
Package ‘epialleleR’
April 10, 2023

Title Fast, Epiallele-Aware Methylation Reporter

Version 1.6.1

CommentMaintainer Oleksii Nikolaienko <oleksii.nikolaienko@gmail.com>

Description Epialleles are specific DNA methylation patterns that are
mitotically and/or meiotically inherited. This package calls hypermethylated
epiallele frequencies at the level of genomic regions or individual cytosines
in next-generation sequencing data using binary alignment map (BAM) files as
an input. Other functionality includes extracting methylation patterns,
computing the empirical cumulative distribution function for per-read beta
values, and testing the significance of the association between epiallele
methylation status and base frequencies at particular genomic positions
(SNPs).

SystemRequirements C++17, GNU make

NeedsCompilation yes

Depends R (>= 4.1)

Imports stats, methods, utils, GenomicRanges, BiocGenerics,
GenomeInfoDb, SummarizedExperiment, VariantAnnotation, stringi,
data.table, Rcpp

LinkingTo Rcpp, BH, Rhtslib, zlibbioc

Suggests RUnit, knitr, rmarkdown, ggplot2, ggstance, gridExtra

License Artistic-2.0

URL https://github.com/BBCG/epialleleR

BugReports https://github.com/BBCG/epialleleR/issues

Encoding UTF-8

biocViews DNAMethylation, Epigenetics, MethylSeq

RoxygenNote 7.2.3

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/epialleleR

git_branch RELEASE_3_16

git_last_commit 8bc723f

1

https://github.com/BBCG/epialleleR
https://github.com/BBCG/epialleleR/issues

2 extractPatterns

git_last_commit_date 2023-02-19

Date/Publication 2023-04-10

Author Oleksii Nikolaienko [aut, cre]
(<https://orcid.org/0000-0002-5910-4934>)

Maintainer Oleksii Nikolaienko <oleksii.nikolaienko@gmail.com>

R topics documented:

extractPatterns . 2
generateBedEcdf . 6
generateBedReport . 9
generateCytosineReport . 14
generateVcfReport . 17
preprocessBam . 21

Index 24

extractPatterns extractPatterns

Description

This function extracts methylation patterns (epialleles) for a given genomic region of interest.

Usage

extractPatterns(
bam,
bed,
bed.row = 1,
zero.based.bed = FALSE,
match.min.overlap = 1,
extract.context = c("CG", "CHG", "CHH", "CxG", "CX"),
min.context.freq = 0.01,
clip.patterns = FALSE,
strand.offset = c(CG = 1, CHG = 2, CHH = 0, CxG = 0, CX = 0)[extract.context],
highlight.positions = c(),
min.mapq = 0,
min.baseq = 0,
skip.duplicates = FALSE,
nthreads = 1,
verbose = TRUE

)

https://orcid.org/0000-0002-5910-4934

extractPatterns 3

Arguments

bam BAM file location string OR preprocessed output of preprocessBam function.
BAM file alignment records must derive from paired-end sequencing, be sorted
by QNAME (instead of genomic position), contain XG tag (strand information
for the reference genome) and methylation call strings. Read more about these
requirements and BAM preprocessing at preprocessBam.

bed Browser Extensible Data (BED) file location string OR object of class GRanges
holding genomic coordinates for regions of interest. It is used to match se-
quencing reads to the genomic regions prior to eCDF computation. The style
of seqlevels of BED file/object must match the style of seqlevels of the BAM
file/object used. The BED/GRanges rows are not sorted internally.

bed.row single non-negative integer specifying what ‘bed‘ region should be included in
the output (default: 1).

zero.based.bed boolean defining if BED coordinates are zero based (default: FALSE).
match.min.overlap

integer for the smallest overlap between read’s and BED/GRanges start or end
positions during matching of capture-based NGS reads (default: 1).

extract.context

string defining cytosine methylation context used to report:

• "CG" (the default) – CpG cytosines (called as zZ)
• "CHG" – CHG cytosines (xX)
• "CHH" – CHH cytosines (hH)
• "CxG" – CG and CHG cytosines (zZxX)
• "CX" – all cytosines

min.context.freq

real number in the range [0;1] (default: 0.01). Genomic positions that are cov-
ered by smaller fraction of patterns (e.g., with erroneous context) won’t be in-
cluded in the report.

clip.patterns boolean if patterns should not extend over the edge of ‘bed‘ region (default:
FALSE).

strand.offset single non-negative integer specifying the offset of bases at the reverse (-) strand
compared to the forward (+) strand. Allows to "merge" genomic positions when
methylation is symmetric (in CG and CHG contexts). By default, equals 1 for
‘extract.context‘=="CG", 2 for "CHG", or 0 otherwise.

highlight.positions

integer vector with genomic positions of bases to include in every overlap-
ping pattern. Allows to visualize the distribution of single-nucleotide variations
(SNVs) among methylation patterns. ‘highlight.positions‘ takes precedence if
any of these positions overlap with within-the-context positions of methylation
pattern.

min.mapq non-negative integer threshold for minimum read mapping quality (default: 0).
Option has no effect if preprocessed BAM data was supplied as an input.

min.baseq non-negative integer threshold for minimum nucleotide base quality (default: 0).
Option has no effect if preprocessed BAM data was supplied as an input.

4 extractPatterns

skip.duplicates

boolean defining if duplicate aligned reads should be skipped (default: FALSE).
Option has no effect if preprocessed BAM data was supplied as an input OR
duplicate reads were not marked by alignment software.

nthreads non-negative integer for the number of HTSlib threads to be used during BAM
file decompression (default: 1). 2 threads make sense for the files larger than
100 MB. Option has no effect if preprocessed BAM data was supplied as an
input.

verbose boolean to report progress and timings (default: TRUE).

Details

The function matches reads (for paired-end sequencing alignment files - read pairs as a single entity)
to the genomic region provided in a BED file/GRanges object, extracts methylation statuses of bases
within those reads, and returns a data frame which can be used for plotting of DNA methylation
patterns.

Value

data.table object containing per-read (pair) base methylation information for the genomic region
of interest. The report columns are:

• seqnames – read (pair) reference sequence name

• strand – read (pair) strand

• start – start of the read (pair)

• end – end of the read (pair)

• nbase – number of within-the-context bases for this read (pair)

• beta – beta value of this read (pair), calculated as a ratio of the number of methylated within-
the-context bases to the total number of within-the-context bases

• pattern – hex representation of 64-bit FNV-1a hash calculated for all reported base positions
and bases in this read (pair). This hash value depends only on included genomic positions
and their methylation call string chars (hHxXzZ) or nucleotides (ACGT, for highlighted bases
only), thus it is expected to be unique for every methylation pattern, although equal for iden-
tical methylation patterns independently on read (pair) start, end, or strand (when correct
‘strand.offset‘ is given)

• ... – columns for each genomic position that hold corresponding methylation call string char,
or NA if position is not present in the read (pair)

See Also

preprocessBam for preloading BAM data, generateCytosineReport for methylation statistics at
the level of individual cytosines, generateBedReport for genomic region-based statistics, generateVcfReport
for evaluating epiallele-SNV associations, generateBedEcdf for analysing the distribution of per-
read beta values, and ‘epialleleR‘ vignettes for the description of usage and sample data.

extractPatterns 5

Examples

amplicon data
amplicon.bam <- system.file("extdata", "amplicon010meth.bam",

package="epialleleR")
amplicon.bed <- system.file("extdata", "amplicon.bed",

package="epialleleR")

let's get our patterns
patterns <- extractPatterns(bam=amplicon.bam, bed=amplicon.bed, bed.row=3)
nrow(patterns) # read pairs overlap genomic region of interest

these are positions of bases
base.positions <- grep("^[0-9]+$", colnames(patterns), value=TRUE)

let's make a summary table with counts of every pattern
patterns.summary <- patterns[, c(lapply(.SD, unique), .N),

by=.(pattern, beta), .SDcols=base.positions]
nrow(patterns.summary) # unique methylation patterns

let's melt and plot them
plot.data <- data.table::melt.data.table(patterns.summary,

measure.vars=base.positions, variable.name="pos", value.name="base")

continuous positions, nonunique patterns according to their counts
if (require("ggplot2", quietly=TRUE) & require("ggstance", quietly=TRUE)) {

ggplot(na.omit(plot.data)[N>1],
aes(x=as.numeric(as.character(pos)), y=factor(N),

group=pattern, color=factor(base, levels=c("z","Z")))) +
geom_line(color="grey", position=position_dodgev(height=0.5)) +
geom_point(position=position_dodgev(height=0.5)) +
scale_colour_grey(start=0.8, end=0) +
theme_light() +
labs(x="position", y="count", title="epialleles", color="base")

}

upset-like plot of all patterns, categorical positions, sorted by counts
if (require("ggplot2", quietly=TRUE) & require("gridExtra", quietly=TRUE)){

grid.arrange(
ggplot(na.omit(plot.data),

aes(x=pos, y=reorder(pattern,N),
color=factor(base, levels=c("z","Z")))) +

geom_line(color="grey") +
geom_point() +
scale_colour_grey(start=0.8, end=0) +
theme_light() +
scale_x_discrete(breaks=function(x){x[c(rep(FALSE,5), TRUE)]}) +
theme(axis.text.y=element_blank(), legend.position="none") +
labs(x="position", y=NULL, title="epialleles", color="base"),

ggplot(unique(na.omit(plot.data)[, .(pattern, N, beta)]),
aes(x=N+0.5, y=reorder(pattern,N), alpha=beta, label=N)) +

geom_col() +

6 generateBedEcdf

geom_text(alpha=0.5, nudge_x=0.2, size=3) +
scale_x_log10() +
theme_minimal() +
theme(axis.text.y=element_blank(), legend.position="none") +
labs(x="count", y=NULL, title=""),

ncol=2, widths=c(0.75, 0.25)
)

}

generateBedEcdf generateBedEcdf

Description

This function computes empirical cumulative distribution functions (eCDF) for per-read beta values
of the sequencing reads.

Usage

generateBedEcdf(
bam,
bed,
bed.type = c("amplicon", "capture"),
bed.rows = c(1),
zero.based.bed = FALSE,
match.tolerance = 1,
match.min.overlap = 1,
ecdf.context = c("CG", "CHG", "CHH", "CxG", "CX"),
min.mapq = 0,
min.baseq = 0,
skip.duplicates = FALSE,
nthreads = 1,
verbose = TRUE

)

Arguments

bam BAM file location string OR preprocessed output of preprocessBam function.
BAM file alignment records must derive from paired-end sequencing, be sorted
by QNAME (instead of genomic position), contain XG tag (strand information
for the reference genome) and methylation call strings. Read more about these
requirements and BAM preprocessing at preprocessBam.

bed Browser Extensible Data (BED) file location string OR object of class GRanges
holding genomic coordinates for regions of interest. It is used to match se-
quencing reads to the genomic regions prior to eCDF computation. The style
of seqlevels of BED file/object must match the style of seqlevels of the BAM
file/object used.

generateBedEcdf 7

bed.type character string for the type of assay that was used to produce sequencing reads:

• "amplicon" (the default) – used for amplicon-based next-generation se-
quencing when exact coordinates of sequenced fragments are known. Match-
ing of reads to genomic ranges are then performed by the read’s start or
end positions, either of which should be no further than ‘match.tolerance‘
bases away from the start or end position of genomic ranges given in BED
file/GRanges object

• "capture" – used for capture-based next-generation sequencing when reads
partially overlap with the capture target regions. Read is considered to
match the genomic range when their overlap is more or equal to ‘match.min.overlap‘.
If read matches two or more BED genomic regions, only the first match is
taken (input GRanges are not sorted internally)

bed.rows integer vector specifying what ‘bed‘ regions should be included in the output. If
‘c(1)‘ (the default), then function returns eCDFs for the first region of ‘bed‘, if
NULL - eCDF functions for all ‘bed‘ genomic regions as well as for the reads
that didn’t match any of the regions (last element of the return value; only if
there are such reads).

zero.based.bed boolean defining if BED coordinates are zero based (default: FALSE).
match.tolerance

integer for the largest difference between read’s and BED GRanges start or end
positions during matching of amplicon-based NGS reads (default: 1).

match.min.overlap

integer for the smallest overlap between read’s and BED GRanges start or end
positions during matching of capture-based NGS reads (default: 1). If read
matches two or more BED genomic regions, only the first match is taken (input
GRanges are not sorted internally).

ecdf.context string defining cytosine methylation context used for computing within-the-
context and out-of-context eCDFs:

• "CG" (the default) – within-the-context: CpG cytosines (called as zZ), out-
of-context: all the other cytosines (hHxX)

• "CHG" – within-the-context: CHG cytosines (xX), out-of-context: hHzZ
• "CHH" – within-the-context: CHH cytosines (hH), out-of-context: xXzZ
• "CxG" – within-the-context: CG and CHG cytosines (zZxX), out-of-context:

CHH cytosines (hH)
• "CX" – all cytosines are considered within-the-context

min.mapq non-negative integer threshold for minimum read mapping quality (default: 0).
Option has no effect if preprocessed BAM data was supplied as an input.

min.baseq non-negative integer threshold for minimum nucleotide base quality (default: 0).
Option has no effect if preprocessed BAM data was supplied as an input.

skip.duplicates

boolean defining if duplicate aligned reads should be skipped (default: FALSE).
Option has no effect if preprocessed BAM data was supplied as an input OR
duplicate reads were not marked by alignment software.

nthreads non-negative integer for the number of HTSlib threads to be used during BAM
file decompression (default: 1). 2 threads make sense for the files larger than

8 generateBedEcdf

100 MB. Option has no effect if preprocessed BAM data was supplied as an
input.

verbose boolean to report progress and timings (default: TRUE).

Details

The function matches reads (for paired-end sequencing alignment files - read pairs as a single entity)
to the genomic regions provided in a BED file/GRanges object, computes average per-read beta
values according to the cytosine context parameter ‘ecdf.context‘, and returns a list of eCDFs for
within- and out-of-context average per-read beta values, which can be used for plotting.

The resulting eCDFs and their plots can be used to characterise the methylation pattern of a partic-
ular genomic region, e.g. if reads that match to that region are methylated in an "all-CpGs-or-none"
manner or if some intermediate methylation levels are more frequent.

Value

list with a number of elements equal to the length of ‘bed.rows‘ (if not NULL), or to the number of
genomic regions within ‘bed‘ (if ‘bed.rows==NULL‘) plus one item for all reads not matching ‘bed‘
genomic regions (if any). Every list item is a list on it’s own, consisting of two eCDF functions for
within- and out-of-context per-read beta values.

See Also

preprocessBam for preloading BAM data, generateCytosineReport for methylation statistics at
the level of individual cytosines, generateBedReport for genomic region-based statistics, generateVcfReport
for evaluating epiallele-SNV associations, extractPatterns for exploring methylation patterns,
and ‘epialleleR‘ vignettes for the description of usage and sample data.

Examples

amplicon data
amplicon.bam <- system.file("extdata", "amplicon010meth.bam",

package="epialleleR")
amplicon.bed <- system.file("extdata", "amplicon.bed",

package="epialleleR")

let's compute eCDF
amplicon.ecdfs <- generateBedEcdf(bam=amplicon.bam, bed=amplicon.bed,

bed.rows=NULL)

there are 5 items in amplicon.ecdfs, let's plot them all
par(mfrow=c(1,length(amplicon.ecdfs)))

cycle through items
for (x in 1:length(amplicon.ecdfs)) {

four of them have names corresponding to amplicon.bed genomic regions,
fifth - NA for all the reads that don't match to any of those regions
main <- if (is.na(names(amplicon.ecdfs[x]))) "unmatched"

else names(amplicon.ecdfs[x])

generateBedReport 9

plotting eCDF for within-the-context per-read beta values (in red)
plot(amplicon.ecdfs[[x]]$context, col="red", verticals=TRUE,

do.points=FALSE, xlim=c(0,1), xlab="per-read beta value",
ylab="cumulative density", main=main)

adding eCDF for out-of-context per-read beta values (in blue)
plot(amplicon.ecdfs[[x]]$out.of.context, add=TRUE, col="blue",

verticals=TRUE, do.points=FALSE)
}

recover default plotting parameters
par(mfrow=c(1,1))

generateBedReport generateBedReport

Description

‘generateBedReport‘, ‘generateAmpliconReport‘, ‘generateCaptureReport‘ – these functions match
BAM reads to the set of genomic locations and return the fraction of reads with an average methy-
lation level passing an arbitrary threshold.

Usage

generateAmpliconReport(
bam,
bed,
report.file = NULL,
zero.based.bed = FALSE,
match.tolerance = 1,
threshold.reads = TRUE,
threshold.context = c("CG", "CHG", "CHH", "CxG", "CX"),
min.context.sites = 2,
min.context.beta = 0.5,
max.outofcontext.beta = 0.1,
min.mapq = 0,
min.baseq = 0,
skip.duplicates = FALSE,
nthreads = 0,
gzip = FALSE,
verbose = TRUE

)

generateCaptureReport(
bam,
bed,
report.file = NULL,

10 generateBedReport

zero.based.bed = FALSE,
match.min.overlap = 1,
threshold.reads = TRUE,
threshold.context = c("CG", "CHG", "CHH", "CxG", "CX"),
min.context.sites = 2,
min.context.beta = 0.5,
max.outofcontext.beta = 0.1,
min.mapq = 0,
min.baseq = 0,
skip.duplicates = FALSE,
nthreads = 0,
gzip = FALSE,
verbose = TRUE

)

generateBedReport(
bam,
bed,
report.file = NULL,
zero.based.bed = FALSE,
bed.type = c("amplicon", "capture"),
match.tolerance = 1,
match.min.overlap = 1,
threshold.reads = TRUE,
threshold.context = c("CG", "CHG", "CHH", "CxG", "CX"),
min.context.sites = 2,
min.context.beta = 0.5,
max.outofcontext.beta = 0.1,
min.mapq = 0,
min.baseq = 0,
skip.duplicates = FALSE,
nthreads = 1,
gzip = FALSE,
verbose = TRUE

)

Arguments

bam BAM file location string OR preprocessed output of preprocessBam function.
BAM file alignment records must derive from paired-end sequencing, be sorted
by QNAME (instead of genomic position), contain XG tag (strand information
for the reference genome) and methylation call strings. Read more about these
requirements and BAM preprocessing at preprocessBam.

bed Browser Extensible Data (BED) file location string OR object of class GRanges
holding genomic coordinates for regions of interest. The style of seqlevels of
BED file/object must be the same as the style of seqlevels of BAM file/object
used.

report.file file location string to write the BED report. If NULL (the default) then report is

generateBedReport 11

returned as a data.table object.

zero.based.bed boolean defining if BED coordinates are zero based (default: FALSE).
match.tolerance

integer for the largest difference between read’s and BED GRanges start or end
positions during matching of amplicon-based NGS reads (default: 1).

threshold.reads

boolean defining if sequence reads should be thresholded before counting reads
belonging to variant epialleles (default: TRUE). Disabling thresholding is pos-
sible but makes no sense in this context as all the reads will be assigned to the
variant epiallele, which will result in VEF==1 (in such case ‘NA‘ VEF values
are returned in order to avoid confusion).

threshold.context

string defining cytosine methylation context used for thresholding the reads:

• "CG" (the default) – within-the-context: CpG cytosines (called as zZ), out-
of-context: all the other cytosines (hHxX)

• "CHG" – within-the-context: CHG cytosines (xX), out-of-context: hHzZ
• "CHH" – within-the-context: CHH cytosines (hH), out-of-context: xXzZ
• "CxG" – within-the-context: CG and CHG cytosines (zZxX), out-of-context:

CHH cytosines (hH)
• "CX" – all cytosines are considered within-the-context, this effectively re-

sults in no thresholding

This option has no effect when read thresholding is disabled.
min.context.sites

non-negative integer for minimum number of cytosines within the ‘threshold.context‘
(default: 2). Reads containing fewer within-the-context cytosines are consid-
ered completely unmethylated (thus belonging to the reference epiallele). This
option has no effect when read thresholding is disabled.

min.context.beta

real number in the range [0;1] (default: 0.5). Reads with average beta value
for within-the-context cytosines below this threshold are considered completely
unmethylated (thus belonging to the reference epiallele). This option has no
effect when read thresholding is disabled.

max.outofcontext.beta

real number in the range [0;1] (default: 0.1). Reads with average beta value
for out-of-context cytosines above this threshold are considered completely un-
methylated (thus belonging to the reference epiallele). This option has no effect
when read thresholding is disabled.

min.mapq non-negative integer threshold for minimum read mapping quality (default: 0).
Option has no effect if preprocessed BAM data was supplied as an input.

min.baseq non-negative integer threshold for minimum nucleotide base quality (default: 0).
Option has no effect if preprocessed BAM data was supplied as an input.

skip.duplicates

boolean defining if duplicate aligned reads should be skipped (default: FALSE).
Option has no effect if preprocessed BAM data was supplied as an input OR
duplicate reads were not marked by alignment software.

12 generateBedReport

nthreads non-negative integer for the number of HTSlib threads to be used during BAM
file decompression (default: 1). 2 threads make sense for the files larger than
100 MB. Option has no effect if preprocessed BAM data was supplied as an
input.

gzip boolean to compress the report (default: FALSE).

verbose boolean to report progress and timings (default: TRUE).
match.min.overlap

integer for the smallest overlap between read’s and BED GRanges start or end
positions during matching of capture-based NGS reads (default: 1). If read
matches two or more BED genomic regions, only the first match is taken (input
GRanges are not sorted internally).

bed.type character string for the type of assay that was used to produce sequencing reads:

• "amplicon" (the default) – used for amplicon-based next-generation se-
quencing when exact coordinates of sequenced fragments are known. Match-
ing of reads to genomic ranges are then performed by the read’s start or
end positions, either of which should be no further than ‘match.tolerance‘
bases away from the start or end position of genomic ranges given in BED
file/GRanges object

• "capture" – used for capture-based next-generation sequencing when reads
partially overlap with the capture target regions. Read is considered to
match the genomic range when their overlap is more or equal to ‘match.min.overlap‘.
If read matches two or more BED genomic regions, only the first match is
taken (input GRanges are not sorted internally)

Details

Functions report hypermethylated variant epiallele frequencies (VEF) per genomic region of interest
using BAM and BED files as input. Reads (for paired-end sequencing alignment files - read pairs as
a single entity) are matched to genomic locations by exact coordinates (‘generateAmpliconReport‘
or ‘generateBedReport‘ with an option bed.type="amplicon") or minimum overlap (‘generateCap-
tureReport‘ or ‘generateBedReport‘ with an option bed.type="capture") – the former to be used for
amplicon-based NGS data, while the latter – for the capture-based NGS data. The function’s logic
is explained below.

Let’s suppose we have a BAM file with four reads, all mapped to the "+" strand of chromosome 1,
positions 1-16. The genomic range is supplied as a parameter ‘bed = as("chr1:1-100", "GRanges")‘.
Assuming the default values for the thresholding parameters (threshold.reads = TRUE, thresh-
old.context = "CG", min.context.sites = 2, min.context.beta = 0.5, max.outofcontext.beta = 0.1),
the input and results will look as following:

methylation string threshold explained
...Z..x+.h..x..h. below min.context.sites < 2 (only one zZ base)
...Z..z.h..x..h. above pass all criteria
...Z..z.h..X..h. below max.outofcontext.beta > 0.1 (1XH / 3xXhH = 0.33)
...Z..z.h..z-.h. below min.context.beta < 0.5 (1Z / 3zZ = 0.33)

Only the second read will satisfy all of the thresholding criteria, leading to the following BED report
(given that all reads map to chr1:+:1-16):

generateBedReport 13

seqnames start end width strand nreads+ nreads- VEF
chr1 1 100 100 * 4 0 0.25

Value

data.table object containing VEF report for BED GRanges or NULL if report.file was specified.
If BAM file contains reads that would not match to any of BED GRanges, the last row in the report
will contain information on such reads (with seqnames, start and end equal to NA). The report
columns are:

• seqnames – reference sequence name

• start – start of genomic region

• end – end of genomic region

• width – width of genomic region

• strand – strand

• ... – other columns that were present in BED or metadata columns of GRanges object

• nreads+ – number of reads (pairs) mapped to the forward ("+") strand

• nreads- – number of reads (pairs) mapped to the reverse ("-") strand

• VEF – frequency of reads passing the threshold

See Also

preprocessBam for preloading BAM data, generateCytosineReport for methylation statistics at
the level of individual cytosines, generateVcfReport for evaluating epiallele-SNV associations,
extractPatterns for exploring methylation patterns, generateBedEcdf for analysing the distri-
bution of per-read beta values, and ‘epialleleR‘ vignettes for the description of usage and sample
data.

GRanges class for working with genomic ranges, seqlevelsStyle function for getting or setting
the seqlevels style.

Examples

amplicon data
amplicon.bam <- system.file("extdata", "amplicon010meth.bam",

package="epialleleR")
amplicon.bed <- system.file("extdata", "amplicon.bed",

package="epialleleR")
amplicon.report <- generateAmpliconReport(bam=amplicon.bam,

bed=amplicon.bed)

capture NGS
capture.bam <- system.file("extdata", "capture.bam",

package="epialleleR")
capture.bed <- system.file("extdata", "capture.bed",

package="epialleleR")
capture.report <- generateCaptureReport(bam=capture.bam, bed=capture.bed)

generateAmpliconReport and generateCaptureReport are just aliases

14 generateCytosineReport

of the generateBedReport
bed.report <- generateBedReport(bam=capture.bam, bed=capture.bed,

bed.type="capture")
identical(capture.report, bed.report)

generateCytosineReport

generateCytosineReport

Description

This function counts methylated and unmethylated DNA bases taking into the account average
methylation level of the entire sequence read.

Usage

generateCytosineReport(
bam,
report.file = NULL,
threshold.reads = TRUE,
threshold.context = c("CG", "CHG", "CHH", "CxG", "CX"),
min.context.sites = 2,
min.context.beta = 0.5,
max.outofcontext.beta = 0.1,
report.context = threshold.context,
min.mapq = 0,
min.baseq = 0,
skip.duplicates = FALSE,
nthreads = 1,
gzip = FALSE,
verbose = TRUE

)

Arguments

bam BAM file location string OR preprocessed output of preprocessBam function.
BAM file alignment records must derive from paired-end sequencing, be sorted
by QNAME (instead of genomic position), contain XG tag (strand information
for the reference genome) and methylation call strings. Read more about these
requirements and BAM preprocessing at preprocessBam.

report.file file location string to write the cytosine report. If NULL (the default) then report
is returned as a data.table object.

threshold.reads

boolean defining if sequence reads (read pairs) should be thresholded before
counting methylated cytosines (default: TRUE). Disabling thresholding makes
the report virtually indistinguishable from the ones generated by other software,
such as Bismark or Illumina DRAGEN Bio IT Platform.

generateCytosineReport 15

threshold.context

string defining cytosine methylation context used for thresholding the reads:

• "CG" (the default) – within-the-context: CpG cytosines (called as zZ), out-
of-context: all the other cytosines (hHxX)

• "CHG" – within-the-context: CHG cytosines (xX), out-of-context: hHzZ

• "CHH" – within-the-context: CHH cytosines (hH), out-of-context: xXzZ

• "CxG" – within-the-context: CG and CHG cytosines (zZxX), out-of-context:
CHH cytosines (hH)

• "CX" – all cytosines are considered within-the-context, this effectively re-
sults in no thresholding

This option has no effect when read thresholding is disabled.

min.context.sites

non-negative integer for minimum number of cytosines within the ‘threshold.context‘
(default: 2). Reads containing fewer within-the-context cytosines are consid-
ered completely unmethylated (all C are counted as T). This option has no effect
when read thresholding is disabled.

min.context.beta

real number in the range [0;1] (default: 0.5). Reads with average beta value
for within-the-context cytosines below this threshold are considered completely
unmethylated (all C are counted as T). This option has no effect when read
thresholding is disabled.

max.outofcontext.beta

real number in the range [0;1] (default: 0.1). Reads with average beta value
for out-of-context cytosines above this threshold are considered completely un-
methylated (all C are counted as T). This option has no effect when read thresh-
olding is disabled.

report.context string defining cytosine methylation context to report (default: value of ‘thresh-
old.context‘).

min.mapq non-negative integer threshold for minimum read mapping quality (default: 0).
Option has no effect if preprocessed BAM data was supplied as an input.

min.baseq non-negative integer threshold for minimum nucleotide base quality (default: 0).
Option has no effect if preprocessed BAM data was supplied as an input.

skip.duplicates

boolean defining if duplicate aligned reads should be skipped (default: FALSE).
Option has no effect if preprocessed BAM data was supplied as an input OR
duplicate reads were not marked by alignment software.

nthreads non-negative integer for the number of HTSlib threads to be used during BAM
file decompression (default: 1). 2 threads make sense for the files larger than
100 MB. Option has no effect if preprocessed BAM data was supplied as an
input.

gzip boolean to compress the report (default: FALSE).

verbose boolean to report progress and timings (default: TRUE).

16 generateCytosineReport

Details

The function reports cytosine methylation information using BAM file or data as an input. In
contrast to the other currently available software, reads (for paired-end sequencing alignment files -
read pairs as a single entity) can be thresholded by their average methylation level before counting
methylated bases, effectively resulting in hypermethylated variant epiallele frequency (VEF) being
reported instead of beta value. The function’s logic is explained below.

Let’s suppose we have a BAM file with four reads, all mapped to the "+" strand of chromosome
1, positions 1-16. Assuming the default values for the thresholding parameters (threshold.reads =
TRUE, threshold.context = "CG", min.context.sites = 2, min.context.beta = 0.5, max.outofcontext.beta
= 0.1), the input and results will look as following:

methylation string threshold explained methylation reported
...Z..x+.h..x..h. below min.context.sites < 2 (only one zZ base) all cytosines unmethylated
...Z..z.h..x..h. above pass all criteria only C4 (Z at position 4) is methylated
...Z..z.h..X..h. below max.outofcontext.beta > 0.1 (1XH / 3xXhH = 0.33) all cytosines unmethylated
...Z..z.h..z-.h. below min.context.beta < 0.5 (1Z / 3zZ = 0.33) all cytosines unmethylated

Only the second read will satisfy all of the thresholding criteria, leading to the following CX report
(given that all reads map to chr1:+:1-16):

rname strand pos context meth unmeth
chr1 + 4 CG 1 3
chr1 + 7 CG 0 3
chr1 + 9 CHH 0 4
chr1 + 12 CHG 0 3
chr1 + 15 CHH 0 4

With the thresholding disabled (threshold.reads = FALSE) all methylated bases will retain their
status, so the CX report will be similar to the reports produced by other methylation callers (such
as Bismark or Illumina DRAGEN Bio IT Platform):

rname strand pos context meth unmeth
chr1 + 4 CG 4 0
chr1 + 7 CG 0 3
chr1 + 9 CHH 0 4
chr1 + 12 CHG 1 2
chr1 + 15 CHH 0 4

Other notes:

Methylation string bases in unknown context ("uU") are simply ignored, which, to the best of our
knowledge, is consistent with the behaviour of other tools.

In order to mitigate the effect of sequencing errors (leading to rare variations in the methylation
context, as in reads 1 and 4 above), the context present in more than 50% of the reads is assumed
to be correct, while all bases at the same position but having other methylation context are simply
ignored. This allows reports to be prepared without using the reference genome sequence.

The downside of not using the reference genome sequence is the inability to determine the actual

generateVcfReport 17

sequence of triplet for every base in the cytosine report. Therefore this sequence is not reported,
and this won’t change until such information will be considered as worth adding.

Value

data.table object containing cytosine report in Bismark-like format or NULL if report.file was
specified. The report columns are:

• rname – reference sequence name (as in BAM)

• strand – strand

• pos – cytosine position

• context – methylation context

• meth – number of methylated cytosines

• unmeth – number of unmethylated cytosines

See Also

preprocessBam for preloading BAM data, generateBedReport for genomic region-based statis-
tics, generateVcfReport for evaluating epiallele-SNV associations, extractPatterns for explor-
ing methylation patterns, generateBedEcdf for analysing the distribution of per-read beta values,
and ‘epialleleR‘ vignettes for the description of usage and sample data.

Examples

capture.bam <- system.file("extdata", "capture.bam", package="epialleleR")

CpG report with thresholding
cg.report <- generateCytosineReport(capture.bam)

CX report without thresholding
cx.report <- generateCytosineReport(capture.bam, threshold.reads=FALSE,

report.context="CX")

generateVcfReport generateVcfReport

Description

This function calculates base frequencies at particular genomic positions and tests their association
with the methylation status of the sequencing reads.

18 generateVcfReport

Usage

generateVcfReport(
bam,
vcf,
vcf.style = NULL,
bed = NULL,
report.file = NULL,
zero.based.bed = FALSE,
threshold.reads = TRUE,
threshold.context = c("CG", "CHG", "CHH", "CxG", "CX"),
min.context.sites = 2,
min.context.beta = 0.5,
max.outofcontext.beta = 0.1,
min.mapq = 0,
min.baseq = 0,
skip.duplicates = FALSE,
nthreads = 1,
gzip = FALSE,
verbose = TRUE

)

Arguments

bam BAM file location string OR preprocessed output of preprocessBam function.
BAM file alignment records must derive from paired-end sequencing, be sorted
by QNAME (instead of genomic position), contain XG tag (strand information
for the reference genome) and methylation call strings. Read more about these
requirements and BAM preprocessing at preprocessBam.

vcf Variant Call Format (VCF) file location string OR a VCF object returned by
readVcf function. If VCF object is supplied, the style of its seqlevels must
match the style of seqlevels of the BAM file/object used.

vcf.style string for the seqlevels style of the VCF file, if different from BED file/object.
Only has effect when ‘vcf‘ parameter points to the VCF file location and ‘bed‘
is not NULL. Possible values:

• NULL (the default) – seqlevels in BED file/object and VCF file are the
same

• "NCBI", "UCSC", ... – valid parameters of seqlevelsStyle function

bed Browser Extensible Data (BED) file location string OR object of class GRanges
holding genomic coordinates for regions of interest. It is used to include only
the specific genomic ranges when the VCF file is loaded. This option has no
effect when VCF object is supplied as a ‘vcf‘ parameter. The style of seqlevels
of BED file/object must match the style of seqlevels of the BAM file/object used.

report.file file location string to write the VCF report. If NULL (the default) then report is
returned as a data.table object.

zero.based.bed boolean defining if BED coordinates are zero based (default: FALSE).

generateVcfReport 19

threshold.reads

boolean defining if sequence reads should be thresholded before counting bases
in reference and variant epialleles (default: TRUE). Disabling thresholding is
possible but makes no sense in this context as all the reads will be assigned to
the variant epiallele, which will result in Fisher’s Exact test p-value of 1 (in
columns ‘FEp+‘ and ‘FEP-‘).

threshold.context

string defining cytosine methylation context used for thresholding the reads:
• "CG" (the default) – within-the-context: CpG cytosines (called as zZ), out-

of-context: all the other cytosines (hHxX)
• "CHG" – within-the-context: CHG cytosines (xX), out-of-context: hHzZ
• "CHH" – within-the-context: CHH cytosines (hH), out-of-context: xXzZ
• "CxG" – within-the-context: CG and CHG cytosines (zZxX), out-of-context:

CHH cytosines (hH)
• "CX" – all cytosines are considered within-the-context, this effectively re-

sults in no thresholding
This option has no effect when read thresholding is disabled.

min.context.sites

non-negative integer for minimum number of cytosines within the ‘threshold.context‘
(default: 2). Reads containing fewer within-the-context cytosines are consid-
ered completely unmethylated (thus belonging to the reference epiallele). This
option has no effect when read thresholding is disabled.

min.context.beta

real number in the range [0;1] (default: 0.5). Reads with average beta value
for within-the-context cytosines below this threshold are considered completely
unmethylated (thus belonging to the reference epiallele). This option has no
effect when read thresholding is disabled.

max.outofcontext.beta

real number in the range [0;1] (default: 0.1). Reads with average beta value
for out-of-context cytosines above this threshold are considered completely un-
methylated (thus belonging to the reference epiallele). This option has no effect
when read thresholding is disabled.

min.mapq non-negative integer threshold for minimum read mapping quality (default: 0).
Option has no effect if preprocessed BAM data was supplied as an input.

min.baseq non-negative integer threshold for minimum nucleotide base quality (default: 0).
Option has no effect if preprocessed BAM data was supplied as an input.

skip.duplicates

boolean defining if duplicate aligned reads should be skipped (default: FALSE).
Option has no effect if preprocessed BAM data was supplied as an input OR
duplicate reads were not marked by alignment software.

nthreads non-negative integer for the number of HTSlib threads to be used during BAM
file decompression (default: 1). 2 threads make sense for the files larger than
100 MB. Option has no effect if preprocessed BAM data was supplied as an
input.

gzip boolean to compress the report (default: FALSE).
verbose boolean to report progress and timings (default: TRUE).

20 generateVcfReport

Details

Using BAM reads and sequence variation information as an input, ‘generateVcfReport‘ function
thresholds the reads (for paired-end sequencing alignment files - read pairs as a single entity) ac-
cording to supplied parameters and calculates the occurrence of Reference and Alternative bases
within reads, taking into the account DNA strand the read mapped to and average methylation level
(epiallele status) of the read.

The information on sequence variation can be supplied as a Variant Call Format (VCF) file location
or an object of class VCF, returned by the readVcf function call. As whole-genome VCF files can
be extremely large, it is strongly advised to use only relevant subset of their data, prefiltering the
VCF object manually before calling ‘generateVcfReport‘ or specifying ‘bed‘ parameter when ‘vcf‘
points to the location of such large VCF file. Please note that all the BAM, BED and VCF files must
use the same style for seqlevels (i.e. chromosome names).

After counting, function checks if certain bases occur more often within reads belonging to certain
epialleles using Fisher Exact test (HTSlib’s own implementation) and reports separate p-values for
reads mapped to "+" (forward) and "-" (reverse) DNA strands.

Please note that the final report currently includes only the VCF entries with single-base REF and
ALT alleles. Also, the default (‘min.baseq=0‘) output of ‘generateVcfReport‘ is equivalent to the
one of ‘samtools mplieup -Q 0 ...‘, and therefore may result in false SNVs caused by misalignments.
Remember to increase ‘min.baseq‘ (‘samtools mplieup -Q‘ default value is 13) to obtain higher-
quality results.

Value

data.table object containing VCF report or NULL if report.file was specified. The report columns
are:

• name – variation identifier (e.g. "rs123456789")

• seqnames – reference sequence name

• range – genomic coordinates of the variation

• REF – base at the reference allele

• ALT – base at the alternative allele

• [M|U][+|-][Ref|Alt] – number of Reference or Alternative bases that were found at this par-
ticular position within Methylated (above threshold) or Unmethylated (below threshold) reads
that were mapped to "+" (forward) or "-" (reverse) DNA strand. NA values mean that it is not
possible to determine the number of bases due to the bisulfite conversion-related limitations
(C->T variants on "+" and G->A on "-" strands)

• SumRef – sum of all Reference base counts

• SumAlt – sum of all Alternative base counts

• FEp+ – Fisher Exact test p-value for association of a variation with methylation status of the
reads that map to the "+" (forward) DNA strand. Calculated using following contingency
table:

M+Ref M+Alt
U+Ref U+Alt

preprocessBam 21

• FEp- – Fisher Exact test p-value for association of a variation with methylation status of the
reads that map to the "-" (reverse) DNA strand. Calculated using following contingency table:

M-Ref M-Alt
U-Ref U-Alt

See Also

preprocessBam for preloading BAM data, generateCytosineReport for methylation statistics at
the level of individual cytosines, generateBedReport for genomic region-based statistics, extractPatterns
for exploring methylation patterns, generateBedEcdf for analysing the distribution of per-read beta
values, and ‘epialleleR‘ vignettes for the description of usage and sample data.

GRanges class for working with genomic ranges, readVcf function for loading VCF data, seqlevelsStyle
function for getting or setting the seqlevels style.

Examples

capture.bam <- system.file("extdata", "capture.bam", package="epialleleR")
capture.bed <- system.file("extdata", "capture.bed", package="epialleleR")
capture.vcf <- system.file("extdata", "capture.vcf.gz",

package="epialleleR")

VCF report
vcf.report <- generateVcfReport(bam=capture.bam, bed=capture.bed,

vcf=capture.vcf)

preprocessBam preprocessBam

Description

This function reads and preprocesses BAM file.

Usage

preprocessBam(
bam.file,
min.mapq = 0,
min.baseq = 0,
skip.duplicates = FALSE,
nthreads = 1,
verbose = TRUE

)

22 preprocessBam

Arguments

bam.file BAM file location string.

min.mapq non-negative integer threshold for minimum read mapping quality (default: 0).

min.baseq non-negative integer threshold for minimum nucleotide base quality (default: 0).
skip.duplicates

boolean defining if duplicate aligned reads should be skipped (default: FALSE).
Option has no effect if duplicate reads were not marked by alignment software.

nthreads non-negative integer for the number of additional HTSlib threads to be used
during BAM file decompression (default: 1). Two threads (and usually no more
than two) make sense for the files larger than 100 MB.

verbose boolean to report progress and timings (default: TRUE).

Details

The function loads and preprocesses BAM file, saving time when multiple analyses are to be per-
formed on large input files. Currently, HTSlib is used to read the data, therefore it is possible to
speed up the loading by means of HTSlib threads.

This function is also called internally when BAM file location is supplied as an input for other
‘epialleleR‘ methods.

‘preprocessBam‘ currently accepts only BAM files that are derived from paired-end sequencing
(create an issue if you need to process single-end BAM files). During preprocessing, paired reads
are merged according to their base quality: nucleotide base with the highest value in the QUAL
string is taken, unless its quality is less than ‘min.baseq‘, which results in no information for that
particular position ("-"/"N"). These merged reads are then processed as a single entity in all ‘epi-
alleleR‘ methods. Due to merging, overlapping bases in read pairs are counted only once, and the
base with the highest quality is taken.

It is also a requirement currently that BAM file is sorted by QNAME instead of genomic location
(i.e., "unsorted") to perform merging of paired-end reads. Error message is shown if it is sorted by
genomic location, in this case please sort it by QNAME using ’samtools sort -n -o out.bam in.bam’.

Please also note that for all its methods, ‘epialleleR‘ requires genomic strand (XG tag) and a methy-
lation call string (XM tag) to be present in a BAM file - i.e., methylation calling must be performed
after read mapping/alignment by your software of choice.

Value

data.table object containing preprocessed BAM data.

See Also

generateCytosineReport for methylation statistics at the level of individual cytosines, generateBedReport
for genomic region-based statistics, generateVcfReport for evaluating epiallele-SNV associa-
tions, extractPatterns for exploring methylation patterns, generateBedEcdf for analysing the
distribution of per-read beta values, and ‘epialleleR‘ vignettes for the description of usage and sam-
ple data.

Sequence Alignment/Map format specifications, duplicate alignments marking by Samtools and
Illumina DRAGEN Bio IT Platform.

https://samtools.github.io/hts-specs/SAMv1.pdf
http://www.htslib.org/doc/samtools-markdup.html
https://support.illumina.com/content/dam/illumina-support/help/Illumina_DRAGEN_Bio_IT_Platform_v3_7_1000000141465/Content/SW/Informatics/Dragen/DuplicateMarking_fDG.htm

preprocessBam 23

Examples

capture.bam <- system.file("extdata", "capture.bam", package="epialleleR")
bam.data <- preprocessBam(capture.bam)

Index

data.table, 4, 11, 13, 14, 17, 18, 20, 22

extractPatterns, 2, 8, 13, 17, 21, 22

generateAmpliconReport
(generateBedReport), 9

generateBedEcdf, 4, 6, 13, 17, 21, 22
generateBedReport, 4, 8, 9, 17, 21, 22
generateCaptureReport

(generateBedReport), 9
generateCytosineReport, 4, 8, 13, 14, 21, 22
generateVcfReport, 4, 8, 13, 17, 17, 22
GRanges, 3, 4, 6–8, 10–13, 18, 21

preprocessBam, 3, 4, 6, 8, 10, 13, 14, 17, 18,
21, 21

readVcf, 18, 20, 21

seqlevelsStyle, 13, 18, 21

24

	extractPatterns
	generateBedEcdf
	generateBedReport
	generateCytosineReport
	generateVcfReport
	preprocessBam
	Index

