipathways | 640 |
kegg | 323 |
panther | 94 |
pharmgkb | 90 |
Next, we can see how the pathway sizes are distributed for each database:
dce::df_pathway_statistics %>%
ggplot(aes(x = node_num)) +
geom_histogram(bins = 30) +
facet_wrap(~ database, scales = "free") +
theme_minimal()
It is easily possible to plot pathways:
pathways <- get_pathways(
pathway_list = list(
pathbank = c("Lactose Synthesis"),
kegg = c("Fatty acid biosynthesis")
)
)
lapply(pathways, function(x) {
plot_network(
as(x$graph, "matrix"),
visualize_edge_weights = FALSE,
arrow_size = 0.02,
shadowtext = TRUE
) +
ggtitle(x$pathway_name)
})
## [[1]]
##
## [[2]]
sessionInfo()
## R Under development (unstable) (2022-10-25 r83175)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.1 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.17-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] dce_1.7.0 graph_1.77.0
## [3] cowplot_1.1.1 forcats_0.5.2
## [5] stringr_1.4.1 dplyr_1.0.10
## [7] purrr_0.3.5 readr_2.1.3
## [9] tidyr_1.2.1 tibble_3.1.8
## [11] tidyverse_1.3.2 TCGAutils_1.19.0
## [13] curatedTCGAData_1.19.2 MultiAssayExperiment_1.25.0
## [15] SummarizedExperiment_1.29.0 Biobase_2.59.0
## [17] GenomicRanges_1.51.0 GenomeInfoDb_1.35.0
## [19] IRanges_2.33.0 S4Vectors_0.37.0
## [21] BiocGenerics_0.45.0 MatrixGenerics_1.11.0
## [23] matrixStats_0.62.0 ggraph_2.1.0
## [25] ggplot2_3.3.6 BiocStyle_2.27.0
##
## loaded via a namespace (and not attached):
## [1] fs_1.5.2 bitops_1.0-7
## [3] lubridate_1.8.0 httr_1.4.4
## [5] GenomicDataCommons_1.23.0 prabclus_2.3-2
## [7] Rgraphviz_2.43.0 numDeriv_2016.8-1.1
## [9] tools_4.3.0 backports_1.4.1
## [11] vegan_2.6-4 utf8_1.2.2
## [13] R6_2.5.1 mgcv_1.8-41
## [15] sn_2.1.0 permute_0.9-7
## [17] withr_2.5.0 graphite_1.45.0
## [19] prettyunits_1.1.1 gridExtra_2.3
## [21] flexclust_1.4-1 cli_3.4.1
## [23] sandwich_3.0-2 labeling_0.4.2
## [25] sass_0.4.2 diptest_0.76-0
## [27] robustbase_0.95-0 mvtnorm_1.1-3
## [29] proxy_0.4-27 Rsamtools_2.15.0
## [31] FMStable_0.1-4 Linnorm_2.23.0
## [33] plotrix_3.8-2 limma_3.55.0
## [35] readxl_1.4.1 RSQLite_2.2.18
## [37] generics_0.1.3 BiocIO_1.9.0
## [39] gtools_3.9.3 wesanderson_0.3.6
## [41] googlesheets4_1.0.1 Matrix_1.5-1
## [43] fansi_1.0.3 abind_1.4-5
## [45] logger_0.2.2 lifecycle_1.0.3
## [47] multcomp_1.4-20 yaml_2.3.6
## [49] edgeR_3.41.0 mathjaxr_1.6-0
## [51] BiocFileCache_2.7.0 Rtsne_0.16
## [53] grid_4.3.0 blob_1.2.3
## [55] promises_1.2.0.1 gdata_2.18.0.1
## [57] ppcor_1.1 bdsmatrix_1.3-6
## [59] ExperimentHub_2.7.0 crayon_1.5.2
## [61] lattice_0.20-45 haven_2.5.1
## [63] GenomicFeatures_1.51.0 KEGGREST_1.39.0
## [65] magick_2.7.3 pillar_1.8.1
## [67] knitr_1.40 rjson_0.2.21
## [69] fpc_2.2-9 corpcor_1.6.10
## [71] codetools_0.2-18 mutoss_0.1-12
## [73] glue_1.6.2 RcppArmadillo_0.11.4.0.1
## [75] data.table_1.14.4 vctrs_0.5.0
## [77] png_0.1-7 Rdpack_2.4
## [79] cellranger_1.1.0 mnem_1.15.0
## [81] gtable_0.3.1 kernlab_0.9-31
## [83] assertthat_0.2.1 amap_0.8-19
## [85] cachem_1.0.6 xfun_0.34
## [87] rbibutils_2.2.9 mime_0.12
## [89] RcppEigen_0.3.3.9.2 tidygraph_1.2.2
## [91] survival_3.4-0 gargle_1.2.1
## [93] fastICA_1.2-3 statmod_1.4.37
## [95] interactiveDisplayBase_1.37.0 ellipsis_0.3.2
## [97] TH.data_1.1-1 tsne_0.1-3.1
## [99] nlme_3.1-160 naturalsort_0.1.3
## [101] bit64_4.0.5 progress_1.2.2
## [103] gmodels_2.18.1.1 filelock_1.0.2
## [105] bslib_0.4.0 colorspace_2.0-3
## [107] DBI_1.1.3 nnet_7.3-18
## [109] mnormt_2.1.1 tidyselect_1.2.0
## [111] bit_4.0.4 compiler_4.3.0
## [113] curl_4.3.3 rvest_1.0.3
## [115] expm_0.999-6 xml2_1.3.3
## [117] TFisher_0.2.0 ggdendro_0.1.23
## [119] DelayedArray_0.25.0 shadowtext_0.1.2
## [121] bookdown_0.29 rtracklayer_1.59.0
## [123] harmonicmeanp_3.0 sfsmisc_1.1-13
## [125] scales_1.2.1 DEoptimR_1.0-11
## [127] RBGL_1.75.0 rappdirs_0.3.3
## [129] snowfall_1.84-6.2 apcluster_1.4.10
## [131] digest_0.6.30 rmarkdown_2.17
## [133] XVector_0.39.0 htmltools_0.5.3
## [135] pkgconfig_2.0.3 highr_0.9
## [137] dbplyr_2.2.1 fastmap_1.1.0
## [139] rlang_1.0.6 shiny_1.7.3
## [141] farver_2.1.1 jquerylib_0.1.4
## [143] zoo_1.8-11 jsonlite_1.8.3
## [145] BiocParallel_1.33.0 mclust_6.0.0
## [147] RCurl_1.98-1.9 magrittr_2.0.3
## [149] modeltools_0.2-23 GenomeInfoDbData_1.2.9
## [151] munsell_0.5.0 Rcpp_1.0.9
## [153] viridis_0.6.2 stringi_1.7.8
## [155] zlibbioc_1.45.0 MASS_7.3-58.1
## [157] plyr_1.8.7 AnnotationHub_3.7.0
## [159] org.Hs.eg.db_3.16.0 flexmix_2.3-18
## [161] parallel_4.3.0 ggrepel_0.9.1
## [163] Biostrings_2.67.0 graphlayouts_0.8.3
## [165] splines_4.3.0 multtest_2.55.0
## [167] hms_1.1.2 locfit_1.5-9.6
## [169] qqconf_1.3.0 fastcluster_1.2.3
## [171] igraph_1.3.5 reshape2_1.4.4
## [173] biomaRt_2.55.0 BiocVersion_3.17.0
## [175] XML_3.99-0.12 reprex_2.0.2
## [177] evaluate_0.17 metap_1.8
## [179] pcalg_2.7-7 modelr_0.1.9
## [181] BiocManager_1.30.19 tzdb_0.3.0
## [183] tweenr_2.0.2 httpuv_1.6.6
## [185] polyclip_1.10-4 clue_0.3-62
## [187] BiocBaseUtils_1.1.0 ggforce_0.4.1
## [189] broom_1.0.1 xtable_1.8-4
## [191] restfulr_0.0.15 e1071_1.7-12
## [193] later_1.3.0 viridisLite_0.4.1
## [195] class_7.3-20.1 googledrive_2.0.0
## [197] snow_0.4-4 ggm_2.5
## [199] ellipse_0.4.3 memoise_2.0.1
## [201] AnnotationDbi_1.61.0 GenomicAlignments_1.35.0
## [203] cluster_2.1.4
Sales, Gabriele, Enrica Calura, Duccio Cavalieri, and Chiara Romualdi. 2012. “Graphite-a Bioconductor Package to Convert Pathway Topology to Gene Network.” BMC Bioinformatics 13 (1): 20.