
BEARscc: Using spike-ins to assess single
cell cluster robustness

David T. Severson

1 November 2022

Contents

1 Introduction . 2

1.1 Scope . 2

1.2 Installation . 2

1.3 Citation. 2

2 Tutorial . 3

2.1 Overview . 3

2.2 Building the noise model . 4

2.3 Simulating technical replicates 5

2.4 Simulation of replicates for larger datasets. 5

2.5 Forming a noise consensus . 7

2.6 Evaluating the noise consensus 9

3 Algorithm and theory . 17

3.1 Noise estimation . 17

3.2 Simulating technical replicates 20

4 List of functions . 21

4.1 estimate_noiseparameters() 21

4.2 simulate_replicates() . 21

4.3 HPC_simulate_replicates() . 22

4.4 compute_consensus() . 22

4.5 cluster_consensus() . 23

4.6 report_cell_metrics() . 23

4.7 report_cluster_metrics() . 24

4.8 BEARscc_examples . 25

4.9 analysis_examples . 25

5 License . 26

BEARscc: Using spike-ins to assess single cell cluster robustness

1 Introduction

1.1 Scope
Single-cell transcriptome sequencing data are subject to substantial technical variation and
batch effects that can confound the classification of cellular sub-types. Unfortunately, current
clustering algorithms do not account for this uncertainty. To address this shortcoming, we
have developed a noise perturbation algorithm called BEARscc that is designed to determine
the extent to which classifications by existing clustering algorithms are robust to observed
technical variation.

BEARscc makes use of spike-in measurements to model technical variance as a function of
gene expression and technical dropout effects on lowly expressed genes. In our benchmarks,
we found that BEARscc accurately models read count fluctuations and drop-out effects across
transcripts with diverse expression levels. Applying our approach to publicly available single-
cell transcriptome data of mouse brain and intestine, we have demonstrated that BEARscc
identified cells that cluster consistently, irrespective of technical variation. For more details,
see the manuscript on bioRxiv.

Importantly, BEARscc should not be considered another clustering algorithm. Specifically,
this package is designed to supply users with an organic tool to evaluate and explore the impact
of noise on their single cell cluster interpretations. The package provides users with a way to
clarify the precision of a single cell experiment with respect to grouping cells into clusters
that are biologically meaningful. In this way, BEARscc allows users to achieve confidence in
clusters and relevant cells that consistently cluster together invariant to the noise inherent to
a single cell experiment. Conversely, the algorithm provides a mechanism to identify cells and
clusters which cannot be resolved given the precision of the experiment in conjuction with the
clustering algorithm of choice. It is our hope that BEARscc will enable users to proceed with
clusters, or biological groups, in which they are confident are robust to noise and in which
they have an intimate understanding of those cells and clusters that may be less precisely
assigned to the putative biological role.

1.2 Installation
BEARscc is now available on Bioconductor and can be installed using the syntax below.

if (!requireNamespace("BiocManager", quietly=TRUE))

install.packages("BiocManager")

BiocManager::install("BEARscc")

1.3 Citation
BEARscc and its associated manuscript are currently under review for publication at a
peer-reviewed journal. For now, please cite the bioRxiv pre-print:

Severson, DT. Owen, RP. White, MJ. Lu, X. Schuster-Boeckler, B.

BEARscc determines robustness of single-cell clusters using simulated

technical replicates. doi: https://doi.org/10.1101/118919

2

http://biorxiv.org/content/early/2017/03/21/118919

BEARscc: Using spike-ins to assess single cell cluster robustness

2 Tutorial

2.1 Overview
BEARscc relies upon spike-in count measurements in single-cell transcriptome experiments to
estimate experimental noise and produce simulated technical replicates to provide a quantitative
understanding of the robustness of proposed single cell cluster labels to experimental noise.
In principal, the algorithm is compatible with any clustering algorithm. The following should
provide users with a comprehensive tutorial of the use and utlity of BEARscc as a tool for
vetting single cell clusters with respect to experimental noise.

Before getting started, we need to load some example single cell data.BEARscc is equipped
with a set of sample data for the purpose of testing functions, examples in help files, and this
nifty tutorial. The data may be loaded as follows:

library("BEARscc")

data("BEARscc_examples")

The loaded file BEARscc_examples is equipped with separate data.frame objects in-
cluding ERCC spike-in observations (ERCC.counts.df), endogenous count observations
(data.counts.df), and the expected or actual spike-in concentrations (ERCC.meta.df) as
well as a SingleCellExperiment object that contains all of the above seperate components
(BEAR_examples.sce) as shown below:

head(ERCC.counts.df[,1:2])

#> WTCHG_217386_229230 WTCHG_217386_249229

#> ERCC-00002 629 803

#> ERCC-00003 13 27

#> ERCC-00004 61 49

#> ERCC-00009 183 202

#> ERCC-00013 0 0

#> ERCC-00019 0 0

head(data.counts.df[,1:2])

#> WTCHG_217386_229230 WTCHG_217386_249229

#> ENSG00000000003 0 0

#> ENSG00000000419 0 0

#> ENSG00000000457 0 1

#> ENSG00000000460 1 37

#> ENSG00000000938 0 0

#> ENSG00000000971 0 0

head(ERCC.meta.df)

#> Transcripts

#> ERCC-00002 3.011070e+02

#> ERCC-00003 1.881919e+01

#> ERCC-00004 1.505535e+02

#> ERCC-00009 1.881919e+01

#> ERCC-00012 2.297264e-03

#> ERCC-00013 1.837812e-02

BEAR_examples.sce

3

BEARscc: Using spike-ins to assess single cell cluster robustness

#> class: SingleCellExperiment

#> dim: 174 50

#> metadata(1): spikeConcentrations

#> assays(2): counts observed_expression

#> rownames(174): ENSG00000000003 ENSG00000000419 ... ERCC-001701

#> ERCC-001711

#> rowData names(0):

#> colnames(50): WTCHG_217386_229230 WTCHG_217386_249229 ...

#> WTCHG_230414_256254 WTCHG_230414_256278

#> colData names(0):

#> reducedDimNames(0):

#> mainExpName: NULL

#> altExpNames(1): ERCC_spikes

In the event we were working with a new set of data, the spike-in concentrations data.frame
can be computed from industry reported concentrations and the relevant dilution protocol
utilized in the experiment. Count tables would need to be mapped and counted with preferred
software, and the spike-in control counts (ERCC or otherwise) would need to be identified
from the endogenous counts.

Below is how one would create a SingleCellExperiment object from spike-in count, en-
dogenous count, and spike-in concentration data.frame objects. Note how we create
the observed_expression assay object in the following code. This object is essential in
that all estimation and simulation of replicates occurs assuming these are the observed
counts (normalized or otherwise). Without them BEARscc will throw an error indicat-
ing that "observed_expression" not in names(assays(<SingleCellExperiment>)). Also,
data.counts.df in this example includes both spike-in genes and endogenous genes. In
general, we recommend spike-in genes be simulated with endogenous genes as a control, and
this will be done by default when the SingleCellExperiment object is used.

BEAR.se <- SummarizedExperiment(list(counts=as.matrix(data.counts.df)))

BEAR_examples.sce<-as(BEAR.se, "SingleCellExperiment")

metadata(BEAR_examples.sce)<-list(spikeConcentrations=ERCC.meta.df)

assay(BEAR_examples.sce, "observed_expression")<-counts(BEAR_examples.sce)

altExp(BEAR_examples.sce, "ERCC_spikes")<-BEAR_examples.sce[grepl("^ERCC-",

rownames(BEAR_examples.sce)),]

Running the above code should yield a SingleCellExperiment object identical to the one
that loads with data("BEARscc_examples").

2.2 Building the noise model
We will now estimate the single-cell noise present in the experiment using spike-in controls. In
this tutorial, we rely upon a subsample of artificial control data found in BEARscc_examples;
however, users are encouraged to work through the tutorial with their own single cell data
provided some form of spike-ins were included in the experiment. Building the noise models
with BEARscc is relatively straightforward with estimate_noiseparameters(). We simply
provide the function with the now adequately annotated SingleCellExperiment object,
BEAR_examples.sce. Here, the parameter ‘alpha_resolution is set to 0.1 to speed things along,
but we suggest values between 0.001 and 0.01 be used in real applications of BEARscc.

4

BEARscc: Using spike-ins to assess single cell cluster robustness

BEAR_examples.sce <- estimate_noiseparameters(BEAR_examples.sce,

max_cumprob=0.9999, alpha_resolution = 0.1, bins=10,

write.noise.model=FALSE, file="BEAR_examples")

#> [1] "Fitting parameter alpha to establish spike-in derived noise model."

#> [1] "Estimating error for spike-ins with alpha = 0"

#> [1] "Estimating error for spike-ins with alpha = 0.5"

#> [1] "Estimating error for spike-ins with alpha = 1"

#> [1] "There are adequate spike-in drop-outs to build the drop-out model. Estimating the drop-out model now."

Several options exist for estimate_noiseparameters(). These are fully documented in the
help page ?estimate_noiseparameters.

2.3 Simulating technical replicates
Following estimation of noise, the parameters computed are then used to generate a simulate a
technical replicate. Here we will simulate replicates on our local computer, but frequently users
will want to utilize the methods described in Section 2.4. Notably the necessary parameters are
conveniently stored in the metadata of our SingleCellExpression object, BEAR_examples.sce
following noise estimation, and so we simply run:

BEAR_examples.sce <- simulate_replicates(BEAR_examples.sce,

max_cumprob=0.9999, n=10)

#> [1] "Creating a simulated replicated counts matrix: 1."

#> [1] "Creating a simulated replicated counts matrix: 2."

#> [1] "Creating a simulated replicated counts matrix: 3."

#> [1] "Creating a simulated replicated counts matrix: 4."

#> [1] "Creating a simulated replicated counts matrix: 5."

#> [1] "Creating a simulated replicated counts matrix: 6."

#> [1] "Creating a simulated replicated counts matrix: 7."

#> [1] "Creating a simulated replicated counts matrix: 8."

#> [1] "Creating a simulated replicated counts matrix: 9."

#> [1] "Creating a simulated replicated counts matrix: 10."

Recall that BEAR_examples.sce is our SingleCellExperiment object that we recently
annoated with model parameters describing experimental noise using the function esti

mate_noiseparameters() and note that the variable n is the desired number of simulated
technical replicates (e.g. 10). Finally, the maxcum_prob is identical to its use in the noise
estimation. If the user deviated from the default parameter, it is highly recommended that
this value be identical to the value utilized in estimate_noiseparmaters() The resulting
object is a list, where each element is a simulated technical replicate, and one element is the
original counts matrix.

2.4 Simulation of replicates for larger datasets
For larger datasets, we set write.noise.model=TRUE when running estimate_noiseparameters()and
copy the written bayesian drop-out and noise estimate files with the observed counts table to
a high performance computing environment. The following code provides an example:

BEAR_examples.sce <- estimate_noiseparameters(BEAR_examples.sce,

write.noise.model=TRUE,

5

BEARscc: Using spike-ins to assess single cell cluster robustness

file="tutorial_example",

model_view=c("Observed","Optimized"))

After running the above code, then within the current working directory (if unsure use
getwd()), we should find the two tab-delimited files that together completely describe the
BEARscc noise model. These are the parameters describing the mixed model of technical
variation (tutorial_example_parameters4randomize.xls, see Section 3.1.1) and the parame-
ters describing the drop-out model (tutorial_example_bayesianestimates.xls, see Section
3.1.2). In addition, we should find our "observed_expression"matrix in the form of tuto
rial_example_counts4clusterperturbation.xls. Note that the xls subscript just allows
users to quickly open these tab-delimited files in Microsoft Excel if desired, but these can be
readily viewed on the terminal or in simple text editors as well.

With the original counts file and noise model prepared, we then copy these files to our high
performance compute cluster. The following code provides a sense of how to proceed once
these files have been copied to a high performance cluster; however, the job submission
structure of each user’s environment will dictate the precise syntax for the following procedure.

The script HPC_generate_noise_matrices contains an analogous simulate_replicates()

for a high performance computational node. To utilize these functions for simulating tech-
nical replicates on a cluster, please install BEARscc on the relevant cluster. The user
should write an R script to load the BEARscc library and run the clustering. The following
code provides a suggested format for both calling the R script with a bash job script and
the relevant R invocation of BEARscc and may also be found as a stand alone script in
inst/example/HPC_run_example.R.

Our cluster utilizes a job submission format that interacts seamlessly with bash code; therefore,
the $SGE_TASKID represents an array id for
jobs to conveniently generate 100 simulated technical replicates in a single job array. In any
case, this variable should be treated as the index for the simulated technical replicate as we
recommend from experience that users generate 50 to 100 such simulated technical replicates
to reach a stable noise consensus matrix solution.

The following bash code could be included in one such job script:

Rscript --vanilla HPC_run_example.R $SGE_TASK_ID

Noting that the file HPC_run_example.R contains the following suggested code to run BEARscc:

library("BEARscc")

Load data

ITERATION<-commandArgs(trailingOnly=TRUE)[1]

counts.df<-read.delim("tutorial_example_counts4clusterperturbation.xls")

#filter out zero counts to speed up algorithm

counts.df<-counts.df[rowSums(counts.df)>0,]

probs4detection<-fread("tutorial_example_bayesianestimates.xls")

parameters<-fread("tutorial_example_parameters4randomize.xls")

Simulate replicates

counts.error<-HPC_simulate_replicates(counts_matrix=counts.df,

dropout_parameters=dropout_parameters,

spikein_parameters=spikein_parameters)

6

BEARscc: Using spike-ins to assess single cell cluster robustness

write.table(counts.error, file=paste("simulated_replicates/",

paste(ITERATION,"sim_replicate_counts.txt",sep="_"),

sep=""), quote =FALSE, row.names=TRUE)

#########

The script generates seperate simulated technical replicate files, which can be loaded into R
as a list for clustering or, in the case of more computationally intense clustering algorithms,
re-clustered individually in a high performance compute environment.

2.5 Forming a noise consensus
After generating simulated technical replicates, these should be re-clustered using the clustering
method applied to the original dataset. For simplicity, here we use hierarchical clustering
on a euclidean distance metric to identify two clusters. In our experience, some published
clustering algorithms are sensitive to cell order, so we suggest scrambling the order of cells for
each noise iteration as we do below in the function, recluster(). The function below will
serve our purposes for this tutorial, but BEARscc may be used with any clustering algorithm
(e.g. SC3, RaceID2, or BackSPIN).

To quickly recluster a list of simulated technical replicates, we define a reclustering function:

recluster <- function(x) {

x <- data.frame(x)

scramble <- sample(colnames(x), size=length(colnames(x)), replace=FALSE)

x <- x[,scramble]

clust <- hclust(dist(t(x), method="euclidean"),method="complete")

clust <- cutree(clust,2)

data.frame(clust)

}

First, we need to determine how the observed data clusters under our algorithm of choice
(e.g. recluster(), which is a simple hiearchical clustering for illustrative purposes). These
are the clusters that can be evaluated by BEARscc and compared to BEARscc meta-clustering:

OG_clusters<-recluster(data.frame(assay(BEAR_examples.sce,

"observed_expression")))

colnames(OG_clusters)<-"Original"

We then apply the function recluster() to all simulated technical replicates and the original
counts matrix and manipulate the list into a data.frame.

cluster.list<-lapply(metadata(BEAR_examples.sce)$simulated_replicates,

`recluster`)

clusters.df<-do.call("cbind", cluster.list)

colnames(clusters.df)<-names(cluster.list)

Note: If running clustering algorithms on a seperate high performance cluster, the user should
retrieve labels and format as a data.frame of cluster labels, where the last column must be
the original cluster labels derived from the observed count data. As an example, examine the
file, inst/example/example_clusters.tsv.

7

inst/example/example_clusters.tsv

BEARscc: Using spike-ins to assess single cell cluster robustness

Using the cluster labels file generated by clustering simulated technical replicates on a high
performance compute environment or with recluster() as described above , we can generate
a noise consensus matrix as shown below. An illustrative three rows and columns of an
example noise consensus matrix are displayed:

noise_consensus <- compute_consensus(clusters.df)

head(noise_consensus[,1:3], n=3)

#> WTCHG_230414_204254 WTCHG_230414_232230 WTCHG_227074_204206

#> WTCHG_230414_204254 1.0000000 0.4444444 0.8888889

#> WTCHG_230414_232230 0.4444444 1.0000000 0.5555556

#> WTCHG_227074_204206 0.8888889 0.5555556 1.0000000

Using the aheatmap() function in the NMF library, the consensus matrix result of 10 simulated
replicates by BEARscc:

To reproduce the plot run:

library("NMF")

#> Loading required package: pkgmaker

#> Loading required package: registry

#>

#> Attaching package: 'pkgmaker'

#> The following object is masked from 'package:S4Vectors':

#>

#> new2

#> Loading required package: rngtools

#> Loading required package: cluster

#> NMF - BioConductor layer [OK] | Shared memory capabilities [NO: synchronicity] | Cores 71/72

#> To enable shared memory capabilities, try: install.extras('

#> NMF

#> ')

#>

#> Attaching package: 'NMF'

#> The following object is masked from 'package:S4Vectors':

#>

#> nrun

aheatmap(noise_consensus, breaks=0.5)

8

BEARscc: Using spike-ins to assess single cell cluster robustness

W
T

C
H

G
_227074_256278

W
T

C
H

G
_227074_204278

W
T

C
H

G
_227074_232254

W
T

C
H

G
_227074_208229

W
T

C
H

G
_227074_232206

W
T

C
H

G
_230414_252253

W
T

C
H

G
_230414_256278

W
T

C
H

G
_230414_204206

W
T

C
H

G
_227074_208277

W
T

C
H

G
_230414_204254

W
T

C
H

G
_227074_232230

W
T

C
H

G
_230414_256230

W
T

C
H

G
_227074_204230

W
T

C
H

G
_230414_252277

W
T

C
H

G
_227074_204206

W
T

C
H

G
_230414_232278

W
T

C
H

G
_230414_256206

W
T

C
H

G
_227074_208205

W
T

C
H

G
_230414_228278

W
T

C
H

G
_230414_228254

W
T

C
H

G
_230414_256254

W
T

C
H

G
_227074_228206

W
T

C
H

G
_230414_232230

W
T

C
H

G
_230414_232254

W
T

C
H

G
_227074_256230

W
T

C
H

G
_227074_252277

W
T

C
H

G
_230414_228206

W
T

C
H

G
_227074_228278

W
T

C
H

G
_227074_208253

W
T

C
H

G
_230414_232206

W
T

C
H

G
_217386_249229

W
T

C
H

G
_227074_232278

W
T

C
H

G
_227074_204254

W
T

C
H

G
_227074_256206

W
T

C
H

G
_230414_208229

W
T

C
H

G
_227074_252205

W
T

C
H

G
_230414_208277

W
T

C
H

G
_227074_252253

W
T

C
H

G
_217386_229230

W
T

C
H

G
_230414_208253

W
T

C
H

G
_230414_252205

W
T

C
H

G
_227074_228254

W
T

C
H

G
_227074_256254

W
T

C
H

G
_227074_228230

W
T

C
H

G
_230414_228230

W
T

C
H

G
_227074_252229

W
T

C
H

G
_230414_252229

W
T

C
H

G
_230414_204230

W
T

C
H

G
_230414_208205

W
T

C
H

G
_230414_204278

WTCHG_227074_256278

WTCHG_227074_204278

WTCHG_227074_232254

WTCHG_227074_208229

WTCHG_227074_232206

WTCHG_230414_252253

WTCHG_230414_256278

WTCHG_230414_204206

WTCHG_227074_208277

WTCHG_230414_204254

WTCHG_227074_232230

WTCHG_230414_256230

WTCHG_227074_204230

WTCHG_230414_252277

WTCHG_227074_204206

WTCHG_230414_232278

WTCHG_230414_256206

WTCHG_227074_208205

WTCHG_230414_228278

WTCHG_230414_228254

WTCHG_230414_256254

WTCHG_227074_228206

WTCHG_230414_232230

WTCHG_230414_232254

WTCHG_227074_256230

WTCHG_227074_252277

WTCHG_230414_228206

WTCHG_227074_228278

WTCHG_227074_208253

WTCHG_230414_232206

WTCHG_217386_249229

WTCHG_227074_232278

WTCHG_227074_204254

WTCHG_227074_256206

WTCHG_230414_208229

WTCHG_227074_252205

WTCHG_230414_208277

WTCHG_227074_252253

WTCHG_217386_229230

WTCHG_230414_208253

WTCHG_230414_252205

WTCHG_227074_228254

WTCHG_227074_256254

WTCHG_227074_228230

WTCHG_230414_228230

WTCHG_227074_252229

WTCHG_230414_252229

WTCHG_230414_204230

WTCHG_230414_208205

WTCHG_230414_204278

0

0.2

0.4

0.6

0.8

1

Although, 10 simulated replicates is sparse (we recommend 50 to 100), we can already see
that these samples likely belong to a single cluster. Indeed, these samples were prepared
from a single ground truth of dilute whole tissue brain RNA-seq data from two batches of
experimental data. If desired, we could annotate the above heatmap with relevant metadata
concerning sample batch, origin, etc.

2.6 Evaluating the noise consensus
In order to further interpret the noise consensus, we have defined three cluster (and analagous
cell) metrics. Stability indicates the propensity for a putative cluster to contain the same cells
across noise-injected counts matrices. Promiscuity indicates a tendency for cells in a putative
cluster to associate with other clusters across noise-injected counts matrices. Score represents
the promiscuity substracted from the stability.

We have found it useful to inform the optimal number of clusters in terms of resiliance to
noise by examining these metrics by cutting hierarchical clustering dendograms of the noise
consensus and comparing the results to the original clustering labels. To do this create a
vector containing each number of clusters one wishes to examine (the function automatically
determines the results for the dataset as a single cluster) and then cluster the consensus with
various cluster numbers using cluster_consensus():

vector <- seq(from=2, to=5, by=1)

BEARscc_clusts.df <- cluster_consensus(noise_consensus,vector)

We add the original clustering to the data.frame to evaluate its robustness as well as the
suggested BEARscc clusters:

BEARscc_clusts.df <- cbind(BEARscc_clusts.df,

Original=OG_clusters)

9

BEARscc: Using spike-ins to assess single cell cluster robustness

2.6.1 Understanding robustness at the cluster level

Now we can compute cluster metrics for each of the BEARscc cluster number scenarious and
the original clustering; indeed, any cluster labels of the users choosing could be supplied to
vet with the information provided by the noise consensus. We accomplish this by running the
command and displaying the first 5 rows of the resulting melted data.frame:

cluster_scores.df <- report_cluster_metrics(BEARscc_clusts.df,

noise_consensus, plot=FALSE)

#> Warning in melt(metric_list, id.vars = c("size")): The melt generic in

#> data.table has been passed a list and will attempt to redirect to the relevant

#> reshape2 method; please note that reshape2 is deprecated, and this redirection

#> is now deprecated as well. To continue using melt methods from reshape2 while

#> both libraries are attached, e.g. melt.list, you can prepend the namespace like

#> reshape2::melt(metric_list). In the next version, this warning will become an

#> error.

#> Warning in melt(metric_list, id.vars = c("size")): The melt generic in

#> data.table has been passed a list and will attempt to redirect to the relevant

#> reshape2 method; please note that reshape2 is deprecated, and this redirection

#> is now deprecated as well. To continue using melt methods from reshape2 while

#> both libraries are attached, e.g. melt.list, you can prepend the namespace like

#> reshape2::melt(metric_list). In the next version, this warning will become an

#> error.

#> Warning in melt(metric_list, id.vars = c("size")): The melt generic in

#> data.table has been passed a list and will attempt to redirect to the relevant

#> reshape2 method; please note that reshape2 is deprecated, and this redirection

#> is now deprecated as well. To continue using melt methods from reshape2 while

#> both libraries are attached, e.g. melt.list, you can prepend the namespace like

#> reshape2::melt(metric_list). In the next version, this warning will become an

#> error.

#> Warning in melt(metric_list, id.vars = c("size")): The melt generic in

#> data.table has been passed a list and will attempt to redirect to the relevant

#> reshape2 method; please note that reshape2 is deprecated, and this redirection

#> is now deprecated as well. To continue using melt methods from reshape2 while

#> both libraries are attached, e.g. melt.list, you can prepend the namespace like

#> reshape2::melt(metric_list). In the next version, this warning will become an

#> error.

#> Warning in melt(metric_list, id.vars = c("size")): The melt generic in

#> data.table has been passed a list and will attempt to redirect to the relevant

#> reshape2 method; please note that reshape2 is deprecated, and this redirection

#> is now deprecated as well. To continue using melt methods from reshape2 while

#> both libraries are attached, e.g. melt.list, you can prepend the namespace like

#> reshape2::melt(metric_list). In the next version, this warning will become an

#> error.

#> Warning in melt(cluster.scores, id.var = c("rn", "size", "metric")): The melt

#> generic in data.table has been passed a list and will attempt to redirect to

#> the relevant reshape2 method; please note that reshape2 is deprecated, and

#> this redirection is now deprecated as well. To continue using melt methods from

10

BEARscc: Using spike-ins to assess single cell cluster robustness

#> reshape2 while both libraries are attached, e.g. melt.list, you can prepend the

#> namespace like reshape2::melt(cluster.scores). In the next version, this warning

#> will become an error.

head(cluster_scores.df, n=5)

#> Cluster.identity Cluster.size Metric Value Clustering

#> 1 1 50 Score 0.60995556 1

#> 2 1 50 Promiscuity 0.00000000 1

#> 3 1 50 Stability 0.60995556 1

#> 4 1 21 Score 0.05593348 2

#> 5 2 29 Score 0.08356139 2

#> Singlet Clustering.Mean

#> 1 Cell number > 1 0.60995556

#> 2 Cell number > 1 0.00000000

#> 3 Cell number > 1 0.60995556

#> 4 Cell number > 1 0.06974744

#> 5 Cell number > 1 0.06974744

Above is a melted data.frame that displays the name of each cluster, the size of each cluster,
the metric (Score, Promiscuity, Stability), the value of each metric for the respective cluster
and clustering, the clustering in question (1,2,. . . ,Original), whether the cluster consists of
only one cell, and finally the mean of each metric across all clusters in a clustering.

In the previous example, we display all metrics for generating 1 clusters from the data given
the previously computed noise consensus from 10 simulated technical replicates and the same
for the score metric generating 2 clusters from the data. Importantly, by definition, 1 cluster
scenarios have a promiscuity value of 0. Observe that the score for the cluster in the 1 cluster
scenario is much larger than either cluster of the 2 cluster scenario, and that this is reflected
in the average clustering column.

We can examine the BEARcc metrics for the original cluster using ggplot2 and by subsetting
the data.frame to the original cluster and the score metric:

library("ggplot2")

library("cowplot")

original_scores.df<-cluster_scores.df[

cluster_scores.df$Clustering=="Original",]

ggplot(original_scores.df[original_scores.df$Metric=="Score",],

aes(x=`Cluster.identity`, y=Value))+

geom_bar(aes(fill=`Cluster.identity`), stat="identity")+

xlab("Cluster identity")+ylab("Cluster score")+

ggtitle("Original cluster scores")+guides(fill=FALSE)

#> Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =

#> "none")` instead.

11

BEARscc: Using spike-ins to assess single cell cluster robustness

−0.04

−0.03

−0.02

−0.01

0.00

0.01

1 2
Cluster identity

C
lu

st
er

 s
co

re

Original cluster scores

We can see that this initial clustering is terrible, which makes sense given the ground truth
consists of a single biological entity. The stability and promiscuity metrics bear this out:

ggplot(original_scores.df[original_scores.df$Metric=="Stability",],

aes(x=`Cluster.identity`, y=Value))+

geom_bar(aes(fill=`Cluster.identity`), stat="identity")+

xlab("Cluster identity")+ylab("Cluster stability")+

ggtitle("Original cluster stability")+guides(fill=FALSE)

#> Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =

#> "none")` instead.

0.0

0.2

0.4

0.6

1 2
Cluster identity

C
lu

st
er

 s
ta

bi
lit

y

Original cluster stability

The high stability exhibited in the example above is not suprising as samples in this example
should have strong association with one another. However, the promuscuity below reveals the
reason for the low score:

12

BEARscc: Using spike-ins to assess single cell cluster robustness

ggplot(original_scores.df[original_scores.df$Metric=="Promiscuity",],

aes(x=`Cluster.identity`, y=Value))+

geom_bar(aes(fill=`Cluster.identity`), stat="identity")+

xlab("Cluster identity")+ylab("Cluster promiscuity")+

ggtitle("Original cluster promiscuity")+guides(fill=FALSE)

#> Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =

#> "none")` instead.

0.0

0.2

0.4

0.6

1 2
Cluster identity

C
lu

st
er

 p
ro

m
is

cu
ity

Original cluster promiscuity

Despite the high stability, the samples within each cluster have high association with cells in
the other cluster, which results in a high promiscuity reported from the noise consensus. As a
net result, the scores in the original 2 cluster case for each cluster are subpar. Again, this is
consistent with the ground truth of the example data.

2.6.2 Understanding robustness at the sample level

Completely analagous to cluster metrics, the extent to which cells belong within a given
cluster may be evaluated with respect to the noise consensus. Below we demonstrate how to
compute the cell metrics and display 4 cells for illustrative purposes.

cell_scores.df <- report_cell_metrics(BEARscc_clusts.df, noise_consensus)

#> Warning in melt(lapply(cluster_names, calculate_cell_metrics_by_cluster, :

#> The melt generic in data.table has been passed a list and will attempt

#> to redirect to the relevant reshape2 method; please note that reshape2 is

#> deprecated, and this redirection is now deprecated as well. To continue using

#> melt methods from reshape2 while both libraries are attached, e.g. melt.list,

#> you can prepend the namespace like reshape2::melt(lapply(cluster_names,

#> calculate_cell_metrics_by_cluster, consensus_matrix = consensus_matrix,

#> cluster_labels = cluster_labels)). In the next version, this warning will become

#> an error.

#> Warning in melt(lapply(cluster_names, calculate_cell_metrics_by_cluster, :

#> The melt generic in data.table has been passed a list and will attempt

#> to redirect to the relevant reshape2 method; please note that reshape2 is

13

BEARscc: Using spike-ins to assess single cell cluster robustness

#> deprecated, and this redirection is now deprecated as well. To continue using

#> melt methods from reshape2 while both libraries are attached, e.g. melt.list,

#> you can prepend the namespace like reshape2::melt(lapply(cluster_names,

#> calculate_cell_metrics_by_cluster, consensus_matrix = consensus_matrix,

#> cluster_labels = cluster_labels)). In the next version, this warning will become

#> an error.

#> Warning in melt(lapply(cluster_names, calculate_cell_metrics_by_cluster, :

#> The melt generic in data.table has been passed a list and will attempt

#> to redirect to the relevant reshape2 method; please note that reshape2 is

#> deprecated, and this redirection is now deprecated as well. To continue using

#> melt methods from reshape2 while both libraries are attached, e.g. melt.list,

#> you can prepend the namespace like reshape2::melt(lapply(cluster_names,

#> calculate_cell_metrics_by_cluster, consensus_matrix = consensus_matrix,

#> cluster_labels = cluster_labels)). In the next version, this warning will become

#> an error.

#> Warning in melt(lapply(cluster_names, calculate_cell_metrics_by_cluster, :

#> The melt generic in data.table has been passed a list and will attempt

#> to redirect to the relevant reshape2 method; please note that reshape2 is

#> deprecated, and this redirection is now deprecated as well. To continue using

#> melt methods from reshape2 while both libraries are attached, e.g. melt.list,

#> you can prepend the namespace like reshape2::melt(lapply(cluster_names,

#> calculate_cell_metrics_by_cluster, consensus_matrix = consensus_matrix,

#> cluster_labels = cluster_labels)). In the next version, this warning will become

#> an error.

#> Warning in melt(lapply(cluster_names, calculate_cell_metrics_by_cluster, :

#> The melt generic in data.table has been passed a list and will attempt

#> to redirect to the relevant reshape2 method; please note that reshape2 is

#> deprecated, and this redirection is now deprecated as well. To continue using

#> melt methods from reshape2 while both libraries are attached, e.g. melt.list,

#> you can prepend the namespace like reshape2::melt(lapply(cluster_names,

#> calculate_cell_metrics_by_cluster, consensus_matrix = consensus_matrix,

#> cluster_labels = cluster_labels)). In the next version, this warning will become

#> an error.

#> Warning in melt(lapply(cluster_names, calculate_cell_metrics_by_cluster, :

#> The melt generic in data.table has been passed a list and will attempt

#> to redirect to the relevant reshape2 method; please note that reshape2 is

#> deprecated, and this redirection is now deprecated as well. To continue using

#> melt methods from reshape2 while both libraries are attached, e.g. melt.list,

#> you can prepend the namespace like reshape2::melt(lapply(cluster_names,

#> calculate_cell_metrics_by_cluster, consensus_matrix = consensus_matrix,

#> cluster_labels = cluster_labels)). In the next version, this warning will become

#> an error.

#> Warning in melt(cell.scores, id.var = c("rn", "cell", "cluster.size",

#> "metric")): The melt generic in data.table has been passed a list and will

#> attempt to redirect to the relevant reshape2 method; please note that reshape2

#> is deprecated, and this redirection is now deprecated as well. To continue using

#> melt methods from reshape2 while both libraries are attached, e.g. melt.list,

14

BEARscc: Using spike-ins to assess single cell cluster robustness

#> you can prepend the namespace like reshape2::melt(cell.scores). In the next

#> version, this warning will become an error.

head(cell_scores.df, n=4)

#> Cluster.identity Cell Cluster.size Metric Value

#> 1 1 WTCHG_217386_249229 21 Stability 0.6611111

#> 2 1 WTCHG_227074_204206 21 Stability 0.7388889

#> 3 1 WTCHG_227074_208205 21 Stability 0.7444444

#> 4 1 WTCHG_227074_208277 21 Stability 0.5888889

#> Clustering

#> 1 2

#> 2 2

#> 3 2

#> 4 2

The output is a melted data.frame that displays the name of each cluster to which the cell
belongs, the cell label, the size of each cluster, the metric (Score, Promiscuity, Stability), the
value for each metric, and finally the clustering in question (1,2,. . . ,Original).

As with cluster metrics, these results can be plotted to visualize cells in the context of the
original clusters using ggplot2. The score metric is plotted below to illustrate this:

original_cell_scores.df<-cell_scores.df[cell_scores.df$Clustering=="Original",]

ggplot(original_cell_scores.df[original_cell_scores.df$Metric=="Score",],

aes(x=factor(`Cluster.identity`), y=Value))+

geom_jitter(aes(color=factor(`Cluster.identity`)), stat="identity")+

xlab("Cluster identity")+ylab("Cell scores")+

ggtitle("Original clustering cell scores")+guides(color=FALSE)

#> Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =

#> "none")` instead.

−0.10

−0.05

0.00

0.05

1 2
Cluster identity

C
el

l s
co

re
s

Original clustering cell scores

15

BEARscc: Using spike-ins to assess single cell cluster robustness

2.6.3 Using BEARscc to inform cluster number, k, choice

While BEARscc certainly does not claim to provide a definitive solution to the question
concerning the number of clusters by any means, we provide what we believe to be a useful
perspective on the matter. Specifically, we have found that by examining the cluster metrics
across various hiearchical clusterings of the BEARscc noise consensus, the cluster number k
with the highest score tends to provide a number of clusters that resembles ground truth more
closely than simple gene sampling or relevant algorithms along as evidenced by experiments
in control samples, c. elegans , and murine brain data (see our manuscript on bioRxiv.
Importantly, this only provides a heuristic for determining cluster number k that takes into
count the inherent noise of the single cell experiment, and the heuristic is dependent upon
the clustering algorithm of choosing (the better the utilized clustering algorithm, the better
the BEARscc k heuristic) and represents a form of “meta-clustering” rather than a new way
to determine the number of clusters, k, per se. As an illustration of utilizing this heuristic, we
plot the average cluster score values for various cluster number scenarios below:

ggplot(cluster_scores.df[cluster_scores.df$Metric=="Score",],

aes(x=`Clustering`, y=Value))+ geom_boxplot(aes(fill=Clustering,

color=`Clustering`))+ xlab("Clustering")+

ylab("Cluster score distribution")+

ggtitle("Original cluster scores for each clustering")+

guides(fill=FALSE, color=FALSE)

#> Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =

#> "none")` instead.

0.0

0.2

0.4

0.6

1 2 3 4 5 Original
Clustering

C
lu

st
er

 s
co

re
 d

is
tr

ib
ut

io
n

Original cluster scores for each clustering

As we can see, the 1 cluster scenario provides the best cluster score as determined by the
noise consensus. As mentioned previously, the single cluster solution resembles the biological
ground truth.

16

http://biorxiv.org/content/early/2017/03/21/118919

BEARscc: Using spike-ins to assess single cell cluster robustness

3 Algorithm and theory
In order to simulate technical replicates, BEARscc first builds a statistical model of expression
variance and drop-out frequency, which is dependent only on observed gene expression. The
parameters of this model are estimated from spike-in counts. Expression-dependent variance is
approximated by fitting read counts of each spike-in transcript across cells to a mixture model
comprised of a Poisson and negative binomial distribution (Section 3.1.1). The drop-out
model (Section 3.1.2) in BEARscc has two distinct parts: the drop-out injection distribution
models the likelihood that a given transcript concentration will result in a drop-out, and
the drop-out recovery distribution models the likelihood that an observed drop-out resulted
from a given transcript concentration. The drop-out injection distribution is taken to be
the observed drop-out rate in spike-in controls as a function of actual spike-in transcript
concentration. This distribution is then used to estimate the drop-out recovery distribution
density via Bayes’ theorem and a an empirically informed set of priors and assumptions.
Briefly, BEARscc utilizes the drop-out injection distribution and the number of observed
zeroes for each endogenous gene to infer a gene-specific probability distribution describing
the likelihood that an observed drop-out should in fact have been some non-zero value, given
the drop-out rate of the endogenous gene. This entire process is facilitated by the function,
estimate_noiseparameters().

In the second step, BEARscc generates simulated technical replicates by applying the models
described in the first step (Section 3.2). For every observed count in the range of values where
drop-outs occurred amongst the spike-in transcripts, BEARscc uses the drop-out injection
distribution from Step 1 to determine whether to convert the count to zero. For observations
where the count is zero, the drop-out recovery distribution is used to estimate a new value,
given the overall drop-out frequency for the gene (Section 3.2). Next, BEARscc substitutes all
values larger than zero with a value generated from the derived model of expression variability,
parameterized to the observed count for that gene. This procedure can then be repeated any
number of times to generate a collection of simulated technical replicates. This step is carried
out by create_noiseinjected_counts().

In the third step, the simulated technical replicates are then re-clustered, using exactly the
same method as for the observed data; this re-clustering for each simulated technical replicate
is described as an association matrix where each element indicates whether two cells share
a cluster identity (1) or cluster apart from each other (0). The association matrices for
each simulated technical replicate are averaged to form a noise consensus matrix that can be
easily interpreted (Section 3.3). This is accomplished with the function compute_consensus().
Each element of the noise consensus matrix represents the fraction of simulated technical
replicates that, upon applying the clustering method of choice, resulted in two cells clustering
together (the association frequency). Then, the functions report_cell_metrics() and re

port_cluster_metrics() may be used to explore and quantitate the noise consensus matrix
at the cell sample and cluster levels, respectively.

3.1 Noise estimation
As mentioned previously, BEARscc uses spike-ins to estimate the noise of the experiment for
the purpose of producing simulated technical replicates. BEARscc models overall technical
variation with a mixture-model (Section 3.1.1) and inferred drop-out effects (Section 3.1.2)
independently using the spike-in observations. However, a single function in BEARscc esti

mate_noiseparameters() accomplishes this task.

17

BEARscc: Using spike-ins to assess single cell cluster robustness

3.1.1 Estimating transcript variation

Technical variance is modeled in BEARsccby fitting a single parameter mixture model, Z(c),
to the spike-ins’ observed count distributions. The noise model is fit independently for each
spike-in transcript and subsequently regressed onto spike-in mean expression to define a
generalized noise model. This is accomplished in three steps:

1. Define a mixture model composed of poisson and negative binomial random variables:

Z ∼ (1− α) ∗ Pois(µ) + α ∗NBin(µ, σ) 1

2. Empirically fit the parameter, αi, in a spike-in specific mixture-model, Zi, to the
observed distribution of counts for each ERCC spike-in transcript, i, where µi and σi

are the observed mean and variance of the given spike-in. The parameter, αi, is chosen
such that the error between the observed and mixture-model is minimized.

3. Generalize the mixture-model by regressing αi parameters and the observed variance,
σi, onto the observed spike-in mean expression, µi. Thus the mixture model describing
the noise observed in ERCC transcripts is defined solely by µ, which is treated as the
count transformation parameter, c, in the generation of simulated technical replicates.

In step 2, a mixture model distribution is defined for each spike-in, i:

Zi(αi, µi, σi) ∼ (1− αi) ∗ Pois(µi) + αi ∗NBin(µi, σi). 2

The distribution, Zi, is fit to the observed counts of the respective spike-in, where αi is an
empirically fitted parameter, such that the αi minimizes the difference between the observed
count distribution of the spike-in and the respective fitted model, Zi. Specifically, for each
spike-in transcript, µi and σi are taken to be the mean and standard deviation, respectively,
of the observed counts for spike-in transcript, i. Then, αi is computed by empirical parameter
optimization; αi is taken to be the αi,j in the mixture-model,

Zi,j(αi,j , µi, σi) ∼ (1− αi,j) ∗ Pois(µi) + αi,j ∗NBin(µi, σi), 3

found to have the least absolute total difference between the observed count density and the
density of the fitted model, Zi. In the case of ties, the minimum αi,j is chosen.

In step 3, α(c) is then defined with a linear fit, αi = α ∗ log2(µi) + b. σ(c) was similarly
defined, log2(σi) = α∗ log2(µi)+b. In this way, the observed distribution of counts in spike-in
transcripts defines the single parameter mixture-model, Z(c), used to transform counts during
generation of simulated technical replicates:

Z(c) ∼ (1− α(c)) ∗ Pois(c) + α(c) ∗NBin(c, σ(c)) 4

During technical replicate simulation, the parameter c is set to the observed count value, a,
and the transformed count in the simulated replicate was determined by sampling a single
value from Z(c = a).

3.1.2 Defining the drop-out models

A model of the drop-outs is developed by BEARscc in order to inform the permutation of
zeros during noise injection. The observed zeros in spike-in transcripts as a function of actual
transcript concentration and Bayes’ theorem are used to define two models: the drop-out
injection distribution and the drop-out recovery distribution.

18

BEARscc: Using spike-ins to assess single cell cluster robustness

The drop-out injection distribution is described by Prob(X = 0|Y = y), where X is the
distribution of observed counts and Y is the distribution of actual transcript counts; the
density is computed by regressing the fraction of zeros observed in each sample, Di, for a given
spike-in, i, onto the expected number spike-in molecules in the sample, yi, e.g. D = a ∗ y + b.
Then, D describes the density of zero-observations conditioned on actual transcript number, y,
or Prob(X = 0|Y = y). Notably, each gene was treated with an identical density distribution
for drop-out injection.

In contrast, the density of the drop-out recovery distribution, Prob(Yj = y|Xj = 0), is
specific to each gene, j, where Xj is the distribution of the observed counts and Yj is the
distribution of actual transcript counts for a given gene. The gene-specific drop-out recovery
distribution is inferred from drop-out injection distribution using Bayes’ theorem and a prior.
This is accomplished in 3 steps:

1. For the purpose of applying Bayes’ theorem, the gene-specific distribution, Prob(Xj =
0|Yj = y), is taken to be the the drop-out injection density for all genes, j.

2. The probability that a specific transcript count is present in the sample, Prob(Yj = y),
is a necessary, but empirically unknowable prior. Therefore, the prior was defined using
the law of total probability, an assumption of uniformity, and the probability that a zero
was observed in a given gene, Prob(Xj = 0). The probability, Prob(Xj = 0), is taken
to be the fraction of observations that are zero for a given gene. BEARscc does this
in order to better inform the density estimation of the gene-specific drop-out recovery
distribution.

3. The drop-out recovery distribution density is then computed by applying Bayes’ theorem:

Prob(Yj = y|Xj = 0) = Prob(Xj = 0|Yj = y) ∗ Prob(Yj = y)
Prob(Xj = 0) , 5

In the second step, the law of total probability, an assumption of uniformity, and the fraction
of zero observations in a given gene are leveraged to define the prior, Prob(Yj = y). First, a
threshold of expected number of transcripts, k in Y , is chosen such that k was the maximum
value for which the drop-out injection density was non-zero. Next, uniformity is assumed for
all expected number of transcript values, y greater than zero and less than or equal to k; that
is Prob(Yj = y) is defined to be some constant probability, n. Furthermore, Prob(Yj = y) is
defined to be 0 for all y > k. In order to inform Prob(Yj = y) empirically, Prob(Yj = 0) and
n are derived by imposing the law of total probability (Equation 6) and unity (Equation 7)
yielding a system of equations:

Prob(Xj = 0) = Σk−1
y=0(Prob(Xj = 0|Yj = y) ∗ Prob(Yj = y)) 6

Σk−1
y=0Prob(Yj = y) = Prob(Yj = 0) + (k − 1) ∗ n = 1 7

The probability that a zero is observed given there are no transcripts in the sample, Prob(Xj =
0|Yj = 0), is assumed to be 1. With the preceding assumption, solving for Prob(Yj = 0) and
n give:

n = 1− Prob(Yj = 0)
k − 1 8

19

BEARscc: Using spike-ins to assess single cell cluster robustness

Prob(Yj = 0) =
Prob(Xj = 0)− 1

k−1 ∗ Σk−1
y=1(Prob(Xj = 0|Yj = y))

(1− 1
k−1 ∗ Σk−1

y=1(Prob(Xj = 0|Yj = y))
9

\

In this way, Prob(Yj = 0) is defined by (Equation 8) for y in Yj less than or equal to k and
greater than zero, and defined by (Equation 9) for y in Yj equal to zero. For y in Yj greater
than k, the prior Prob(Yj = y) is defined to be equal to zero.

In the third step, the previously computed prior, Prob(Yj = y), the fraction of zero observations
in a given gene, Prob(Xj = 0), and the drop-out injection distribution, Prob(Xj = 0|Yj = y),
are utilized to estimate, with Bayes’s theorem, the density of the drop-out recovery distribution,
Prob(Yj = y|Xj = 0). During the generation of simulated technical replicates for zero
observations and count observations less than or equal to k, values are sampled from the
drop-out recovery and injection distributions as described in the pseudocode of the BEARscc
algorithm for simulating technical replicates.

3.2 Simulating technical replicates
Simulated technical replicates were generated from the noise mixture-model and two drop-out
models. For each gene, the count value of each sample is systematically transformed using
the mixture-model, Z(c), and the drop-out injection, Prob(X = 0|Y = y), and recovery,
Prob(Yj = y|Xj = 0), distributions in order to generate simulated technical replicates as
indicated by the following pseudocode:

FOR EACH gene, j

FOR EACH count, c

IF $c=0$

$n \leftarrow SAMPLE$ one count, y, from $Prob(Y_j=y | X_j=0)$

IF $n=0$

$c \leftarrow 0$

ELSE

$c \leftarrow SAMPLE$ one count from $Z(n)$

ENDIF

ELSE

IF $c\leq k$

$dropout \leftarrow TRUE$ with probability, $Prob(X=0 | Y=k)$

IF $dropout=TRUE$

$c \leftarrow 0$

ELSE

$c \leftarrow SAMPLE$ one count from $Z(c)$

ENDIF

ELSE

$c \leftarrow SAMPLE$ one count from $Z(c)$

ENDIF

ENDIF

RETURN c

DONE

DONE

20

BEARscc: Using spike-ins to assess single cell cluster robustness

4 List of functions

4.1 estimate_noiseparameters()

4.1.1 Description

Estimates the drop-out model and technical variance from spike-ins present in the sample.

For greater detail, please see help file ?estimate_noiseparameters().

4.1.2 Usage

data(BEARscc_examples)

BEAR_examples.sce <- estimate_noiseparameters(BEAR_examples.sce,

alpha_resolution=0.25, write.noise.model=FALSE)

BEAR_examples.sce

4.1.3 Output

The resulting output of estimate_noiseparameters() is a long list, which is enumerated in
the function’s package help page.

4.1.4 Note

The above usage is for execution of simulate_replicates on a local machine. To save results
as files for us of prepare_probabilities on high performance computing environment, then
use:

estimate_noiseparameters(BEAR_examples.sce,

write.noise.model=TRUE, alpha_resolution=0.25,

file="noise_estimation", model_view=c("Observed","Optimized"))

4.2 simulate_replicates()

4.2.1 Description

Computes BEARscc simulated technical replicates from the previously estimated noise param-
eters computed with the function estimate_noise_parameters().

For greater detail, please see help file ?simulate_replicates().

4.2.2 Usage

data(analysis_examples)

BEAR_examples.sce<-simulate_replicates(BEAR_examples.sce, n=3)

BEAR_examples.sce

21

BEARscc: Using spike-ins to assess single cell cluster robustness

4.2.3 Output

The resulting object is a list of counts data, where each element of the list is a data.frame of
the counts representing a BEARscc simulated technical replicate. For further details refer to
the function help page.

4.2.4 Note

This function is the in-package analog of the high-performance computing function,pre
pare_probabilities.

4.3 HPC_simulate_replicates()

4.3.1 Description

The high-performance computing function analog to simulate_replicates().

4.3.2 Usage

Please refere to section 2.4.

4.3.3 Output

The resulting objects would normally be output to a tab-delimited file, where each file results
from a data.frame of the counts representing a BEARscc simulated technical replicate.

4.3.4 Note

This function has no help file, but is referred to in the section 2.4 of this document on
simulating for larger datasets.

4.4 compute_consensus()

4.4.1 Description

Computes the consensus matrix using a data.frame of cluster labels across different BEARscc
simulated technical replicates.The consensus matrix is is a visual and quantitaive representation
of the clustering variation on a cell-by-cell level created by using cluster labels to compute
the number of times any given pair of cells associates in the same cluster; this forms the
‘noise consensus matrix’. Each element of this matrix represents the fraction of simulated
technical replicates in which two cells cluster together (the ‘association frequency’), after
using a clustering method of the user’s choice to generate a data.frame of clustering labels.
This consensus matrix may be used to compute BEARscc metrics at both the cluster and cell
level.

For greater detail, please see help file ?compute_consensus().

4.4.2 Usage

data("analysis_examples")

noise_consensus <- compute_consensus(clusters.df)

noise_consensus

22

BEARscc: Using spike-ins to assess single cell cluster robustness

4.4.3 Output

When the number of samples are n, then the noise consensus resulting from this function is
an n x n matrix describing the fraction of simulated technical replicates in which each cell of
the experiment associates with another cell.

4.5 cluster_consensus()

4.5.1 Description

This function will perform hierarchical clustering on the noise consensus matrix allowing the
user to investigate the appropriate number of clusters, k, considering the noise within the
experiment. Frequently one will want to assess multiple possible cluster number situations
at once. In this case it is recommended that one use a lapply in conjunction with a vector
of all biologically reasonable cluster numbers to fulfill the task of attempting to identify the
optimal cluster number.

For greater detail, please see help file ?cluster_consensus().

4.5.2 Usage

data(analysis_examples)

vector <- seq(from=2, to=5, by=1)

BEARscc_clusts.df <- cluster_consensus(consensus_matrix=noise_consensus,

vector)

BEARscc_clusts.df

4.5.3 Output

The output is a vector of cluster labels based on hierarchical clustering of the noise consensus.
In the event that a vector is supplied for number of clusters in conjunction with lapply, then
the output is a data.frame of the cluster labels for each of the various number of clusters
deemed biologically reasonable by the user.

4.6 report_cell_metrics()

4.6.1 Description

To quantitatively evaluate the results, three metrics are calculated from the noise consensus
matrix: ‘stability’ is the average frequency with which a cell within a cluster associates with
other cells within the same cluster across simulated replicates; ‘promiscuity’ measures the
average association frequency of a cell within a cluster with the n cells outside of the cluster
with the strongest association with the cell in question; and ‘score’ is the difference between
‘stability’ and ‘promiscuity’. Importantly, ‘score’ reflects the overall “robustness” of a given
cell’s assignment to a user-provided cluster label with respect to technical variance. Together
these metrics provide a quantitative measure of the extent to which cluster labels provided by
the user are invariant across simulated technical replicates.

For greater detail, please see help file ?report_cell_metrics().

23

BEARscc: Using spike-ins to assess single cell cluster robustness

4.6.2 Usage

data(analysis_examples)

cell_scores.dt <- report_cell_metrics(BEARscc_clusts.df, noise_consensus)

cell_scores.dt

4.6.3 Output

A melted data.frame describing the BEARscc metrics for each cell, where the columns are
enumerated in the help file.

4.7 report_cluster_metrics()

4.7.1 Description

To quantitatively evaluate the results, three metrics are calculated from the noise consensus
matrix: ‘stability’ is the average frequency with which cells within a cluster associate with each
other across simulated replicates; ‘promiscuity’ measures the association frequency between
cells within a cluster and those outside of it; and ‘score’ is the difference between ‘stability’
and ‘promiscuity’. Importantly, ‘score’ reflects the overall “robustness” of a cluster to technical
variance. Together these metrics provide a quantitative measure of the extent to which cluster
labels provided by the user are invariant across simulated technical replicates.

For greater detail, please see help file ?report_cluster_metrics().

4.7.2 Usage

data(analysis_examples)

cluster_scores.dt <- report_cluster_metrics(BEARscc_clusts.df,noise_consensus,

plot=TRUE, file="example")

cluster_scores.dt

4.7.3 Output

A melted data.frame describing the BEARscc metrics for each cluster, where the columns
are enumerated in the help file.

24

BEARscc: Using spike-ins to assess single cell cluster robustness

#Example data Within the package there are data subsampled from single cell sequencing
protocol applied to water samples containing ERCC spike-ins (blanks) and dilute RNA from
brain whole tissue (brain) discussed at length in in a manuscript on bioRxiv

4.8 BEARscc_examples

4.8.1 Description

A toy dataset for applying BEARscc functions as described in the README on https:
//bitbucket.org/bsblabludwig/bearscc.git.These data are a subset of observations made by
Drs. Michael White and Richard Owen in the Xin Lu Lab. Samples were sequenced by the
Wellcome Trust Center for Genomics, Oxford, UK. These data are available in full with GEO
accession number, GSE95155.

For greater detail, please see help file ?BEARscc_examples.

4.8.2 Usage

data("BEARscc_examples")

4.9 analysis_examples

4.9.1 Description

BEARscc downstream example objects: The analysis_examples Rdata object contains
downstream data objects for use in various help pages for dynamic execution resulting from
running tutorial in README and vignette on BEARscc_examples. The objects are a result of
applying BEARscc functions as described in the README found at https://bitbucket.org/
bsblabludwig/bearscc.git.

For greater detail, please see help file ?analysis_examples.

4.9.2 Usage

data("analysis_examples")

25

http://biorxiv.org/content/early/2017/03/21/118919
https://bitbucket.org/bsblabludwig/bearscc.git.These
https://bitbucket.org/bsblabludwig/bearscc.git.These
https://bitbucket.org/bsblabludwig/bearscc.git
https://bitbucket.org/bsblabludwig/bearscc.git

BEARscc: Using spike-ins to assess single cell cluster robustness

5 License
This software is made available under the terms of the GNU General Public License v3

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-
INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE
DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER LIABIL-
ITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

26

http://www.gnu.org/licenses/gpl-3.0.html

	1 Introduction
	1.1 Scope
	1.2 Installation
	1.3 Citation

	2 Tutorial
	2.1 Overview
	2.2 Building the noise model
	2.3 Simulating technical replicates
	2.4 Simulation of replicates for larger datasets
	2.5 Forming a noise consensus
	2.6 Evaluating the noise consensus

	3 Algorithm and theory
	3.1 Noise estimation
	3.2 Simulating technical replicates

	4 List of functions
	4.1 estimate_noiseparameters()
	4.2 simulate_replicates()
	4.3 HPC_simulate_replicates()
	4.4 compute_consensus()
	4.5 cluster_consensus()
	4.6 report_cell_metrics()
	4.7 report_cluster_metrics()
	4.8 BEARscc_examples
	4.9 analysis_examples

	5 License

