Package 'qsvaR'

April 10, 2023

Title Generate Quality Surrogate Variable Analysis for Degradation Correction

Version 1.2.0 Date 2022-04-01

Description The qsvaR package contains functions for removing the effect of degration in rna-seq data from postmortem brain tissue. The package is equipped to help users generate principal components associated with degradation. The components can be used in differential expression analysis to remove the effects of degradation.

License Artistic-2.0

URL https://github.com/LieberInstitute/qsvaR

BugReports https://support.bioconductor.org/t/qsvaR

biocViews Software, WorkflowStep, Normalization, BiologicalQuestion, DifferentialExpression, Sequencing, Coverage

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.2

Suggests BiocFileCache, BiocStyle, covr, knitr, limma, RefManageR, rmarkdown, sessioninfo, testthat (>= 3.0.0)

Config/testthat/edition 3

Imports sva, stats, ggplot2, methods

Depends R (>= 4.2), SummarizedExperiment

LazyData true

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/qsvaR

git_branch RELEASE_3_16

git_last_commit cb5aee3

git_last_commit_date 2022-11-01

Date/Publication 2023-04-10

2 covComb_tx_deg

Author Joshua Stolz [aut, cre] (https://orcid.org/0000-0001-5694-5247), Leonardo Collado-Torres [ctb] (https://orcid.org/0000-0003-2140-308X)

Maintainer Joshua Stolz < josh.stolz@libd.org>

R topics documented:

covComb_tx_deg		RSE object of RNA-seq data that serves as output for degradation analysis														n									
Index																									10
	transcripts			•			•		•	•		•	•			•	 •	٠	•	 . .	•	•	 •	•	ç
	select_transcripts																								
	qSVA																								
	k_qsvs																			 . .					6
	get_qsvs																			 . .					6
	getPCs																			 					5
	getDegTx																								
	DEqual																								
	degradation_tstats																								
	covComb_tx_deg																			 					2

Description

This data was generated from an experiment using degraded RNA-seq samples post-mortem brain tissue. The transcripts included are the result of the qsva expanded framework study and will be used to remove the effect of degradation in bulk RNA-seq data.

Format

A RangedSummarizedExperiment-class

See Also

getPCs k_qsvs getDegTx

degradation_tstats 3

degradation_tstats

Degradation time t-statistics

Description

These t-statistics are derived from the same data that was used for covComb_tx_deg. They are the results from main model where we determined the relationship with degradation time adjusting for the brain region (so parallel degradation effects across brain regions). They are used for plotting in DEqual().

Format

A data.frame() with the t statistics for degradation time. The rownames() are the GENCODE transcript IDs.

See Also

DEqual

DEqual

Differential expression quality (DEqual) plot

Description

A DEqual plot compares the effect of RNA degradation from an independent degradation experiment on the y axis to the effect of the outcome of interest. They were originally described by Jaffe et al, PNAS, 2017 https://doi.org/10.1073/pnas.1617384114. Other DEqual versions are included in Collado-Torres et al, Neuron, 2019 https://doi.org/10.1016/j.neuron.2019.05.013. This function compares your t-statistics of interest computed on transcripts against the t-statistics from degradation time adjusting for the six brain regions from degradation experiment data used for determining covComb_tx_deg.

Usage

DEqual(DE)

Arguments

DE

a data.frame() with one column containing the t-statistics from Differential Expression, typically generated with limma::topTable(). The rownames(DE) should be transcript GENCODE IDs.

Value

a ggplot object of the DE t-statistic vs the DE statistic from degradation

4 getDegTx

Examples

```
## Random differential expression t-statistics for the same transcripts
## we have degradation t-statistics for in `degradation_tstats`.
set.seed(101)
random_de <- data.frame(
    t = rt(nrow(degradation_tstats), 5),
    row.names = sample(
        rownames(degradation_tstats),
        nrow(degradation_tstats)
    )
)

## Create the DEqual plot
DEqual(random_de)</pre>
```

getDegTx

Obtain expression matrix for degraded transcripts

Description

This function is used to obtain a RangedSummarizedExperiment-class of transcripts and their expression values #' These transcripts are selected based on a prior study of RNA degradation in postmortem brain tissues. This object can later be used to obtain the principle components necessary to remove the effect of degradation in differential expression.

Usage

```
getDegTx(
   rse_tx,
   type = "cell_component",
   sig_transcripts = select_transcripts(type),
   assayname = "tpm"
)
```

Arguments

rse_tx

A RangedSummarizedExperiment-class object containing the transcript data desired to be studied.

type

A character(1) specifying the transcripts set type. These were determined by Joshua M. Stolz et al, 2022. Here the names "cell_component", "top1500", and "standard" refer to models that were determined to be effective in removing degradation effects. The "standard" model involves taking the union of the top 1000 transcripts associated with degradation from the interaction model and the main effect model. The "top1500" model is the same as the "standard model except the union of the top 1500 genes associated with degradation is selected. The most effective of our models, "cell_component", involved deconvolution of the degradation matrix to determine the proportion of cell types within our

getPCs 5

studied tissue. These proportions were then added to our model.matrix() and the union of the top 1000 transcripts in the interaction model, the main effect model, and the cell proportions model were used to generate this model of qSVs.

sig_transcripts

A list of transcripts determined to have degradation signal in the qsva expanded

paper.

assayname character string specifying the name of the assay desired in rse_tx

Value

A RangedSummarizedExperiment-class object.

Examples

```
getDegTx(covComb_tx_deg)
stopifnot(mean(rowMeans(assays(covComb_tx_deg)$tpm)) > 1)
```

getPCs

PCs from transcripts

Description

This function returns the pcs from the obtained RangedSummarizedExperiment object of selected transcripts

Usage

```
getPCs(rse_tx, assayname = "tpm")
```

Arguments

rse_tx Ranged Summarizeed Experiment with only transcripts selected for qsva assayname character string specifying the name of the assay desired in rse_tx

Value

prcomp object generated by taking the pcs of degraded transcripts

Examples

```
getPCs(covComb_tx_deg, "tpm")
```

 $k_{\underline{q}svs}$

get_qsvs

Generate matrix of qsvs

Description

Using the pcs and the k number of components be included, we generate the qsva matrix.

Usage

```
get_qsvs(qsvPCs, k)
```

Arguments

qsvPCs prcomp object generated by taking the pcs of degraded transcripts

k number of qsvs to be included.

Value

matrix with k principal components for each sample.

Examples

```
qsv <- list(x = matrix(seq_len(9), ncol = 3))
get_qsvs(qsv, 2)</pre>
```

k_qsvs

Apply num.sv algorithm to determine the number of pcs to be included

Description

Apply num.sv algorithm to determine the number of pcs to be included

Usage

```
k_qsvs(rse_tx, mod, assayname)
```

Arguments

rse_t	cx A	Ranged	Summarized	Experime	nt-class	object	containing the	he transcript da	ata de-
-------	------	--------	------------	----------	----------	--------	----------------	------------------	---------

sired to be studied.

mod Model Matrix with necessary variables the you would model for in differential

expression

assayname character string specifying the name of the assay desired in rse_tx

qSVA

Value

integer representing number of pcs to be included

Examples

qSVA

A wrapper function used to perform qSVA in one step.

Description

A wrapper function used to perform qSVA in one step.

Usage

```
qSVA(
    rse_tx,
    type = "cell_component",
    sig_transcripts = select_transcripts(type),
    mod,
    assayname
)
```

Arguments

rse_tx A RangedSummarizedExperiment-class object containing the transcript data de-

sired to be studied.

type a character string specifying which model you would like to use when selecting

a degradation matrix.

sig_transcripts

A list of transcripts determined to have degradation signal in the qsva expanded

paper.

mod Model Matrix with necessary variables the you would model for in differential

expression

assayname character string specifying the name of the assay desired in rse_tx

Value

matrix with k principal components for each sample

8 select_transcripts

Examples

select_transcripts

Select transcripts associated with degradation

Description

Helper function to select which experimental model will be used to generate the qSVs.

Usage

```
select_transcripts(type = c("cell_component", "top1500", "standard"))
```

Arguments

type

A character(1) specifying the transcripts set type. These were determined by Joshua M. Stolz et al, 2022. Here the names "cell_component", "top1500", and "standard" refer to models that were determined to be effective in removing degradation effects. The "standard" model involves taking the union of the top 1000 transcripts associated with degradation from the interaction model and the main effect model. The "top1500" model is the same as the "standard model except the union of the top 1500 genes associated with degradation is selected. The most effective of our models, "cell_component", involved deconvolution of the degradation matrix to determine the proportion of cell types within our studied tissue. These proportions were then added to our model.matrix() and the union of the top 1000 transcripts in the interaction model, the main effect model, and the cell proportions model were used to generate this model of qSVs.

Value

A character() with the transcript IDs.

Examples

```
## Default set of transcripts associated with degradation
sig_transcripts <- select_transcripts()
length(sig_transcripts)
head(sig_transcripts)

## Example where match.arg() auto-completes
select_transcripts("top")</pre>
```

transcripts 9

transcripts

Transcripts for Degradation Models

Description

An object storing three lists of transcripts each corresponding to a model used in the degradation experiment. These were determined by Joshua M. Stolz et al, 2022. Here the names "cell_component", "top1500", and "standard" refer to models that were determined to be effective in removing degradation effects. The "standard" model involves taking the union of the top 1000 transcripts associated with degradation from the interaction model and the main effect model. The "top1500" model is the same as the "standard" model except the union of the top 1500 genes associated with degradation is selected. The most effective of our models, "cell_component", involved deconvolution of the degradation matrix to determine the proportion of cell types within our studied tissue. These proportions were then added to our model.matrix() and the union of the top 1000 transcripts in the interaction model, the main effect model, and the cell proportions model were used to generate this model of qSVs.

Usage

transcripts

Format

A list() with character strings containing the transcripts selected by each model. Each string is a GENCODE transcript IDs.

See Also

select_transcripts

Index

```
\ast datasets
    covComb_tx_deg, 2
    degradation\_tstats, 3
    transcripts, 9
covComb\_tx\_deg, 2, 3
degradation\_tstats, 3
DEqual, 3, 3
get_qsvs, 6
getDegTx, 2, 4
getPCs, 2, 5
k_qsvs, 2, 6
qSVA, 7
RangedSummarizedExperiment-class, 2,
        4–7
select\_transcripts, 8, 9
transcripts, 9
```