Package 'sccomp'

April 11, 2023

Title Robust Outlier-aware Estimation of Composition and Heterogeneity for Single-cell Data

Version 1.2.1

Description A robust and outlier-aware method for testing differential tissue composition from single-cell data. This model can infer changes in tissue composition and heterogeneity, and can produce realistic data simulations based on any existing dataset. This model can also transfer knowledge from a large set of integrated datasets to increase accuracy further.

```
License GPL-3
Encoding UTF-8
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3
Biarch true
Depends R (>= 4.2.0)
Imports methods, Rcpp (>= 0.12.0), RcppParallel (>= 5.0.1), rstantools
      (>= 2.1.1), rstan (>= 2.18.1), SeuratObject,
      SingleCellExperiment, parallel, dplyr, tidyr, purrr, magrittr,
      rlang, tibble, boot, lifecycle, stats, tidyselect, utils,
      ggplot2, ggrepel, patchwork, forcats, readr, scales, stringr,
Suggests BiocStyle, testthat (>= 3.0.0), markdown, knitr, tidyseurat,
      tidySingleCellExperiment, loo
Enhances furrr, extraDistr
LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0),
      RcppParallel (>= 5.0.1), rstan (>= 2.18.1), StanHeaders (>=
      2.18.0)
```

SystemRequirements GNU make

VignetteBuilder knitr

RdMacros lifecycle

biocViews ImmunoOncology, Normalization, Sequencing, RNASeq, Software, GeneExpression, Transcriptomics, SingleCell, Clustering

2 sccomp-package

LazyDataCompression xz Config/testthat/edition 3 URL https://github.com/stemangiola/sccomp BugReports https://github.com/stemangiola/sccomp/issues git_url https://git.bioconductor.org/packages/sccomp git_branch RELEASE_3_16 git_last_commit_42f3729 git_last_commit_date 2022-12-20 Date/Publication 2023-04-10 Author Stefano Mangiola [aut, cre]

Maintainer Stefano Mangiola <mangiolastefano@gmail.com>

R topics documented:

Index		16
	test_contrasts	14
	simulate_data	
	seurat_obj	12
	sce_obj	11
	sccomp_replicate	10
	sccomp_predict	9
	sccomp_glm	6
	remove_unwanted_variation	5
	plot_summary	4
	multi_beta_glm	3
	counts_obj	
	sccomp-package	2

Description

A DESCRIPTION OF THE PACKAGE

References

Stan Development Team (2020). RStan: the R interface to Stan. R package version 2.21.2. https://mc-stan.org

counts_obj 3

counts_obj counts_obj

Description

Example data set containing cell counts per cell cluster

Usage

```
data(counts_obj)
```

Format

A tidy data frame.

 $multi_beta_glm$

multi_beta_glm main

Description

This function runs the data modelling and statistical test for the hypothesis that a cell_type includes outlier biological replicate.

Usage

```
multi_beta_glm(
   .data,
   formula = ~1,
    .sample,
   check_outliers = FALSE,
   approximate_posterior_inference = TRUE,
   cores = detect_cores(),
   seed = sample(1e+05, 1)
)
```

Arguments

.data	A tibble including a cell_type name column sample name column read counts column factor columns Pvaue column a significance column
formula	A formula. The sample formula used to perform the differential cell_type abundance analysis $$
.sample	A column name as symbol. The sample identifier
check_outliers	A boolean. Whether to check for outliers before the fit.

4 plot_summary

approximate_posterior_inference

A boolean. Whether the inference of the joint posterior distribution should be approximated with variational Bayes. It confers execution time advantage.

cores An integer. How many cored to be used with parallel calculations.

seed An integer. Used for development and testing purposes

Value

A nested tibble tbl with cell_type-wise information: sample wise data|plot|ppc samples failed | exposure deleterious outliers

plot_summary

plot_summary

Description

This function plots a summary of the results of the model.

Usage

```
plot_summary(.data, significance_threshold = 0.025)
```

Arguments

.data

A tibble including a cell_group name column | sample name column | read counts column | factor columns | Pvalue column | a significance column

significance_threshold

A real. FDR threshold for labelling significant cell-groups.

Value

A ggplot

```
remove_unwanted_variation
```

remove_unwanted_variation

Description

This function uses the model to remove unwanted variation from a dataset using the estimated of the model. For example if you fit your data with this formula ~ factor_1 + factor_2 and use this formula to remove unwanted variation ~ factor_1, the factor_2 will be factored out.

Usage

```
remove_unwanted_variation(
   .data,
   formula_composition = ~1,
   formula_variability = NULL
)
```

Arguments

 $.\, data \qquad \qquad A \ tibble. \ The \ result \ of \ sccomp_glm.$

formula_composition

A formula. The formula describing the model for differential abundance, for example ~treatment. This formula can be a sub-formula of your estimated model; in this case all other factor will be factored out.

formula_variability

A formula. The formula describing the model for differential variability, for example ~treatment. In most cases, if differentially variability is of interest, the formula should only include the factor of interest as a large anount of data is needed to define variability depending to each factors. This formula can be a sub-formula of your estimated model; in this case all other factor will be factored out.

Value

A nested tibble tbl with cell_group-wise statistics

6 sccomp_glm

remove_unwanted_variation(estimates)

sccomp_glm

sccomp_glm main

Description

The function for linear modelling takes as input a table of cell counts with three columns containing a cell-group identifier, sample identifier, integer count and the factors (continuous or discrete). The user can define a linear model with an input R formula, where the first factor is the factor of interest. Alternatively, sccomp accepts single-cell data containers (Seurat, SingleCellExperiment44, cell metadata or group-size). In this case, sccomp derives the count data from cell metadata.

Usage

```
sccomp_glm(
  .data,
  formula\_composition = ~1,
  formula_variability = ~1,
  .sample,
  .cell_group,
  .count = NULL,
  contrasts = NULL,
 prior_mean_variable_association = list(intercept = c(5, 2), slope = c(0, 0.6),
    standard_deviation = c(20, 40)),
  check_outliers = TRUE,
  bimodal_mean_variability_association = FALSE,
  enable_loo = FALSE,
  cores = detectCores(),
  percent_false_positive = 5,
  approximate_posterior_inference = "none",
  test_composition_above_logit_fold_change = 0.2,
  verbose = FALSE,
  noise_model = "multi_beta_binomial",
  exclude_priors = FALSE,
  use_data = TRUE,
 mcmc\_seed = sample(1e+05, 1),
 max_sampling_iterations = 20000,
  pass_fit = TRUE
)
```

Arguments

.data

A tibble including a cell_group name column | sample name column | read counts column (optional depending on the input class) | factor columns.

sccomp_glm 7

formula_composition

A formula. The formula describing the model for differential abundance, for example ~treatment.

formula_variability

A formula. The formula describing the model for differential variability, for example ~treatment. In most cases, if differentially variability is of interest, the formula should only include the factor of interest as a large amount of data is needed to define variability depending to each factors.

. sample A column name as symbol. The sample identifier

. cell_group A column name as symbol. The cell_group identifier

. count A column name as symbol. The cell_group abundance (read count). Used only for data frame count output. The variable in this column should be of class integer.

contrasts A vector of character strings. For example if your formula is ~ 0 + treatment and the factor treatment has values yes and no, your contrast could be constrasts = c("treatmentyes - treatmentno").

prior_mean_variable_association

A list of the form list(intercept = c(5, 2), slope = c(0, 0.6), standard_deviation = c(20, 40)). Where for intercept and slope parameters, we specify mean and standard deviation, while for standard deviation, we specify shape and rate. This is used to incorporate prior knowledge about the mean/variability association of cell-type proportions.

check_outliers A boolean. Whether to check for outliers before the fit.

bimodal_mean_variability_association

A boolean. Whether to model the mean-variability as bimodal, as often needed in the case of single-cell RNA sequencing data, and not usually for CyTOF and microbiome data. The plot summary_plot()\$credible_intervals_2D can be used to assess whether the bimodality should be modelled.

enable_loo A boolean. Enable model comparison by the R package LOO. This is helpful when you want to compare the fit between two models, for example, analogously to ANOVA, between a one factor model versus a interceot-only model.

cores An integer. How many cored to be used with parallel calculations.

percent_false_positive

A real between 0 and 100 non included. This used to identify outliers with a specific false positive rate.

approximate_posterior_inference

A boolean. Whether the inference of the joint posterior distribution should be approximated with variational Bayes. It confers execution time advantage.

test_composition_above_logit_fold_change

A positive integer. It is the effect threshold used for the hypothesis test. A value of 0.2 correspond to a change in cell proportion of 10% for a cell type with baseline proportion of 50%. That is, a cell type goes from 45% to 50%. When the baseline proportion is closer to 0 or 1 this effect thrshold has consistent value in the logit uncontrained scale.

verbose A boolean. Prints progression.

8 sccomp_glm

noise_model A character string. The two noise models available are multi_beta_binomial (default) and dirichlet_multinomial.

exclude_priors A boolean. Whether to run a prior-free model, for benchmarking purposes.

use_data A booelan. Whether to sun the model data free. This can be used for prior predictive check.

mcmc_seed An integer. Used for Markov-chain Monte Carlo reproducibility. By default a

random number is sampled from 1 to 999999. This itself can be controlled by set.seed()

max_sampling_iterations

An integer. This limit the maximum number of iterations in case a large dataset is used, for limiting the computation time.

A boolean. Whether to pass the Stan fit as attribute in the output. Because the Stan fit can be very large, setting this to FALSE can be used to lower the memory imprint to save the output.

Value

A nested tibble tbl, with the following columns

- cell_group column including the cell groups being tested
- parameter The parameter being estimated, from the design matrix dscribed with the input formula composition and formula variability
- factor The factor in the formula corresponding to the covariate, if exists (e.g. it does not exist in case og Intercept or contrasts, which usually are combination of parameters)
- c_lower lower (2.5%) quantile of the posterior distribution for a composition (c) parameter.
- c_effect mean of the posterior distribution for a composition (c) parameter.
- c_upper upper (97.5%) quantile of the posterior distribution fo a composition (c) parameter.
- c_pH0 Probability of the null hypothesis (no difference) for a composition (c). This is not a p-value.
- c_FDR False-discovery rate of the null hypothesis (no difference) for a composition (c).
- c_n_eff Effective sample size the number of independent draws in the sample, the higher the better (mc-stan.org/docs/2 25/cmdstan-guide/stansummary.html).
- c_R_k_hat R statistic, a measure of chain equilibrium, should be within 0.05 of 1.0 (mc-stan.org/docs/2_25/cmdstan-guide/stansummary.html).
- v_lower Lower (2.5%) quantile of the posterior distribution for a variability (v) parameter
- v effect Mean of the posterior distribution for a variability (v) parameter
- v_upper Upper (97.5%) quantile of the posterior distribution for a variability (v) parameter
- v_pH0 Probability of the null hypothesis (no difference) for a variability (v). This is not a p-value.
- v_FDR False-discovery rate of the null hypothesis (no difference), for a variability (v).
- v_n_eff Effective sample size for a variability (v) parameter the number of independent draws in the sample, the higher the better (mc-stan.org/docs/2_25/cmdstan-guide/stansummary.html).
- v_R_k_hat R statistic for a variability (v) parameter, a measure of chain equilibrium, should be within 0.05 of 1.0 (mc-stan.org/docs/2_25/cmdstan-guide/stansummary.html).
- count_data Nested input count data.

sccomp_predict 9

Examples

sccomp_predict

sccomp_predict

Description

This function replicates counts from a real-world dataset.

Usage

```
sccomp_predict(
  fit,
  formula_composition = NULL,
  new_data = NULL,
  number_of_draws = 500,
  mcmc_seed = sample(1e+05, 1)
)
```

Arguments

fit The result of sccomp_glm.

formula_composition

A formula. The formula describing the model for differential abundance, for example ~treatment. This formula can be a sub-formula of your estimated model; in this case all other factor will be factored out.

new_data

A sample-wise data frame including the column that represent the factors in your formula. If you want to predict proportions for 10 samples, there should be 10 rows. T

number_of_draws

An integer. How may copies of the data you want to draw from the model joint posterior distribution.

mcmc_seed

An integer. Used for Markov-chain Monte Carlo reproducibility. By default a random number is sampled from 1 to 999999. This itself can be controlled by set.seed()

10 sccomp_replicate

Value

A nested tibble tbl with cell_group-wise statistics

Examples

sccomp_replicate

sccomp_replicate

Description

This function replicates counts from a real-world dataset.

Usage

```
sccomp_replicate(
   fit,
   formula_composition = NULL,
   formula_variability = NULL,
   number_of_draws = 1,
   mcmc_seed = sample(1e+05, 1)
)
```

Arguments

fit

The result of sccomp_glm.

formula_composition

A formula. The formula describing the model for differential abundance, for example ~treatment. This formula can be a sub-formula of your estimated model; in this case all other factor will be factored out.

formula_variability

A formula. The formula describing the model for differential variability, for example ~treatment. In most cases, if differentially variability is of interest, the formula should only include the factor of interest as a large amount of data is needed to define variability depending to each factors. This formula can be a

sce_obj

sub-formula of your estimated model; in this case all other factor will be factored out

number_of_draws

An integer. How may copies of the data you want to draw from the model joint posterior distribution.

mcmc_seed

An integer. Used for Markov-chain Monte Carlo reproducibility. By default a random number is sampled from 1 to 999999. This itself can be controlled by set.seed()

Value

A nested tibble tbl with cell_group-wise statistics

Examples

sce_obj

sce_obj

Description

Example SingleCellExperiment data set. SingleCellExperiment data objects can be directly used with sccomp_glm function.

Usage

```
data(sce_obj)
```

Format

A SingeCellExperiment object. SingeCellExperiment data objects can be directly used with sc-comp_glm function.

12 simulate_data

seurat_obj

seurat_obj

Description

Example Seurat data set. Seurat data objects can be directly used with sccomp_glm function.

Usage

```
data(seurat_obj)
```

Format

A Seurat object

simulate_data

simulate_data

Description

This function simulates counts from a linear model.

Usage

```
simulate_data(
    .data,
    .estimate_object,
    formula_composition,
    formula_variability = NULL,
    .sample = NULL,
    .cell_group = NULL,
    .coefficients = NULL,
    variability_multiplier = 5,
    number_of_draws = 1,
    mcmc_seed = sample(1e+05, 1)
)
```

Arguments

.data

A tibble including a cell_group name column | sample name column | read counts column | factor columns | Pvalue column | a significance column

.estimate_object

The result of sccomp_glm execution. This is used for sampling from real-data properties.

simulate_data 13

formula_composition

A formula. The sample formula used to perform the differential cell_group abundance analysis

formula_variability

A formula. The formula describing the model for differential variability, for example ~treatment. In most cases, if differentially variability is of interest, the formula should only include the factor of interest as a large amount of data is needed to define variability depending to each factors.

. sample A column name as symbol. The sample identifier

. cell_group A column name as symbol. The cell_group identifier

. coefficients The column names for coefficients, for example, c(b_0, b_1)

variability_multiplier

A real scalar. This can be used for artificially increasing the variability of the simulation for benchmarking purposes.

number_of_draws

An integer. How may copies of the data you want to draw from the model joint posterior distribution.

mcmc_seed

An integer. Used for Markov-chain Monte Carlo reproducibility. By default a random number is sampled from 1 to 999999. This itself can be controlled by set.seed()

Value

A nested tibble tbl with cell_group-wise statistics

14 test_contrasts

 $test_contrasts$

test_contrasts

Description

This function test ocntrasts from a sccomp result.

Usage

```
test_contrasts(
   .data,
   contrasts = NULL,
   percent_false_positive = 5,
   test_composition_above_logit_fold_change = 0.2
)
```

Arguments

.data

A tibble. The result of sccomp_glm.

contrasts

A vector of character strings. For example if your formula is ~ 0 + treatment and the factor treatment has values yes and no, your contrast could be "constrasts = c(treatmentyes - treatmentno)".

percent_false_positive

A real between 0 and 100 non included. This used to identify outliers with a specific false positive rate.

test_composition_above_logit_fold_change

A positive integer. It is the effect threshold used for the hypothesis test. A value of 0.2 correspond to a change in cell proportion of 10% for a cell type with baseline proportion of 50%. That is, a cell type goes from 45% to 50%. When the baseline proportion is closer to 0 or 1 this effect thrshold has consistent value in the logit uncontrained scale.

Value

A nested tibble tbl with cell_group-wise statistics

```
data("counts_obj")
  estimates =
  sccomp_glm(
  counts_obj ,
    ~ 0 + type, ~1, sample, cell_group, count,
    check_outliers = FALSE,
    cores = 1
) |>
```

test_contrasts 15

test_contrasts("typecancer - typebenign")

Index

```
\ast datasets
    counts_obj, 3
    sce_obj, 11
    seurat_obj, 12
counts_obj, 3
multi_beta_glm, 3
\verb"plot_summary", 4
remove_unwanted_variation, 5
sccomp (sccomp-package), 2
sccomp-package, 2
sccomp_glm, 6
sccomp_predict, 9
sccomp\_replicate, 10
sce_obj, 11
seurat_obj, 12
\verb|simulate_data|, 12|
test_contrasts, 14
```