The mbOmic
package contains a set of analysis functions for microbiomics and metabolomics data, designed to analyze the inter-omic correlation between microbiology and metabolites, referencing the workflow of Jonathan Braun et al1.
Load metabolites and OTU abundance data of plant.2 The OTU had been binned into genera level and were save as the metabolites_and_genera.rda file
mbSet
object.bSet
is S4 class containing the metabolites abundance matrix.
We can use bSet
function to directly create bSet
class.
names(metabolites)[1] <- 'rn'
m <- mSet(m = metabolites)
m
#> 1. Features( 12 ):
#> Delavirdine Leucoside 山奈酚3-O-桑布双糖苷 (3S)-2'-(Methylsulfanyl)-4'H-spiro[indole-3,5'-[1,3]thiazol]-2(1H)-one Cefepime versicotide A ...
#> 2. Samples( 247 ):
#> BS1 BS2 BS3 BS4 BS5 ...
#> 3. Top 5 Samples data:
#> [1] 1 2 3 4 5
There are some function to get or set information of a bSet
, such as samples
and features
.
Extract the samples names from bSet
class by function Samples
.
Removal of analytes only measured in <2 of samples can perform by clean_analytes
.
mbOmic
can generate metabolite module by coExpress
function. The coExpress
function is the encapsulation of one-step network construction and module detection of WGCNA
package. The coExpress
function firstly pick up the soft-threshold. The threshold.d
and threshold
parameters are used to detect whether is \(R^2\) changing and appropriate.
If there are no appropriate threshold was detected and you do not set the power
parameter, the coExpress
will throw a error, “No power detected! pls set the power parameter”.
#> Error in coExpress(m, message = TRUE, threshold.d = 0.02, threshold = 0.8, :
#> No power detected! pls set the power parameter
class(net)
#> [1] "try-error"
If you can’t get a good scale-free topology index no matter how high set the soft-thresholding power, you can directly set the power value by the parameter power
, but should be looked into carefully. The appropriate soft-thresholding power can be chosen based on the number of samples as in the table below (recommend by WGCNA
package).
Number of samples | Unsigned and signed hybrid networks | Signed networks |
---|---|---|
<20 | 9 | 18 |
20~30 | 8 | 16 |
30~40 | 7 | 14 |
>40 | 6 | 12 |
you can calculate the correlation between metabolites and OTUs by corr
function. It return a data table containing rho
, p value
, and adjust p value
. Moreover, the corr
can run in parallel mode.
b <- genera
names(b)[1] <- 'rn'
b <- bSet(b=b)
spearm <- corr(m = m, b = b, method = 'spearman')
# head(spearm)
spearm[p<=0.001]
#> b m
#> 1: unidentified_Acidimicrobiia Delavirdine
#> 2: Acidibacter Leucoside 山奈酚3-O-桑布双糖苷
#> 3: Dongia Leucoside 山奈酚3-O-桑布双糖苷
#> 4: unidentified_Clostridiales Leucoside 山奈酚3-O-桑布双糖苷
#> 5: Acidibacter versicotide A
#> ---
#> 366: unidentified_Acidimicrobiia Methyl cinnamate
#> 367: Chujaibacter Catharine
#> 368: Ralstonia Catharine
#> 369: unidentified_Clostridiales Catharine
#> 370: Candidatus_Udaeobacter Tri-2,5-cyclohexadien-1-yl(octyl)silane
#> rho p padj
#> 1: 0.8391608 0.0006428260 0.010134767
#> 2: -0.8321678 0.0007854417 0.010744842
#> 3: 0.8601399 0.0003316683 0.008057909
#> 4: -0.8391608 0.0006428260 0.010134767
#> 5: -0.8881119 0.0001141336 0.006342975
#> ---
#> 366: 0.8671329 0.0002598118 0.007310908
#> 367: -0.8321678 0.0007854417 0.010744842
#> 368: -0.8861660 0.0001239889 0.006526816
#> 369: -0.8881119 0.0001141336 0.006342975
#> 370: 0.8531469 0.0004181179 0.008646290
Finally, you can vaisulize the network by plot_network
function, taking the coExpress
and corr
output. The orange nodes correspondes to OTU(genera)).
devtools::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.2.1 (2022-06-23)
#> os Ubuntu 20.04.5 LTS
#> system x86_64, linux-gnu
#> ui X11
#> language (EN)
#> collate C
#> ctype en_US.UTF-8
#> tz America/New_York
#> date 2022-11-01
#> pandoc 2.5 @ /usr/bin/ (via rmarkdown)
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date (UTC) lib source
#> AnnotationDbi 1.60.0 2022-11-01 [2] Bioconductor
#> assertthat 0.2.1 2019-03-21 [2] CRAN (R 4.2.1)
#> backports 1.4.1 2021-12-13 [2] CRAN (R 4.2.1)
#> base64enc 0.1-3 2015-07-28 [2] CRAN (R 4.2.1)
#> Biobase 2.58.0 2022-11-01 [2] Bioconductor
#> BiocGenerics 0.44.0 2022-11-01 [2] Bioconductor
#> Biostrings 2.66.0 2022-11-01 [2] Bioconductor
#> bit 4.0.4 2020-08-04 [2] CRAN (R 4.2.1)
#> bit64 4.0.5 2020-08-30 [2] CRAN (R 4.2.1)
#> bitops 1.0-7 2021-04-24 [2] CRAN (R 4.2.1)
#> blob 1.2.3 2022-04-10 [2] CRAN (R 4.2.1)
#> bslib 0.4.0 2022-07-16 [2] CRAN (R 4.2.1)
#> cachem 1.0.6 2021-08-19 [2] CRAN (R 4.2.1)
#> callr 3.7.2 2022-08-22 [2] CRAN (R 4.2.1)
#> checkmate 2.1.0 2022-04-21 [2] CRAN (R 4.2.1)
#> cli 3.4.1 2022-09-23 [2] CRAN (R 4.2.1)
#> cluster 2.1.4 2022-08-22 [2] CRAN (R 4.2.1)
#> codetools 0.2-18 2020-11-04 [2] CRAN (R 4.2.1)
#> colorspace 2.0-3 2022-02-21 [2] CRAN (R 4.2.1)
#> crayon 1.5.2 2022-09-29 [2] CRAN (R 4.2.1)
#> data.table 1.14.4 2022-10-17 [2] CRAN (R 4.2.1)
#> DBI 1.1.3 2022-06-18 [2] CRAN (R 4.2.1)
#> deldir 1.0-6 2021-10-23 [2] CRAN (R 4.2.1)
#> devtools 2.4.5 2022-10-11 [2] CRAN (R 4.2.1)
#> digest 0.6.30 2022-10-18 [2] CRAN (R 4.2.1)
#> doParallel 1.0.17 2022-02-07 [2] CRAN (R 4.2.1)
#> dplyr 1.0.10 2022-09-01 [2] CRAN (R 4.2.1)
#> dynamicTreeCut 1.63-1 2016-03-11 [2] CRAN (R 4.2.1)
#> ellipsis 0.3.2 2021-04-29 [2] CRAN (R 4.2.1)
#> evaluate 0.17 2022-10-07 [2] CRAN (R 4.2.1)
#> fansi 1.0.3 2022-03-24 [2] CRAN (R 4.2.1)
#> fastcluster 1.2.3 2021-05-24 [2] CRAN (R 4.2.1)
#> fastmap 1.1.0 2021-01-25 [2] CRAN (R 4.2.1)
#> foreach 1.5.2 2022-02-02 [2] CRAN (R 4.2.1)
#> foreign 0.8-83 2022-09-28 [2] CRAN (R 4.2.1)
#> Formula 1.2-4 2020-10-16 [2] CRAN (R 4.2.1)
#> fs 1.5.2 2021-12-08 [2] CRAN (R 4.2.1)
#> generics 0.1.3 2022-07-05 [2] CRAN (R 4.2.1)
#> GenomeInfoDb 1.34.0 2022-11-01 [2] Bioconductor
#> GenomeInfoDbData 1.2.9 2022-09-28 [2] Bioconductor
#> ggplot2 3.3.6 2022-05-03 [2] CRAN (R 4.2.1)
#> glue 1.6.2 2022-02-24 [2] CRAN (R 4.2.1)
#> GO.db 3.16.0 2022-09-27 [2] Bioconductor
#> gridExtra 2.3 2017-09-09 [2] CRAN (R 4.2.1)
#> gtable 0.3.1 2022-09-01 [2] CRAN (R 4.2.1)
#> highr 0.9 2021-04-16 [2] CRAN (R 4.2.1)
#> Hmisc 4.7-1 2022-08-15 [2] CRAN (R 4.2.1)
#> htmlTable 2.4.1 2022-07-07 [2] CRAN (R 4.2.1)
#> htmltools 0.5.3 2022-07-18 [2] CRAN (R 4.2.1)
#> htmlwidgets 1.5.4 2021-09-08 [2] CRAN (R 4.2.1)
#> httpuv 1.6.6 2022-09-08 [2] CRAN (R 4.2.1)
#> httr 1.4.4 2022-08-17 [2] CRAN (R 4.2.1)
#> igraph 1.3.5 2022-09-22 [2] CRAN (R 4.2.1)
#> impute 1.72.0 2022-11-01 [2] Bioconductor
#> interp 1.1-3 2022-07-13 [2] CRAN (R 4.2.1)
#> IRanges 2.32.0 2022-11-01 [2] Bioconductor
#> iterators 1.0.14 2022-02-05 [2] CRAN (R 4.2.1)
#> jpeg 0.1-9 2021-07-24 [2] CRAN (R 4.2.1)
#> jquerylib 0.1.4 2021-04-26 [2] CRAN (R 4.2.1)
#> jsonlite 1.8.3 2022-10-21 [2] CRAN (R 4.2.1)
#> KEGGREST 1.38.0 2022-11-01 [2] Bioconductor
#> knitr 1.40 2022-08-24 [2] CRAN (R 4.2.1)
#> later 1.3.0 2021-08-18 [2] CRAN (R 4.2.1)
#> lattice 0.20-45 2021-09-22 [2] CRAN (R 4.2.1)
#> latticeExtra 0.6-30 2022-07-04 [2] CRAN (R 4.2.1)
#> lifecycle 1.0.3 2022-10-07 [2] CRAN (R 4.2.1)
#> magrittr 2.0.3 2022-03-30 [2] CRAN (R 4.2.1)
#> Matrix 1.5-1 2022-09-13 [2] CRAN (R 4.2.1)
#> matrixStats 0.62.0 2022-04-19 [2] CRAN (R 4.2.1)
#> mbOmic * 1.2.0 2022-11-01 [1] Bioconductor
#> memoise 2.0.1 2021-11-26 [2] CRAN (R 4.2.1)
#> mime 0.12 2021-09-28 [2] CRAN (R 4.2.1)
#> miniUI 0.1.1.1 2018-05-18 [2] CRAN (R 4.2.1)
#> mnormt 2.1.1 2022-09-26 [2] CRAN (R 4.2.1)
#> munsell 0.5.0 2018-06-12 [2] CRAN (R 4.2.1)
#> nlme 3.1-160 2022-10-10 [2] CRAN (R 4.2.1)
#> nnet 7.3-18 2022-09-28 [2] CRAN (R 4.2.1)
#> pillar 1.8.1 2022-08-19 [2] CRAN (R 4.2.1)
#> pkgbuild 1.3.1 2021-12-20 [2] CRAN (R 4.2.1)
#> pkgconfig 2.0.3 2019-09-22 [2] CRAN (R 4.2.1)
#> pkgload 1.3.1 2022-10-28 [2] CRAN (R 4.2.1)
#> png 0.1-7 2013-12-03 [2] CRAN (R 4.2.1)
#> preprocessCore 1.60.0 2022-11-01 [2] Bioconductor
#> prettyunits 1.1.1 2020-01-24 [2] CRAN (R 4.2.1)
#> processx 3.8.0 2022-10-26 [2] CRAN (R 4.2.1)
#> profvis 0.3.7 2020-11-02 [2] CRAN (R 4.2.1)
#> promises 1.2.0.1 2021-02-11 [2] CRAN (R 4.2.1)
#> ps 1.7.2 2022-10-26 [2] CRAN (R 4.2.1)
#> psych 2.2.9 2022-09-29 [2] CRAN (R 4.2.1)
#> purrr 0.3.5 2022-10-06 [2] CRAN (R 4.2.1)
#> R6 2.5.1 2021-08-19 [2] CRAN (R 4.2.1)
#> RColorBrewer 1.1-3 2022-04-03 [2] CRAN (R 4.2.1)
#> Rcpp 1.0.9 2022-07-08 [2] CRAN (R 4.2.1)
#> RCurl 1.98-1.9 2022-10-03 [2] CRAN (R 4.2.1)
#> remotes 2.4.2 2021-11-30 [2] CRAN (R 4.2.1)
#> rlang 1.0.6 2022-09-24 [2] CRAN (R 4.2.1)
#> rmarkdown 2.17 2022-10-07 [2] CRAN (R 4.2.1)
#> rpart 4.1.19 2022-10-21 [2] CRAN (R 4.2.1)
#> RSQLite 2.2.18 2022-10-04 [2] CRAN (R 4.2.1)
#> rstudioapi 0.14 2022-08-22 [2] CRAN (R 4.2.1)
#> S4Vectors 0.36.0 2022-11-01 [2] Bioconductor
#> sass 0.4.2 2022-07-16 [2] CRAN (R 4.2.1)
#> scales 1.2.1 2022-08-20 [2] CRAN (R 4.2.1)
#> sessioninfo 1.2.2 2021-12-06 [2] CRAN (R 4.2.1)
#> shiny 1.7.3 2022-10-25 [2] CRAN (R 4.2.1)
#> stringi 1.7.8 2022-07-11 [2] CRAN (R 4.2.1)
#> stringr 1.4.1 2022-08-20 [2] CRAN (R 4.2.1)
#> survival 3.4-0 2022-08-09 [2] CRAN (R 4.2.1)
#> tibble 3.1.8 2022-07-22 [2] CRAN (R 4.2.1)
#> tidyselect 1.2.0 2022-10-10 [2] CRAN (R 4.2.1)
#> urlchecker 1.0.1 2021-11-30 [2] CRAN (R 4.2.1)
#> usethis 2.1.6 2022-05-25 [2] CRAN (R 4.2.1)
#> utf8 1.2.2 2021-07-24 [2] CRAN (R 4.2.1)
#> vctrs 0.5.0 2022-10-22 [2] CRAN (R 4.2.1)
#> visNetwork 2.1.2 2022-09-29 [2] CRAN (R 4.2.1)
#> WGCNA 1.71 2022-04-22 [2] CRAN (R 4.2.1)
#> xfun 0.34 2022-10-18 [2] CRAN (R 4.2.1)
#> xtable 1.8-4 2019-04-21 [2] CRAN (R 4.2.1)
#> XVector 0.38.0 2022-11-01 [2] Bioconductor
#> yaml 2.3.6 2022-10-18 [2] CRAN (R 4.2.1)
#> zlibbioc 1.44.0 2022-11-01 [2] Bioconductor
#>
#> [1] /tmp/RtmpPw8mOP/Rinst1ebacc4c9ccbe5
#> [2] /home/biocbuild/bbs-3.16-bioc/R/library
#>
#> ──────────────────────────────────────────────────────────────────────────────
McHardy, I. H., Goudarzi, M., Tong, M., Ruegger, P. M., Schwager, E., Weger, J. R., Graeber, T. G., Sonnenburg, J. L., Horvath, S., Huttenhower, C., McGovern, D. P., Fornace, A. J., Borneman, J., & Braun, J. (2013). Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships. Microbiome, 1(1), 17. https://doi.org/10.1186/2049-2618-1-17↩
Huang, W., Sun, D., Chen, L., & An, Y. (2021). Integrative analysis of the microbiome and metabolome in understanding the causes of sugarcane bitterness. Scientific Reports, 11(1), 1-11.↩